A State-of-the-Art Review of the Hydrodynamics of Offshore Pipelines Under Submarine Gravity Flows and Their Interactions
Abstract
1. Introduction
2. Factors Influencing the Interactions Between Gravity Flows and a Single Pipe
2.1. Effect of Reynolds Number
2.2. Effect of Span Height Ratio
2.3. Effect of Impact Angle
2.4. Effect of Pipe Geometry
2.5. Effect of Ambient Temperature
2.6. Effect of Roughness
3. Interactions Between Gravity Flows and Multiple Pipes
4. Flow-Induced Vibrations of Pipes Under Gravity Flows
5. Overall Evaluations
6. Suggestions for Future Study and Practice
6.1. Three-Dimensional Numerical Studies
6.2. Fatigue Damage by Flow-Vibration Responses
6.3. Flexible Pipelines
6.4. Multiple Pipelines
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biscara, L.; Hanquiez, V.; Leynaud, D.; Marieu, V.; Mulder, T.; Gallissaires, J.M.; Crespin, J.P.; Braccini, E.; Garlan, T. Submarine slide initiation and evolution offshore pointe odden, Gabon—Analysis from annual bathymetric data (2004–2009). Mar. Geol. 2012, 299–302, 43–50. [Google Scholar] [CrossRef]
- Locat, J.; Lee, H.J. Submarine landslides: Advances and challenges. Can. Geotech. J. 2002, 39, 193–212. [Google Scholar] [CrossRef]
- Wang, F.; Dai, Z.; Zhang, S. Experimental study on the motion behavior and mechanism of submarine landslides. Bull. Eng. Geol. Environ. 2018, 77, 1117–1126. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, J.; Gu, K.; Zhao, H.; Li, C.; Hao, X. Sedimentary characteristics and model of lacustrine deep water gravity flow in the third member of paleogene shahejie formation in niuzhuang sag, bohai bay basin, China. J. Mar. Sci. Eng. 2023, 11, 1598. [Google Scholar] [CrossRef]
- Zhu, C.; Li, S.; Chen, J.; Wang, D.; Song, X.; Li, Z.; Chen, B.; Shan, H.; Jia, Y. Nepheloid layer generation by gas eruption: Unexpected experimental results. J. Oceanol. Limnol. 2023, 41, 769–777. [Google Scholar] [CrossRef]
- He, Z.; Okon, S.U.; Hu, P.; Zhang, H.; Ewa-Oboho, I.; Li, Q. Submarine gravity flows and their interaction with offshore pipelines: A review of recent advances. Eng. Geol. 2025, 347, 107914. [Google Scholar] [CrossRef]
- Huang, J.; Yuan, R.; Zhu, J. Numerical simulation and analysis of water and suspended sediment transport in Hangzhou bay, China. J. Mar. Sci. Eng. 2022, 10, 1248. [Google Scholar] [CrossRef]
- Mojtahedi, F.F.; Yousefpour, N.; Chow, S.H.; Cassidy, M. Offshore turbidity currents forecasting (part I): Integrating deep learning and computational fluid dynamics. Ocean Eng. 2025, 331, 121360. [Google Scholar] [CrossRef]
- Breien, H.; Pagliardi, M.; De Blasio, F.V.; Issler, D.; Elverhøi, A. Experimental studies of subaqueous vs. subaerial debris flows—Velocity characteristics as A function of the ambient fluid. In Submarine Mass Movements and Their Consequences: 3 International Symposium; Lykousis, V., Sakellariou, D., Locat, J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 101–110. ISBN 978-1-4020-6512-5. [Google Scholar]
- Sassa, S.; Sekiguchi, H. Dynamics of submarine liquefied sediment flows: Theory, experiments and analysis of field behavior. In Submarine Mass Movements and Their Consequences; Springer: Dordrecht, The Netherlands, 2012; pp. 405–416. [Google Scholar]
