Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (288)

Search Parameters:
Keywords = turbidity reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3417 KB  
Article
Oxidative Degradation of the Microcontaminant 2,6-Dichlorobenzoquinone by UV: Effect of H2O2 Dosage on Water Quality
by Unai Duoandicoechea, Elisabeth Bilbao-García and Natalia Villota
Appl. Sci. 2025, 15(20), 10862; https://doi.org/10.3390/app152010862 - 10 Oct 2025
Viewed by 132
Abstract
Halogenated disinfection by-products such as 2,6-dichlorobenzoquinone (DCBQ) are emerging microcontaminants of concern due to their persistence and toxicity in aquatic environments. This study evaluated the oxidative degradation of DCBQ under UV irradiation, focusing on the effect of H2O2 dosage on [...] Read more.
Halogenated disinfection by-products such as 2,6-dichlorobenzoquinone (DCBQ) are emerging microcontaminants of concern due to their persistence and toxicity in aquatic environments. This study evaluated the oxidative degradation of DCBQ under UV irradiation, focusing on the effect of H2O2 dosage on removal efficiency and water quality. Batch experiments were conducted with H2O2 concentrations ranging from 0.0 to 10.0 mM. Kinetic analysis revealed that photolysis with UV alone followed an apparent order of 1.5, while the UV/H2O2 system showed an order of 2.5, reflecting the contribution of hydroxyl radicals and their dependence on both DCBQ and H2O2 concentrations. Color evolution displayed a series reaction behavior: the initial formation of chromophoric by-products followed first-order kinetics, whereas their subsequent removal proceeded with zero-order kinetics, consistent with radical-driven decolorization. Optimal performance was achieved with 1.0–2.0 mM H2O2, which promoted rapid DCBQ decay and significant reductions in aromaticity and color (100% in 2 h), whereas higher concentrations (10.0 mM) led to radical scavenging and lower efficiency. Dissolved oxygen increased during treatment, confirming oxidative pathways, while turbidity remained stable between 1 and NTU. These results demonstrate the effectiveness of UV/H2O2 for DCBQ removal and highlight the value of kinetic modeling in optimizing advanced oxidation processes for water treatment. Full article
(This article belongs to the Special Issue Water Pollution and Wastewater Treatment Chemistry)
Show Figures

Figure 1

28 pages, 3512 KB  
Article
Intensification of Electrocoagulation in Compost-Derived Wastewater
by Sandra Svilović, Nediljka Vukojević Medvidović, Ladislav Vrsalović, Senka Gudić, Anita Bašić and Klara Dujmović
Processes 2025, 13(10), 3207; https://doi.org/10.3390/pr13103207 - 9 Oct 2025
Viewed by 304
Abstract
Electrocoagulation (EC) is a sustainable strategy for wastewater treatment, but the role of hydrodynamics and impeller design remains underexplored. This study assessed the impacts of electrode type (Al, Fe), impeller type (SBT, PBT), treatment time, and the inclusion of zeolite (ECZ) on the [...] Read more.
Electrocoagulation (EC) is a sustainable strategy for wastewater treatment, but the role of hydrodynamics and impeller design remains underexplored. This study assessed the impacts of electrode type (Al, Fe), impeller type (SBT, PBT), treatment time, and the inclusion of zeolite (ECZ) on the efficacy of compost wastewater treatment. The results obtained were also compared with those obtained in the EC treatment of the same wastewater in a reactor equipped with a folding paddle impeller. Key performance indicators included a decrease in chemical oxygen demand (COD), residual turbidity, electrode mass loss, energy consumption, pH, temperature, and settling behaviour. Al electrodes achieved higher COD removal (80–92%) but consumed more energy, while Fe electrodes showed slightly higher electrode mass loss. Zeolite increased residual turbidity but improved the settling behaviour during longer treatments. Fe electrodes led to larger pH shifts, whereas Al electrodes caused higher temperature increases. Compared with the folding paddle impeller, SBT and PBT promoted more favourable pH evolution, slightly higher COD removal, and lower residual turbidity. These advantages could be attributed to enhanced turbulence, mass transfer, and solid–liquid interactions, which enhance coagulant formation and dispersion. L8 Taguchi optimisation identified the addition of zeolite as the main factor influencing COD reduction, while treatment time was key for minimising electrode consumption. The findings demonstrate that impeller selection, combined with process optimisation, contributes to the mechanical process intensification of EC, improving treatment efficiency, electrode durability, and cost-effectiveness. Full article
(This article belongs to the Special Issue Processes Development for Wastewater Treatment)
Show Figures

