Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = tungsten dioxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 701 KB  
Commentary
Air and Surface Purification Using Heterogeneous Photocatalysis: Enhanced Indoor Sanitisation Through W18O49 and ZnO Catalyst Systems
by Pablo Fernandez, Wesley Paul and Prashant Kumar
Atmosphere 2025, 16(9), 1108; https://doi.org/10.3390/atmos16091108 - 21 Sep 2025
Viewed by 245
Abstract
Indoor air quality management has become increasingly critical for public health, particularly after the global COVID-19 respiratory disease outbreaks that highlighted airborne pathogen transmission risks. This review investigates an advanced air and surface purification method that is used in devices utilising heterogeneous photocatalysis [...] Read more.
Indoor air quality management has become increasingly critical for public health, particularly after the global COVID-19 respiratory disease outbreaks that highlighted airborne pathogen transmission risks. This review investigates an advanced air and surface purification method that is used in devices utilising heterogeneous photocatalysis with tungsten oxide (W18O49) and zinc oxide (ZnO) catalyst systems to generate controlled concentrations of hydrogen peroxide for continuous indoor sanitisation. The photocatalytic system converts ambient water vapour into aerosolised hydrogen peroxide at concentrations of 0.04–0.05 ppm, significantly below established safety thresholds, while maintaining effective antimicrobial activity. The W18O49 catalyst demonstrates superior visible-light absorption compared to conventional titanium dioxide (TiO2) systems, with ZnO serving as an effective cocatalyst to reduce electron–hole recombination and enhance reactive oxygen species generation. Safety analysis based on OSHA, WHO, and ACGIH guidelines confirms that continuous exposure to these low hydrogen peroxide concentrations poses no health risks to occupants. Real-world applications demonstrate up to 90% reduction in airborne pathogens and a 20–30% decrease in sick leave rates in office environments. The technology offers significant economic benefits through reduced healthcare costs and improved productivity while providing environmentally sustainable air purification without harmful residues. This photocatalytic approach represents a scientifically validated, safe, and economically viable solution for next-generation indoor air quality management across healthcare, educational, commercial, and residential sectors. Full article
(This article belongs to the Section Air Quality)
Show Figures

Graphical abstract

15 pages, 3131 KB  
Article
Electrospun Polyimide Nanofibers Modified with Metal Oxide Nanowires and MXene for Photocatalytic Water Purification
by Andrii Lys, Valerii Myndrul, Mykola Pavlenko, Błażej Anastaziak, Pavel Holec, Kateřina Vodseďálková, Emerson Coy, Mikhael Bechelany and Igor Iatsunskyi
Nanomaterials 2025, 15(17), 1371; https://doi.org/10.3390/nano15171371 - 5 Sep 2025
Viewed by 637
Abstract
As the demand for clean water continues to rise, the development of reliable and environmentally sustainable purification methods has become increasingly important. In this study, we describe the production and characterization of electrospun polyimide (PID) nanofibers modified with MXene (Ti3C2 [...] Read more.
As the demand for clean water continues to rise, the development of reliable and environmentally sustainable purification methods has become increasingly important. In this study, we describe the production and characterization of electrospun polyimide (PID) nanofibers modified with MXene (Ti3C2Tx), tungsten trioxide (WO3), and titanium dioxide (TiO2) nanomaterials for improved photocatalytic degradation of rhodamine 6G (R6G), a model organic dye. Superior photocatalytic performance was achieved by suppressing electron–hole recombination, promoting efficient charge carrier separation, and the significant increase in light absorption through the addition of metal oxide nanowires and MXene to the PID matrix. Comprehensive characterization confirms a core–shell nanofiber architecture with TiO2, WO3, and MXene effectively integrated and electronically coupled, consistent with the observed photocatalytic response. The PID/TiO2/WO3/MXene composite exhibited the highest photocatalytic activity among the tested configurations, degrading R6G by 74% in 90 min of light exposure. This enhancement was ascribed to the synergistic interactions between MXene and the metal oxides, which reduced recombination losses and promoted effective charge transfer. The study confirms the suitability of PID-based hybrid nanofibers for wastewater treatment applications. It also points toward future directions focused on scalable production and deployment in the field of environmental remediation. Full article
Show Figures