- Sassa, S.; Sekiguchi, H. Liqsedflow: Role of two-phase physics in subaqueous sediment gravity flows. Soils Found. 2010, 50, 495–504. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, D.; Randolph, M.F. Investigation of impact forces on pipeline by submarine landslide using material point method. Ocean Eng. 2017, 146, 21–28. [Google Scholar] [CrossRef]
- Guo, X.; Nian, T.; Gu, Z.; Li, D.; Fan, N.; Zheng, D. Evaluation methodology of laminar-turbulent flow state for fluidized material with special reference to submarine landslide. J. Waterw. Port Coast. Ocean Eng. 2021, 147, 4020048. [Google Scholar] [CrossRef]
- Alhaddad, S.; Labeur, R.J.; Uijttewaal, W. Breaching flow slides and the associated turbidity current. J. Mar. Sci. Eng. 2020, 8, 67. [Google Scholar] [CrossRef]
- Alhaddad, S.; de Wit, L.; Labeur, R.J.; Uijttewaal, W. Modeling of breaching-generated turbidity currents using large eddy simulation. J. Mar. Sci. Eng. 2020, 8, 728. [Google Scholar] [CrossRef]
- Wells, M.G.; Dorrell, R.M. Turbulence processes within turbidity currents. Annu. Rev. Fluid Mech. 2021, 53, 59–83. [Google Scholar] [CrossRef]
- Kneller, B.; Buckee, C. The structure and fluid mechanics of turbidity currents: A review of some recent studies and their geological implications. Sedimentology 2000, 47, 62–94. [Google Scholar] [CrossRef]
- Guo, X.; Liu, X.; Zhang, H.; Li, M.; Luo, Q. Evaluation of instantaneous impact forces on fixed pipelines from submarine slumps. Landslides 2022, 19, 2889–2903. [Google Scholar] [CrossRef]
- Hance, J.J. Development of a Database and Assessment of Seafloor Slope Stability Based on Published Literature. Master’s Thesis, University of Texas at Austin, Austin, TX, USA, 2003. [Google Scholar]
- Clare, M.; Lintern, D.G.; Rosenberger, K.; Hughes, C.J.E.; Paull, C.; Gwiazda, R.; Cartigny, M.J.B.; Talling, P.J.; Perara, D.; Xu, J.; et al. Lessons learned from the monitoring of turbidity currents and guidance for future platform designs. Geol. Soc. Spec. Publ. 2020, 500, 605–634. [Google Scholar] [CrossRef]
- Fan, N.; Jiang, J.; Nian, T.; Dong, Y.; Guo, L.; Fu, C.; Tian, Z.; Guo, X. Impact action of submarine slides on pipelines: A review of the state-of-the-art since 2008. Ocean Eng. 2023, 286, 115532. [Google Scholar] [CrossRef]
- De Blasio, F.V.; Elverhøi, A.; Issler, D.; Harbitz, C.B.; Bryn, P.; Lien, R. Flow models of natural debris flows originating from overconsolidated clay materials. Mar. Geol. 2004, 213, 439–455. [Google Scholar] [CrossRef]
- Xiu, Z.; Liu, L.; Xie, Q.; Li, J.; Hu, G.; Yang, J. Runout prediction and dynamic characteristic analysis of a potential submarine landslide in Liwan 3-1 gas field. Acta Oceanol. Sin. 2015, 34, 116–122. [Google Scholar] [CrossRef]
- Elverhi, A.; Harbitz, C.B.; Dimakis, P.; Mohrig, D.; Marr, J.; Parker, G. On the dynamics of subaqueous debris flows. Oceanography 2000, 13, 109–117. [Google Scholar] [CrossRef]
- Du, J.; Choi, C.E.; Yu, J.; Thakur, V. Mechanisms of submarine debris flow growth. JGR Earth Surf. 2022, 127, e2021JF006470. [Google Scholar] [CrossRef]