Figure 1

15 pages, 3711 KB  
Article
Consequences of the Construction of a Small Dam on the Water Quality of an Urban Stream in Southeastern Brazil
by Lucas Galli do Rosário, Ricardo Hideo Taniwaki and Luis César Schiesari
Limnol. Rev. 2025, 25(4), 48; https://doi.org/10.3390/limnolrev25040048 - 5 Oct 2025
Viewed by 339
Abstract
The growth of the human population, combined with climate change, has made the provisioning of water resources to human populations one of the greatest challenges of recent decades. One commonly adopted solution has been the construction of small dams and reservoirs close to [...] Read more.
The growth of the human population, combined with climate change, has made the provisioning of water resources to human populations one of the greatest challenges of recent decades. One commonly adopted solution has been the construction of small dams and reservoirs close to urban settlements. However, concerns have arisen that, despite their small size, small dams may have environmental impacts similar to those known for large dams. The severe water crisis observed between 2014 and 2015 led to the multiplication of small dams in southeastern Brazil, such as the one built on the Fetá stream at the Capivari River basin in the municipality of Louveira. This study aimed to contribute to the assessment of the impacts of small dam construction on water quality by monitoring basic parameters and nutrients during the filling and stabilization period of the Fetá reservoir. As expected, the interruption of water flow and the increase in water residence time led to increases in temperature, pH, electrical conductivity, dissolved oxygen and concentrations of dissolved carbon and nitrogen, as well as a reduction in turbidity. Consistent with the shallow depth of the water column, neither thermal nor chemical stratification was observed. Nevertheless, the water quality of surface and bottom layers was markedly different. Over time, water volume and water quality tended to stabilize. This research clearly demonstrates that small dams and reservoirs cause qualitatively similar environmental impacts to those of large-scale dams and reservoirs worldwide. Full article
(This article belongs to the Special Issue Functional Ecology of Urban Streams)
Show Figures

Figure 1

14 pages, 606 KB  
Article
Comparison of Gelatin and Plant Proteins in the Clarification of Grape Musts Using Flotation Techniques
by Áron Pál Szövényi, Annamária Sólyom-Leskó, Balázs Nagy, Zsuzsanna Varga, Noémi Aletta Németh and Diána Ágnes Nyitrainé Sárdy
Fermentation 2025, 11(10), 569; https://doi.org/10.3390/fermentation11100569 - 1 Oct 2025
Viewed by 515
Abstract
The study compared the effects of conventional and vegan processing aids in the clarification of must, focusing on the phenolic and sensory characteristics of must and wine. The hypothesis was that plant protein could provide results similar to those of conventional aids containing [...] Read more.
The study compared the effects of conventional and vegan processing aids in the clarification of must, focusing on the phenolic and sensory characteristics of must and wine. The hypothesis was that plant protein could provide results similar to those of conventional aids containing proteins of animal origin, especially in aromatic grapes, where hyperoxidation is avoided. Conducted in 2024 in Etyek-Buda, Hungary, the initial trials subjected the Irsai Olivér grape must to gravity sedimentation with various agents. Vegan processing aids, notably the combination of pea protein and chitin-glucan, showed a gentle impact on the assimilable nitrogen content and a similar reduction in turbidity to those with animal proteins. Nitrogen flotation trials compared gelatin and the vegan alternative (a combination of pea protein and chitin–glucan) in Irsai Olivér and Chardonnay must clarification. The removal of phenolic substances was monitored using the Folin–Ciocalteu method, the acid butanol assay, and the vanillin assay. In addition, nitrogen levels were evaluated before and after the flotation experiments. The plant-based processing aid effectively improved the sensory quality of Irsai Olivér. However, the gelatin-treated Chardonnay was fresher and less bitter than the vegan option, which was less balanced and more bitter with weaker aroma and flavor. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