Graphical abstract

15 pages, 4096 KB  
Article
Surface Roughness, Residual Stress, and Optical and Structural Properties of Evaporated VO2 Thin Films Prepared with Different Tungsten Doping Amounts
by Chuen-Lin Tien, Chun-Yu Chiang, Yi-Lin Wang, Ching-Chiun Wang and Shih-Chin Lin
Appl. Sci. 2025, 15(17), 9457; https://doi.org/10.3390/app15179457 - 28 Aug 2025
Viewed by 469
Abstract
This study investigates the effects of different tungsten (W) doping contents on the optical transmittance, surface roughness, residual stress, and microstructure of evaporated vanadium dioxide (VO2) thin films. W-doped VO2 thin films with varying tungsten concentrations were fabricated using electron [...] Read more.
This study investigates the effects of different tungsten (W) doping contents on the optical transmittance, surface roughness, residual stress, and microstructure of evaporated vanadium dioxide (VO2) thin films. W-doped VO2 thin films with varying tungsten concentrations were fabricated using electron beam evaporation combined with ion-assisted deposition techniques, and deposited on silicon wafers and glass substrates. The optical transmittances of undoped and W-doped VO2 thin films were measured by UV/VIS/NIR spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The root mean square surface roughness was measured using a Linnik microscopic interferometer. The residual stress in various W-doped VO2 films was evaluated using a modified Twyman–Green interferometer. The surface morphological and structural characterization of the W-doped VO2 thin films were performed by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). Raman spectroscopy was used to analyze the structure and vibrational modes of different W-doped VO2 thin films. These results show that the addition of tungsten significantly alters the structural, optical, and mechanical properties of VO2 thin films. Full article
Show Figures

Figure 1

14 pages, 4651 KB  
Article
Thermal-Induced Oxygen Vacancy Enhancing the Thermo-Chromic Performance of W-VO2−x@AA/PVP Nanoparticle Composite-Based Smart Windows
by Jiran Liang, Tong Wu, Chengye Zhang, Yunfei Bai, Dequan Zhang and Dangyuan Lei
Nanomaterials 2025, 15(14), 1084; https://doi.org/10.3390/nano15141084 - 12 Jul 2025
Viewed by 469
Abstract
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA [...] Read more.
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA core-shell nanoparticle is proposed to improve the thermo-chromic performance of W-VO2. Oxygen vacancies were used to promote the connection of W-VO2−x nanoparticles with L-ascorbic acid (AA) molecules. Oxygen vacancies were tuned in W-VO2 nanoparticles by thermal annealing temperatures in vacuum, and W-VO2−x@AA nanoparticles were synthesized by the hydrothermal method. A smart window was formed by dispersing W-VO2−x@AA core-shell nanoparticles into PVP evenly and spin-coating them on the surface of glass. The visual transmittance of this smart window reaches up to 67%, and the solar modulation reaches up to 12.1%. This enhanced thermo-chromic performance is related to the electron density enhanced by the AA surface molecular coordination effect through W dopant and oxygen vacancies. This work provides a new strategy to enhance the thermo-chromic performance of W-VO2 and its application in the building energy-saving field. Full article
(This article belongs to the Special Issue Nano Surface Engineering: 2nd Edition)
Show Figures

Figure 1

19 pages, 6178 KB  
Article
Enhanced Photoelectrochromic Performance of WO3 Through MoS2 and GO–MoS2 Quantum Dot Doping for Self-Powered Smart Window Application
by Jacinta Akoth Okwako, Seung-Han Song, Sunghyoek Park, Sebastian Waita, Bernard Aduda, Young-Sik Hong and Chi-Hwan Han
Energies 2025, 18(10), 2411; https://doi.org/10.3390/en18102411 - 8 May 2025
Viewed by 764
Abstract
Photoelectrochromic devices, which combine light-induced color change with energy-efficient optical modulation, have attracted significant attention for applications such as smart windows, displays, and optical sensors. However, achieving high optical modulation, fast switching speeds, and long-term stability remains a major challenge. In this study, [...] Read more.
Photoelectrochromic devices, which combine light-induced color change with energy-efficient optical modulation, have attracted significant attention for applications such as smart windows, displays, and optical sensors. However, achieving high optical modulation, fast switching speeds, and long-term stability remains a major challenge. In this study, we explore the structural and photoelectrochromic enhancements in tungsten oxide (WO3) films achieved by doping with molybdenum disulfide quantum dots (MoS2 QDs) and grapheneoxide–molybdenum disulfide quantum dots (GO–MoS2 QDs) for advanced photoelectrochromic devices. X-ray diffraction (XRD) analysis revealed that doping with MoS2 QDs and GO–MoS2 QDs leads to a reduction in the crystallite size of WO3, as evidenced by the broadening and decrease in peak intensity. Transmission Electron Microscopy (TEM) confirmed the presence of characteristic lattice fringes with interplanar spacings of 0.36 nm, 0.43 nm, and 0.34 nm, corresponding to the planes of WO3, MoS2, and graphene. Energy-Dispersive X-ray Spectroscopy (EDS) mapping indicated a uniform distribution of tungsten, oxygen, molybdenum, and sulfur, suggesting homogeneous doping throughout the WO3 matrix. Scanning Electron Microscopy (SEM) analysis showed a significant decrease in film thickness from 724.3 nm for pure WO3 to 578.8 nm for MoS2 QD-doped WO3 and 588.7 nm for GO–MoS2 QD-doped WO3, attributed to enhanced packing density and structural reorganization. These structural modifications are expected to enhance photoelectrochromic performance by improving charge transport and mechanical stability. Photoelectrochromic performance analysis showed a significant improvement in optical modulation upon incorporating MoS2 QDs and GO–MoS2 QDs into the WO3 matrix, achieving a coloration depth of 56.69% and 70.28% at 630 nm, respectively, within 10 min of 1.5 AM sun illumination, with more than 90% recovery of the initial transmittance within 7 h in dark conditions. Additionally, device stability was improved by the incorporation of GO–MoS2 QDs into the WO3 layer. The findings demonstrate that incorporating MoS2 QDs and GO–MoS2 QDs effectively modifies the structural properties of WO3, making it a promising material for high-performance photoelectrochromic applications. Full article
Show Figures