- Nourmohammadi, Z.; Afshin, H.; Firoozabadi, B. Experimental observation of the flow structure of turbidity currents. J. Hydraul. Res. 2011, 49, 168–177. [Google Scholar] [CrossRef]
- Mohrig, D.; Ellis, C.; Parker, G.; Whipple, K.X.; Hondzo, M. Hydroplaning of subaqueous debris flows. GSA Bull. 1998, 110, 387–394. [Google Scholar] [CrossRef]
- Zakeri, A.; Høeg, K.; Nadim, F. Submarine debris flow impact on pipelines—Part II: Numerical analysis. Coast. Eng. 2009, 56, 1–10. [Google Scholar] [CrossRef]
- Dott, R.H. Dynamics of subaqueous gravity depositional processes. AAPG Bull. 1963, 47, 104–128. [Google Scholar] [CrossRef]
- Middleton, G.V. Subaqueous sediment transport and deposition by sediment gravity flows. In Marine Sediment Transport and Environmental Management; Wiley: New York, NY, USA, 1976; pp. 197–218. [Google Scholar]
- Lowe, D.R. Sediment gravity flows: Their classification and some problems of application to natural flows and deposits. In Geology of Continental Slopes; Doyle, L.J., Pilkey, O.H., Eds.; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1979; Volume 27, ISBN 9781565761575. [Google Scholar]
- Lowe, D.R. Sediment gravity flows; II, Depositional models with special reference to the deposits of high-density turbidity currents. J. Sediment. Res. 1982, 52, 279–297. [Google Scholar] [CrossRef]
- Shanmugam, G. High-density turbidity currents; are they sandy debris flows? J. Sediment. Res. 1996, 66, 2–10. [Google Scholar] [CrossRef]
- Zakeri, A.; Høeg, K.; Nadim, F. Submarine debris flow impact on pipelines—Part I: Experimental investigation. Coast. Eng. 2008, 55, 1209–1218. [Google Scholar] [CrossRef]
- Guo, X.; Nian, T.; Wang, Z.; Zhao, W.; Fan, N.; Jiao, H. Low-temperature rheological behavior of submarine mudflows. J. Waterw. Port Coast. Ocean Eng. 2020, 146, 4019043. [Google Scholar] [CrossRef]
- Boukpeti, N.; White, D.J.; Randolph, M.F.; Low, H.E. Strength of fine-grained soils at the solid–Fluid transition. Géotechnique 2012, 62, 213–226. [Google Scholar] [CrossRef]
- Bruschi, R.; Bughi, S.; Spinazzè, M.; Torselletti, E.; Vitali, L. Impact of debris flows and turbidity currents on seafloor structures. Nor. J. Geol. 2006, 88, 317–336. [Google Scholar]
- Liu, J.; Tian, J.; Yi, P. Impact forces of submarine landslides on offshore pipelines. Ocean Eng. 2015, 95, 116–127. [Google Scholar] [CrossRef]
- Nian, T.; Guo, X.; Fan, N.; Jiao, H.; Li, D. Impact forces of submarine landslides on suspended pipelines considering the low-temperature environment. Appl. Ocean Res. 2018, 81, 116–125. [Google Scholar] [CrossRef]
- Guo, X.; Zheng, D.; Nian, T.; Lv, L. Large-scale seafloor stability evaluation of the northern continental slope of South China Sea. Mar. Geores. Geotechnol. 2020, 38, 804–817. [Google Scholar] [CrossRef]
- Fan, N.; Jiang, J.; Dong, Y.; Guo, L.; Song, L. Approach for evaluating instantaneous impact forces during submarine slide-pipeline interaction considering the inertial action. Ocean Eng. 2022, 245, 110466. [Google Scholar] [CrossRef]