19 pages, 8064 KB  
Article
Spatiotemporal Monitoring of the Effects of Climate Change on the Water Surface Area of Sidi Salem Dam, Northern Tunisia
by Yosra Ayadi, Malika Abbes, Matteo Gentilucci and Younes Hamed
Water 2025, 17(18), 2738; https://doi.org/10.3390/w17182738 - 16 Sep 2025
Viewed by 496
Abstract
This research presents a comprehensive spatiotemporal assessment of the effects of climate change and anthropogenic pressures on the water surface area and quality of the Sidi Salem Dam, the largest reservoir in Northern Tunisia. Located within a sub-humid to Mediterranean humid bioclimatic zone, [...] Read more.
This research presents a comprehensive spatiotemporal assessment of the effects of climate change and anthropogenic pressures on the water surface area and quality of the Sidi Salem Dam, the largest reservoir in Northern Tunisia. Located within a sub-humid to Mediterranean humid bioclimatic zone, the dam plays a vital role in regional water supply, irrigation, and flood control. Utilizing a 40-year dataset (1985–2025), this study integrates multi-temporal satellite imagery and geospatial analysis using Geographic Information System (GIS) and remote sensing (RS) techniques. The temporal variability of the dam’s surface water extent was monitored through indices such as the Normalized Difference Water Index (NDWI). The analysis was further supported by climate data, including records of precipitation, temperature, and evapotranspiration, to assess correlations with observed hydrological changes. The findings revealed a significant reduction in the dam’s surface area, from approximately 37.8 km2 in 1985 to 19.8 km2 in 2025, indicating a net loss of 18 km2 (47.6%). The Mann–Kendall trend test confirmed a significant long-term increase in annual precipitation, while annual temperature showed no significant trend. Nevertheless, recent observations indicate a decline in precipitation during the most recent period. Furthermore, Pearson correlation analysis revealed a significant negative relationship between precipitation and temperature, suggesting that wet years are generally associated with cooler conditions, whereas dry years coincide with warmer conditions. This hydroclimatic interplay underscores the complex dynamics driving reservoir fluctuations. Simultaneously, land use changes in the catchment area, particularly the expansion of agriculture, urban development, and deforestation have led to increased surface runoff and soil erosion, intensifying sediment deposition in the reservoir. This has progressively reduced the dam’s storage capacity, further diminishing its water storage efficiency. This study also investigates the degradation of water quality associated with declining water levels and climatic stress. Indicators such as turbidity and salinity were evaluated, showing clear signs of deterioration resulting from both natural and human-induced processes. Increased salinity and pollutant concentrations are primarily linked to reduced dilution capacity, intensified evaporation, and agrochemical runoff containing fertilizers and other contaminants. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

12 pages, 1433 KB  
Article
The Impact of Gallic Acid Binding on the Foam and Interfacial Properties of Whey Protein Isolate Under Weak Acidic Conditions
by Fuchao Zhan, Jing Li and Bin Li
Foods 2025, 14(18), 3209; https://doi.org/10.3390/foods14183209 - 15 Sep 2025
Viewed by 367
Abstract
The interfacial and foam properties of proteins can be enhanced by altering the interactions between polyphenols and proteins. The aim of this study was to determine the influence of gallic acid (GA) on the structural properties of whey protein isolate (WPI), specifically focusing [...] Read more.
The interfacial and foam properties of proteins can be enhanced by altering the interactions between polyphenols and proteins. The aim of this study was to determine the influence of gallic acid (GA) on the structural properties of whey protein isolate (WPI), specifically focusing on particle size, potential, and surface hydrophobicity, as well as the subsequent alterations in its interfacial and foam properties when utilized as a foaming agent. An increase in turbidity and a decrease in particle size suggested the formation of a soluble complex between GA and WPI at a pH of 6. The results from fluorescence spectroscopy and surface hydrophobicity analyses indicated that the primary interactions between GA and WPI are characterized by hydrogen bonding and hydrophobic interactions. The reduction in particle size enhances the capacity of WPI/GA complexes to lower the surface pressure, thereby demonstrating significant efficacy at the macroscopic scale. Furthermore, the structural connectivity of GA facilitates the formation of a stable interfacial film at the air–water interface by WPI/GA, resulting in high foam stability at a macroscopic level. This research contributes to a deeper understanding of the application of protein–polyphenol complexes as surfactants and provides theoretical support for their use in food applications. Full article
Show Figures

Figure 1

21 pages, 18282 KB  
Article
Deep Learning and Optical Flow for River Velocity Estimation: Insights from a Field Case Study
by Walter Chen, Kieu Anh Nguyen and Bor-Shiun Lin
Sustainability 2025, 17(18), 8181; https://doi.org/10.3390/su17188181 - 11 Sep 2025
Cited by 1 | Viewed by 686
Abstract
Accurate river flow velocity estimation is critical for flood risk management and sediment transport modeling. This study proposes an artificial intelligence (AI)-based framework that integrates optical flow analysis and deep learning to estimate flow velocity from charge-coupled device (CCD) camera videos. The approach [...] Read more.
Accurate river flow velocity estimation is critical for flood risk management and sediment transport modeling. This study proposes an artificial intelligence (AI)-based framework that integrates optical flow analysis and deep learning to estimate flow velocity from charge-coupled device (CCD) camera videos. The approach was tested on a field dataset from Yufeng No. 2 stream (torrent), consisting of 3263 ten min 4 K videos recorded over two months, paired with Doppler radar measurements as the ground truth. Video preprocessing included frame resizing to 224 × 224 pixels, day/night classification, and exclusion of sequences with missing frames. Two deep learning architectures—a convolutional neural network combined with long short-term memory (CNN+LSTM) and a three-dimensional convolutional neural network (3D CNN)—were evaluated under different input configurations: red–green–blue (RGB) frames, optical flow, and combined RGB with optical flow. Performance was assessed using Nash–Sutcliffe Efficiency (NSE) and the index of agreement (d statistic). Results show that optical flow combined with a 3D CNN achieved the best accuracy (NSE > 0.5), outperforming CNN+LSTM and RGB-based inputs. Increasing the training set beyond approximately 100 videos provided no significant improvement, while nighttime videos degraded performance due to poor image quality and frame loss. These findings highlight the potential of combining optical flow and deep learning for cost-effective and scalable flow monitoring in small rivers. Future work will address nighttime video enhancement, broader velocity ranges, and real-time implementation. By improving the timeliness and accuracy of river flow monitoring, the proposed approach supports early warning systems, flood risk reduction, and sustainable water resource management. When integrated with turbidity measurements, it enables more accurate estimation of sediment loads transported into downstream reservoirs, helping to predict siltation rates and safeguard long-term water supply capacity. These outcomes contribute to the Sustainable Development Goals, particularly SDG 6 (Clean Water and Sanitation), SDG 11 (Sustainable Cities and Communities), and SDG 13 (Climate Action), by enhancing disaster preparedness, protecting communities, and promoting climate-resilient water management practices. Full article
(This article belongs to the Special Issue Watershed Hydrology and Sustainable Water Environments)
Show Figures