- Randolph, M.F.; White, D.J. Interaction forces between pipelines and submarine slides—A geotechnical viewpoint. Ocean Eng. 2012, 48, 32–37. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, A.; He, H.; Lu, R.; Tang, M. Mechanism of deep-water international submarine cables damage: Submarine earthquakes. J. Mar. Sci. 2024, 42, 100–113. [Google Scholar] [CrossRef]
- Mosher, D.C.; Monahan, P.A.; Barrie, J.V.; Courtney, R.C. Coastal submarine failures in the strait of georgia, british columbia: Landslides of the 1946 vancouver island earthquake*. J. Coast. Res. 2004, 20, 277–291. [Google Scholar] [CrossRef]
- Hsu, S.; Kuo, J.; Chung-Liang, L.; Ching-Hui, T.; Doo, W.; Ku, C.; Sibuet, J. Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan. Terr. Atmos. Ocean. Sci. 2008, 19, 767–772. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Zhao, Y.; Colin, C.; Zhang, X.; Wang, M.; Zhao, S.; Kneller, B. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea. Geology 2018, 46, 675–678. [Google Scholar] [CrossRef]
- Locat, J. Normalized rheological behavior of fine muds and their flow properties in a pseudoplastic regime. In Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Millpress: Bethlehem, PA, USA, 1997; pp. 260–269. [Google Scholar]
- Lienhard, J.H. Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders; Technical Extension Service, Washington State University: Pullman, WA, USA, 1966. [Google Scholar]
- Coutanceau, M.; Defaye, J. Circular cylinder wake configurations: A flow visualization survey. Appl. Mech. Rev. 1991, 44, 255–305. [Google Scholar] [CrossRef]
- Sahdi, F.; Gaudin, C.; Tom, J.G.; Tong, F. Mechanisms of soil flow during submarine slide-pipe impact. Ocean Eng. 2019, 186, 106079. [Google Scholar] [CrossRef]
- Guo, X.; Zheng, D.; Nian, T.; Yin, P. Effect of different span heights on the pipeline impact forces induced by deep-sea landslides. Appl. Ocean Res. 2019, 87, 38–46. [Google Scholar] [CrossRef]
- Perez-Gruszkiewicz, S.E. Reducing underwater-slide impact forces on pipelines by streamlining. J. Waterw. Port Coast. Ocean Eng. 2012, 138, 142–148. [Google Scholar] [CrossRef]
- Haza, Z.F.; Harahap, I.S.H.; Dakssa, L.M. Experimental studies of the flow-front and drag forces exerted by subaqueous mudflow on inclined base. Nat. Hazards 2013, 68, 587–611. [Google Scholar] [CrossRef]
- Sahdi, F.; Gaudin, C.; White, D.J.; Boylan, N.; Randolph, M.F. Centrifuge modelling of active slide–Pipeline loading in soft clay. Géotechnique 2014, 64, 16–27. [Google Scholar] [CrossRef]
- Fan, N.; Nian, T.; Jiao, H.; Jia, Y. Interaction between submarine landslides and suspended pipelines with a streamlined contour. Mar. Geores. Geotechnol. 2018, 36, 652–662. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Yang, Q.; Wang, H. Numerical analysis of the impact forces exerted by submarine landslides on pipelines. Appl. Ocean Res. 2019, 92, 101936. [Google Scholar] [CrossRef]
- Guo, X.; Nian, T.; Wang, F.; Zheng, L. Landslides impact reduction effect by using honeycomb-hole submarine pipeline. Ocean Eng. 2019, 187, 106155. [Google Scholar] [CrossRef]
- Guo, X.; Nian, T.; Fan, N.; Jia, Y. Optimization design of a honeycomb-hole submarine pipeline under a hydrodynamic landslide impact. Mar. Geores. Geotechnol. 2021, 39, 1055–1070. [Google Scholar] [CrossRef]