Figure 1

11 pages, 221 KB  
Article
The Influence of Malt Properties on Efficiency and Quality in a Large-Scale Beer Wort Production Process
by Krzysztof Kucharczyk, Miriam Solgajová, Jarosław Żyrek, Tomáš Krajčovič and Štefan Dráb
Processes 2025, 13(9), 2805; https://doi.org/10.3390/pr13092805 - 2 Sep 2025
Viewed by 693
Abstract
The aim of this study, as part of a collaboration between a malt house, a brewery, and a university, was to optimize the beer production process while simultaneously maintaining or even improving the quality of the beer and creating conditions for the optimization [...] Read more.
The aim of this study, as part of a collaboration between a malt house, a brewery, and a university, was to optimize the beer production process while simultaneously maintaining or even improving the quality of the beer and creating conditions for the optimization of the malting of barley grain. The Hurbanovo malt house provided 100 t of a specially prepared batch of malt for use in industrial-scale beer production at the Żywiec brewery (which produces 4.7 million hl annually). The malt, produced from barley variety Overture, was characterized by a higher extract and protein content and increased enzymatic activity. The test malt also demonstrated favorable properties such as higher friability, lower viscosity, and a two-fold shorter saccharification time. Four HGB worts were produced during production tests. Each brew used 21.5 tons of malt, yielding an average 1020 hl of wort, with an extract content of 15.5°Blg. The malt was milled in a two-roll wet mill with a capacity of 40 t per hour. Mash filtration took place in lauter tuns with a diameter of 12.4 m each. The produced worts were transferred into a fermentation tank with a capacity of 5500 hl, and then fermentation, maturation, and lagering processes were carried out. The tested batch of malt was examined in detail and compared with a standard malt blend from three different suppliers. The tests showed an increase in extract efficiency in the process, with a simultaneous reduction in extract losses (1.2%pt.). The filterability of the mash improved compared to the standard blend, and an improvement in wort quality was observed as a result of lower turbidity (by approximately 34%). The data obtained indicate an improvement in the process with the use of the specially prepared batch of malt. Full article
(This article belongs to the Special Issue Food Processing and Ingredient Analysis)
21 pages, 14457 KB  
Article
Autonomous Underwater Vehicle Adaptive Altitude Control Framework to Improve Image Quality
by Simon Litjens, Peter King, Saurabh Garg, Wenli Yang, Muhammad Bilal Amin and Quan Bai
Drones 2025, 9(9), 608; https://doi.org/10.3390/drones9090608 - 29 Aug 2025
Viewed by 576
Abstract
Autonomous underwater vehicles (AUVs) play a pivotal role in the exploration and monitoring of the sea floor. A primary challenge in surveying AUVs is consistently obtaining high-quality optical imagery data. A major cause of quality reduction is turbid water, which both attenuates and [...] Read more.
Autonomous underwater vehicles (AUVs) play a pivotal role in the exploration and monitoring of the sea floor. A primary challenge in surveying AUVs is consistently obtaining high-quality optical imagery data. A major cause of quality reduction is turbid water, which both attenuates and scatters light. The effects of turbidity can be minimized by lowering the operational altitude of the AUV, at the cost of increased survey duration and cost. Consequently, before conducting a survey, a trade-off must be made between the risk of acquiring suboptimal images and the additional time required to cover an area. In this research, we develop a computer-vision-based technique and control system that dynamically adjusts the altitude of an AUV based on real-time estimates of turbidity from collected images. Our testing in a simulated environment demonstrates that this system reliably improves the efficiency and quality of image collection. Full article
(This article belongs to the Section Unmanned Surface and Underwater Drones)
Show Figures

Figure 1

22 pages, 3608 KB  
Review
A State-of-the-Art Review of the Hydrodynamics of Offshore Pipelines Under Submarine Gravity Flows and Their Interactions
by Cheng Zhang, Tao Tang, Fan Zhang, Chengjiao Ren, Hongcao Zhang and Guochao Wu
J. Mar. Sci. Eng. 2025, 13(9), 1654; https://doi.org/10.3390/jmse13091654 - 29 Aug 2025
Viewed by 775
Abstract
Submarine gravity flows, e.g., debris flows and turbidity currents, pose a significant threat to offshore pipeline integrity. This risk primarily manifests through the imposition of substantial dynamic loads on pipelines or their large displacement when impacted by such flows. To enhance our understanding [...] Read more.
Submarine gravity flows, e.g., debris flows and turbidity currents, pose a significant threat to offshore pipeline integrity. This risk primarily manifests through the imposition of substantial dynamic loads on pipelines or their large displacement when impacted by such flows. To enhance our understanding of these threats and facilitate the development of more robust pipeline design and protection strategies, this work reviewed the interactions between submarine gravity flows and offshore pipelines. For an individual pipeline, critical focus lies in characterizing the influence of key parameters—including Reynolds number, span height, impact angle, pipe geometry, ambient temperature, and surface roughness—on both the resultant impact forces and the fluid-structure interaction dynamics. Then, investigations into the interactions between gravity flows and multiple pipes are summarized, where the in-line spacing distance between two pipes is a key factor in reducing the impact force. Further, flow-induced vibration responses of a single pipeline and two tandem pipelines under gravity flows are presented. Building upon a thorough review, we conducted overall evaluations. There are few experimental studies and most investigations ideally treat the seabed to be horizontal, which does not always occur in practical engineering. Choosing empirical formulas to evaluate hydrodynamic loads should carefully consider the specific working conditions. An appropriate non-Newtonian fluid model is significantly important to avoid uncertainties. Some practical risk reduction measures such as streamlined structures and reduction in roughness are recommended. Finally, suggestions for future study and practice are proposed, including the requirement for three-dimensional numerical investigations, assessment of fatigue damage by flow-induced vibrations, consideration of flexible pipeline, and more attention to multiple pipelines. Full article
Show Figures

Figure 1

19 pages, 1338 KB  
Article
From Raw Water to Pipeline Water: Correlation Analysis of Dynamic Changes in Water Quality Parameters and Microbial Community Succession
by Xiaolong Jiang, Weiying Li, Xin Song and Yu Zhou
Water 2025, 17(17), 2555; https://doi.org/10.3390/w17172555 - 28 Aug 2025
Viewed by 916
Abstract
Understanding the spatiotemporal dynamics of water quality parameters and microbial communities in drinking water distribution systems (DWDS) and their interrelationships is critical for ensuring the safety of tap water supply. This study investigated the diurnal, monthly, and annual variation patterns of water quality [...] Read more.
Understanding the spatiotemporal dynamics of water quality parameters and microbial communities in drinking water distribution systems (DWDS) and their interrelationships is critical for ensuring the safety of tap water supply. This study investigated the diurnal, monthly, and annual variation patterns of water quality and the stage-specific succession behaviors of microbial communities in a DWDS located in southeastern China. Results indicated that hydraulic shear stress during peak usage periods drove biofilm detachment and particle resuspension. This process led to significant diurnal fluctuations in total cell counts (TCC) and metal ions, with coefficients of variation ranging from 0.44 to 1.89. Monthly analyses revealed the synergistic risks of disinfection by-products (e.g., 24.5 μg/L of trichloromethane) under conditions of low chlorine residual (<0.2 mg/L) and high organic loading. Annual trends suggested seasonal coupling: winter pH reductions correlated with organic acid accumulation, while summer microbial blooms associated with chlorine decay and temperature increase. Nonlinear interactions indicated weakened metal–organic complexation but enhanced turbidity–sulfate adsorption, suggesting altered contaminant mobility in pipe scales. Microbial analysis demonstrated persistent dominance of oligotrophic Phreatobacter and prevalence of Pseudomonas in biofilms, highlighting hydrodynamic conditions, nutrient availability, and disinfection pressure as key drivers of community succession. These findings reveal DWDS complexity and inform targeted operational and microbial risk control strategies. Full article
Show Figures