- Guo, X.; Nian, T.; Stoesser, T. Using dimpled-pipe surface to reduce submarine landslide impact forces on pipelines at different span heights. Ocean Eng. 2022, 244, 110343. [Google Scholar] [CrossRef]
- Guo, X.; Stoesser, T.; Nian, T.; Jia, Y.; Liu, X. Effect of pipeline surface roughness on peak impact forces caused by hydrodynamic submarine mudflow. Ocean Eng. 2022, 243, 110184. [Google Scholar] [CrossRef]
- Guo, X.; Nian, T.; Fu, C.; Zheng, D. Numerical investigation of the landslide cover thickness effect on the drag forces acting on submarine pipelines. J. Waterw. Port Coast. Ocean Eng. 2023, 149, 4022032. [Google Scholar] [CrossRef]
- Qian, X.; Xu, J.; Bai, Y.; Das, H.S. Formation and estimation of peak impact force on suspended pipelines due to submarine debris flow. Ocean Eng. 2020, 195, 106695. [Google Scholar] [CrossRef]
- Zhao, E.; Dong, Y.; Tang, Y.; Cui, L. Numerical study on hydrodynamic load and vibration of pipeline exerted by submarine debris flow. Ocean Eng. 2021, 239, 109754. [Google Scholar] [CrossRef]
- Fan, N.; Sahdi, F.; Zhang, W.; Nian, T.; Randolph, M.F. Effect of pipeline-seabed gaps on the vertical forces of a pipeline induced by submarine slide impact. Ocean Eng. 2021, 221, 108506. [Google Scholar] [CrossRef]
- Fan, N.; Zhang, W.; Sahdi, F.; Nian, T. Evaluation of horizontal submarine slide impact force on pipeline via a modified hybrid geotechnical—Fluid dynamics framework. Can. Geotech. J. 2021, 59, 827–836. [Google Scholar] [CrossRef]
- Guo, X.; Liu, X.; Luo, Q.; Chen, B.; Zhang, C. Dimensional effect of CFD analysis for submarine landslides interactions with infinite suspension pipelines. Ocean Eng. 2022, 266, 113094. [Google Scholar] [CrossRef]
- Guo, X.; Stoesser, T.; Zhang, C.; Fu, C.; Nian, T. Effect of opening and wall boundaries on CFD modeling for submarine landslide-ambient water-pipeline interaction. Appl. Ocean Res. 2022, 126, 103266. [Google Scholar] [CrossRef]
- Ermanyuk, E.V.; Gavrilov, N.V. Interaction of an internal gravity current with a submerged circular cylinder. J. Appl. Mech. Tech. Phys. 2005, 46, 216–223. [Google Scholar] [CrossRef]
- Gonzalez-Juez, E.; Meiburg, E.; Constantinescu, G. The interaction of a gravity current with a circular cylinder mounted above a wall: Effect of the gap size. J. Fluids Struct. 2009, 25, 629–640. [Google Scholar] [CrossRef]
- Gonzalez-Juez, E.; Meiburg, E.; Tokyay, T.; Constantinescu, G. Gravity current flow past a circular cylinder: Forces, wall shear stresses and implications for scour. J. Fluid Mech. 2010, 649, 69–102. [Google Scholar] [CrossRef]
- Jung, J.H.; Yoon, H.S. Effect of scour depth on flow around circular cylinder in gravity current. Ocean Eng. 2016, 117, 78–87. [Google Scholar] [CrossRef]
- Xie, P.; Du, Y.; Chu, V.H. Impact forces by a gravity current on a circular cylinder above the seabed. Appl. Ocean Res. 2022, 125, 103243. [Google Scholar] [CrossRef]
- Guo, X.; Luo, Q.; Stoesser, T.; Hajaali, A.; Liu, X. Evolution of high-density submarine turbidity current and its interaction with a pair of parallel suspended pipes. Phys. Fluids 2023, 35, 86608. [Google Scholar] [CrossRef]
- Guo, X.; Liu, X.; Zhang, C.; Jing, S.; Hou, F. Impact of high-speed turbidity currents on offshore spanning pipelines. Ocean Eng. 2023, 287, 115797. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Yu, L.; Yang, Q. Centrifuge modelling of active pipeline-soil loading under different impact angle in soft clay. Appl. Ocean Res. 2020, 98, 102129. [Google Scholar] [CrossRef]
- Schramm, K.D.; Marnane, M.J.; Elsdon, T.S.; Jones, C.M.; Saunders, B.J.; Newman, S.J.; Harvey, E.S. Fish associations with shallow water subsea pipelines compared to surrounding reef and soft sediment habitats. Sci. Rep. 2021, 11, 6238. [Google Scholar] [CrossRef]
- Zdravkovich, M.M. Forces on a circular cylinder near a plane wall. Appl. Ocean Res. 1985, 7, 197–201. [Google Scholar] [CrossRef]
- Price, S.J.; Sumner, D.; Smith, J.G.; Leong, K.; Païdoussis, M.P. Flow visualization around a circular cylinder near to a plane wall. J. Fluids Struct. 2002, 16, 175–191. [Google Scholar] [CrossRef]
- Wang, X.K.; Tan, S.K. Near-wake flow characteristics of a circular cylinder close to a wall. J. Fluids Struct. 2008, 24, 605–627. [Google Scholar] [CrossRef]
- Sarkar, S.; Sarkar, S. Vortex dynamics of a cylinder wake in proximity to a wall. J. Fluids Struct. 2010, 26, 19–40. [Google Scholar] [CrossRef]
- Zhou, J.; Qiu, X.; Li, J.; Liu, Y. The gap ratio effects on vortex evolution behind a circular cylinder placed near a wall. Phys. Fluids 2021, 33, 37112. [Google Scholar] [CrossRef]
- Zhu, H.; Zhao, H. Solid-structure impact pattern of a vortex-induced oscillating flexible pipeline in the vicinity of a bottom wall boundary. Phys. Fluids 2021, 33, 61704. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, X.; Zhao, H.; Xie, Y.; Tang, T.; Zhou, T. Experimental investigation on the vortex-induced vibration of an inclined flexible pipe and the evaluation of the independence principle. Phys. Fluids. 2023, 35, 37115. [Google Scholar] [CrossRef]
- Ding, W.; Cai, T.; Sun, H.; Zhao, X.; Fan, Y. Numerical simulation study on the interaction between a gravity current and horizontal cylinders. Ocean Eng. 2023, 289, 116236. [Google Scholar] [CrossRef]
- Cohen, I.M.; Kundu, P.K. Fluid Mechanics; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 0080470238. [Google Scholar]
- Zhongtao, W.; Hanyang, W.; Yu, Z. CFD numerical analysis of submarine landslides impact on laid-on-seafloor pipeline. Haiyang Xuebao 2016, 38, 110–117. (In Chinese) [Google Scholar]
- Zdravkovich, M.M. Flow around circular cylinders. Fundamentals 2003, 1, 216. [Google Scholar] [CrossRef]
- Williamson, C.H.K.; Govardhan, R. Vortex-induced vibrations. Annu. Rev. Fluid Mech. 2004, 36, 413–455. [Google Scholar] [CrossRef]
Fluids | Authors | Fluid Density (kg/m3) | Reynolds Number |
---|---|---|---|
Debris flows Non-Newtonian fluids | Zakeri et al. [34] | 1681~1694 | 0.6~240 |
Zakeri et al. [28] | 1681~1694 | 2~320 | |
Perez-gruszkiewicz [52] | 670 | 1.5~34 | |
Haza et al. [53] | 2630 | 0.18~92.64 | |
Sahdi et al. [54] | / | 0.00001~110 | |
Liu et al. [38] | 1681~1694 | 2.25~353.47 | |