Graphical abstract

16 pages, 1481 KB  
Article
Assessing Urban Lake Performance for Stormwater Harvesting: Insights from Two Lake Systems in Western Sydney, Australia
by Sai Kiran Natarajan, Dharmappa Hagare and Basant Maheshwari
Water 2025, 17(17), 2504; https://doi.org/10.3390/w17172504 - 22 Aug 2025
Viewed by 777
Abstract
This study examines the impact of catchment characteristics and design on the performance of urban lakes in terms of water quality and stormwater harvesting potential. Two urban lake systems in Western Sydney, Australia, were selected for comparison: Wattle Grove Lake, a standalone constructed [...] Read more.
This study examines the impact of catchment characteristics and design on the performance of urban lakes in terms of water quality and stormwater harvesting potential. Two urban lake systems in Western Sydney, Australia, were selected for comparison: Wattle Grove Lake, a standalone constructed lake, and Woodcroft Lake, part of an integrated wetland–lake system. Both systems receive runoff from surrounding residential catchments of differing sizes and land uses. Over a one-year period, continuous monitoring was conducted to evaluate water quality parameters, including turbidity, total suspended solids (TSS), nutrients (total nitrogen and total phosphorus), pH, dissolved oxygen, and biochemical oxygen demand. The results reveal that the lake with an integrated wetland significantly outperformed the standalone lake in terms of water quality, particularly in terms of turbidity and total suspended solids (TSS), achieving up to 70% reduction in TSS at the outlet compared to the inlet. The wetland served as an effective pre-treatment system, reducing pollutant loads before water entered the lake. Despite this, nutrient concentrations in both systems remained above the thresholds set by the Australian and New Zealand Environment and Conservation Council (ANZECC) Guidelines (2000), indicating persistent challenges in nutrient retention. Notably, the larger catchment area and shallow depth of Wattle Grove Lake likely contributed to higher turbidity and nutrient levels, resulting from sediment resuspension and algal growth. Hydrological modelling using the Model for Urban Stormwater Improvement Conceptualisation (MUSIC) software (version 6) complemented the field data and highlighted the influence of catchment size, hydraulic retention time, and lake depth on pollutant removal efficiency. While both systems serve important environmental and recreational functions, the integrated wetland–lake system at Woodcroft demonstrated greater potential for safe stormwater harvesting and reuse within urban settings. The findings from the study offer practical insights for urban stormwater management and inform future designs that enhance resilience and water reuse potential in growing cities. Full article
(This article belongs to the Special Issue Urban Stormwater Harvesting, and Wastewater Treatment and Reuse)
Show Figures

Figure 1

18 pages, 1211 KB  
Article
Sustainable Greywater Treatment in Jordan: The Role of Constructed Wetlands as Nature-Based Solutions
by Ahmed M. N. Masoud, Amani Alfarra, Alham W. Al-Shurafat and Sabrina Sorlini
Water 2025, 17(16), 2497; https://doi.org/10.3390/w17162497 - 21 Aug 2025
Viewed by 1692
Abstract
Water scarcity in Jordan is intensifying, creating an urgent need for innovative approaches to maximize the use of nonconventional water resources, such as greywater treatment and reuse. This study presents a detailed analysis of the suitability of nature-based solutions (NbSs) for greywater treatment, [...] Read more.
Water scarcity in Jordan is intensifying, creating an urgent need for innovative approaches to maximize the use of nonconventional water resources, such as greywater treatment and reuse. This study presents a detailed analysis of the suitability of nature-based solutions (NbSs) for greywater treatment, with a focus on the application of horizontal flow constructed wetlands (HFCWs). Two systems were implemented to treat greywater generated from mosques located in Az-Zarqa Governorate, a dry region in Jordan. Following several months of operation, monitoring, and evaluation, the systems demonstrated high removal efficiencies: turbidity (>87%), total suspended solids (TSS) (>96%), chemical oxygen demand (COD) (>91%), and five-day biological oxygen demand (BOD5) (>85%). The eight-square-meter HFCW units successfully produced one cubic meter of treated greywater per day, meeting Jordanian standards for reclaimed greywater (JS 1776:2013) for use in irrigating food crops, including those consumed raw. The system achieved a 70% reduction in water consumption compared to the same period in the year prior to its implementation. These results demonstrate the potential of constructed wetlands (CWs) as effective, low-cost, and sustainable NbSs for decentralized greywater treatment and reuse in water-scarce regions. Full article
(This article belongs to the Special Issue Impacts of Climate Change & Human Activities on Wetland Ecosystems)
Show Figures