Dong et al. [12] | 1500 | 10~100 | |
Fan et al. [55] | 1681~1694 | 10~10,000 | |
Nian et al. [39] | 1312~1468 | 0.24~410.12 | |
Sahdi et al. [50] | / | 0.5~40 | |
Zhang et al. [56] | 1681~1694 | 1.06~345.68 | |
Guo et al. [51] | 1312~1468 | 0.2~130 | |
Guo et al. [57,58,59,60,61] | 1312~1468 | 0.45, 3.4, 86.7, 346.47 | |
Qian et al. [62] | 1681~1694 | 0.3~847.8 | |
Zhao et al. [63] | 1687.7~1694 | 1000~15,000 | |
Fan et al. [64] | / | 0.001~1241 | |
Fan et al. [65] | / | 0.00001~100 | |
Fan et al. [41] | / | 0.36~287 | |
Guo et al. [66] | 1312~1468 | 1.81~723.42 | |
Guo et al. [67] | 1312~1468 | 4~130 | |
Turbidity flows Newtonian fluids | Ermanyuk and Gavrilov [68] | 1008.081~1038.024 | 1000 |
Gonznlez-Juze et al. [69] | / | 2000, 6000 | |
Gonznlez-Juze et al. [70] | / | 2000~45,000 | |
Jung and Yoon [71] | / | 6000 | |
Xie et al. [72] | 1008.081~1038.024 | 840, 23,500 | |
Guo et al. [73] | 1466.3 | 95, 500 | |
Guo et al. [74] | 1312 | 1112~333,559 |
Flow Type | Authors | Slope Angle of the Seabed (°) | H* |
---|---|---|---|
Debris flow | Zakeri et al. [34] | 3, 6 | 1 |
Sahdi et al. [54] | / | 6.2 | |
Zhang et al. [56] | 0 | 0~3 | |
Guo et al. [51] | 0 | 0~3 | |
Fan et al. [41,64,65] | 0 | 0.08~10 | |
Guo et al. [59] | 0 | 0~2.5 | |
Guo et al. [61] | 0 | 0~1 | |
Turbidity flow | Ermanyuk and Gavrilov [68] | 0 | 0.03~4.5 |
Gonznlez-Juze et al. [69] | 0 | 0.067~1.33 | |
Gonznlez-Juze et al. [70] | 0 | 0.15~1.5 | |
Jung and Yoon [71] | 0 | 0.2~1.4 | |
Xie et al. [72] | 0 | 0.05~1 | |
Ding et al. [84] | 0 | 0.9~1.7 | |
Guo et al. [73] | 0 | 1 |
Authors | Renon-Newtonian | Oncoming Flow Velocity (m/s) | θ (°) | H* |
---|---|---|---|---|
Zakeri [28] | 1.5~317.1 | 0.35~3.4 | 0, 30, 45, 60, 90 | 1 |
Liu et al. [38] | 2.25~353.47 | 0.35~3.4 | 0, 30, 45, 60, 90 | 1 |
Wang et al. [86] | 1~350 | Below 0.2 for the smallest velocity | 0, 15, 30, 45, 60, 75, 90 | 1 |
Zhang et al. [56] | 1.23~345.68 | 0.2~5 | 0, 15, 30, 45, 60, 75, 90 | 0~3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Tang, T.; Zhang, F.; Ren, C.; Zhang, H.; Wu, G. A State-of-the-Art Review of the Hydrodynamics of Offshore Pipelines Under Submarine Gravity Flows and Their Interactions. J. Mar. Sci. Eng. 2025, 13, 1654. https://doi.org/10.3390/jmse13091654
Zhang C, Tang T, Zhang F, Ren C, Zhang H, Wu G. A State-of-the-Art Review of the Hydrodynamics of Offshore Pipelines Under Submarine Gravity Flows and Their Interactions. Journal of Marine Science and Engineering. 2025; 13(9):1654. https://doi.org/10.3390/jmse13091654
Chicago/Turabian StyleZhang, Cheng, Tao Tang, Fan Zhang, Chengjiao Ren, Hongcao Zhang, and Guochao Wu. 2025. "A State-of-the-Art Review of the Hydrodynamics of Offshore Pipelines Under Submarine Gravity Flows and Their Interactions" Journal of Marine Science and Engineering 13, no. 9: 1654. https://doi.org/10.3390/jmse13091654
APA StyleZhang, C., Tang, T., Zhang, F., Ren, C., Zhang, H., & Wu, G. (2025). A State-of-the-Art Review of the Hydrodynamics of Offshore Pipelines Under Submarine Gravity Flows and Their Interactions. Journal of Marine Science and Engineering, 13(9), 1654. https://doi.org/10.3390/jmse13091654