Figure 1

19 pages, 1126 KB  
Article
Innovative Integrated Model of Industrial Wastewater Treatment with the Circular Use of Cerium Compounds as Multifunctional Coagulants: Comprehensive Assessment of the Process and Environmental and Economic Aspects
by Paweł Lejwoda, Barbara Białecka, Anna Śliwińska, Piotr Krawczyk and Maciej Thomas
Molecules 2025, 30(16), 3428; https://doi.org/10.3390/molecules30163428 - 20 Aug 2025
Viewed by 803
Abstract
This article presents an innovative method for phosphate(V) removal from industrial wastewater using cerium(III) chloride as a coagulant, integrated with reagent recovery. The process combines coagulation, acid extraction, and multistage recovery of cerium and phosphorus, enabling partial reagent loop closure. Based on our [...] Read more.
This article presents an innovative method for phosphate(V) removal from industrial wastewater using cerium(III) chloride as a coagulant, integrated with reagent recovery. The process combines coagulation, acid extraction, and multistage recovery of cerium and phosphorus, enabling partial reagent loop closure. Based on our previously published studies, at an optimised dose (81.9 mg Ce3+/L), phosphate(V) removal reached 99.86% and total phosphorus (sum of all phosphorus forms as elemental P), 99.56%, and 99.94% of the added cerium was retained in sludge. Reductions were also observed for TSS (96.67%), turbidity (98.18%), and COD (81.86%). The sludge (101.5 g Ce/kg, 22.2 g P/kg) was extracted with HCl, transferring 99.6% of cerium and 97.5% of phosphorus to the solution. Cerium was recovered as cerium(III) oxalate and thermally decomposed to cerium(IV) oxide. Redissolution in HCl and H2O2 yielded cerium(III) chloride (97.0% recovery and 98.6% purity). The HCl used for extraction can be regenerated on-site from chlorine and hydrogen obtained from gas streams, improving material efficiency. Life cycle assessment (LCA) showed environmental benefits related to eutrophication reduction but burdens from reagent use (notably HCl and oxalic acid). Although costlier than conventional precipitation, this method may suit large-scale applications requiring high phosphorus removal, low sludge, and alignment with circular economy goals. Full article
Show Figures

Graphical abstract

15 pages, 2632 KB  
Article
Treatment of Dairy Wastewater Retentate After Microfiltration: Evaluation of the Performance of the System Based on Activated Sludge and Activated Carbon
by Maciej Życki, Wioletta Barszcz and Monika Łożyńska
Membranes 2025, 15(8), 237; https://doi.org/10.3390/membranes15080237 - 6 Aug 2025
Viewed by 972
Abstract
The dairy industry generates significant amounts of wastewater, including microfiltration (MF) retentate, a byproduct thickened with organic and inorganic pollutants. This study focuses on the treatment of two times concentrated MF retentate using a hybrid system based on biological treatment in a sequential [...] Read more.
The dairy industry generates significant amounts of wastewater, including microfiltration (MF) retentate, a byproduct thickened with organic and inorganic pollutants. This study focuses on the treatment of two times concentrated MF retentate using a hybrid system based on biological treatment in a sequential batch reactor (SBR) and adsorption on activated carbon. The first stage involved cross-flow microfiltration using a 0.2 µm PVDF membrane at 0.5 bar, resulting in reductions of 99% in turbidity and 79% in chemical oxygen demand (COD), as well as a partial reduction in conductivity. The second stage involved 24-h biological treatment in a sequential batch reactor (SBR) with activated sludge (activated sludge index: 80 cm3/g, MLSS 2500 mg/dm3), resulting in further reductions in COD (62%) and TOC (30%), as well as the removal of 46% of total phosphorus (TP) and 35% of total nitrogen (TN). In the third stage, the decantate underwent adsorption in a column containing powdered activated carbon (PAC; 1 g; S_(BET) = 969 m2 g−1), reducing the concentrations of key indicators to the following levels: COD 84%, TOC 70%, TN 77%, TP 87% and suspended solids 97%. Total pollutant retention ranged from 24.6% to 97.0%. These results confirm that the MF–SBR–PAC system is an effective, compact solution that significantly reduces the load of organic and biogenic pollutants in MF retentates, paving the way for their reuse or safe discharge into the environment. Full article
Show Figures

Figure 1

Back to TopTop