Figure 1

19 pages, 7091 KB  
Article
Thin Films of Tungsten Disulfide Grown by Sulfurization of Sputtered Metal for Ultra-Low Detection of Nitrogen Dioxide Gas
by Anastasiya D. Fedorenko, Svetlana A. Lavrukhina, Victor A. Alekseev, Vitalii I. Sysoev, Veronica S. Sulyaeva, Alexander V. Okotrub and Lyubov G. Bulusheva
Nanomaterials 2025, 15(8), 594; https://doi.org/10.3390/nano15080594 - 12 Apr 2025
Viewed by 585
Abstract
Tungsten disulfide (WS2) is attractive for the development of chemiresistive sensors due to its favorable band gap, as well as its mechanical strength and chemical stability. In this work, we elaborate a procedure for the synthesis of thin films consisting of [...] Read more.
Tungsten disulfide (WS2) is attractive for the development of chemiresistive sensors due to its favorable band gap, as well as its mechanical strength and chemical stability. In this work, we elaborate a procedure for the synthesis of thin films consisting of vertically and/or horizontally oriented WS2 nanoparticles by sulfurizing nanometer-thick tungsten layers deposited on oxidized silicon substrates using magnetron sputtering. According to X-ray photoelectron spectroscopy and Raman scattering data, WS2 films grown in an H2-containing atmosphere at 1000 °C are almost free of tungsten oxide. The WS2 film’s thickness is controlled by varying the tungsten sputtering duration from 10 to 90 s. The highest response to nitrogen dioxide (NO2) at room temperature was demonstrated by the film obtained using a tungsten layer sputtered for 30 s. The increased sensitivity is attributed to the high surface-to-volume ratio provided by the horizontal and vertical orientation of the small WS2 nanoparticles. Based on density functional calculations, we conclude that the small in-plane size of WS2 provides many high-energy sites for NO2 adsorption, which leads to greater charge transfer in the sensor. The detection limit of NO2 calculated for the best sensor (WS2-30s) is 15 ppb at room temperature and 8 ppb at 125 °C. The sensor can operate in a humid environment and is significantly less sensitive to NH3 and a mixture of H2, CO, and CO2 gases. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

27 pages, 7550 KB  
Article
Effect of Nano TiO2 Flux on Depth of Penetration and Mechanical Properties of TIG-Welded SA516 Grade 70 Steel Joints—An Experimental Investigation
by Rakesh Narayanan, Krishnaswamy Rameshkumar, Arangot Sumesh, Balakrishnan Shankar and Dinu Thomas Thekkuden
Metals 2025, 15(4), 399; https://doi.org/10.3390/met15040399 - 3 Apr 2025
Cited by 1 | Viewed by 1337
Abstract
This research investigates the application of activated tungsten inert gas (A-TIG) welding on boiler grade SA516 Grade 70 carbon steel using nano titanium dioxide (TiO2) nano flux to enhance weld penetration depth, microstructure, and mechanical properties. A unique flux application technique [...] Read more.
This research investigates the application of activated tungsten inert gas (A-TIG) welding on boiler grade SA516 Grade 70 carbon steel using nano titanium dioxide (TiO2) nano flux to enhance weld penetration depth, microstructure, and mechanical properties. A unique flux application technique was devised and experiments were carried out. Response Surface Methodology (RSM) was utilized to optimize weld parameters, namely arc length, welding current, and travel speed.The selection between A-TIG and TIG welding significantly influences penetration depth, as A-TIG benefits from arc constriction and elevated current density. The welding speed is crucial for controlling heat input, whereas current and arc length enhance penetration by influencing arc force and energy distribution. Optimizing all three parameters guarantees optimal penetration and weld quality. Microstructural research revealed enhanced mechanical properties in A-TIG weldments, distinguished by acicular ferrite in the fusion zone, which augmented toughness and tensile strength (520 MPa) compared to TIG weldments (470 MPa) and the base metal (480 MPa). Although A-TIG welds exhibited reduced impact toughness (68 J) relative to the base metal (128 J), A-TIG joints had superior ductility. The findings of this research clearly demonstrate the A-TIG welding process improved the depth of penetration and mechanical strength of the weld joints. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

14 pages, 2629 KB  
Article
Analytical Solutions for Current–Voltage Properties of PSCs and Equivalent Circuit Approximation
by Marc Al Atem, Yahia Makableh and Mohamad Arnaout
Eng 2025, 6(4), 62; https://doi.org/10.3390/eng6040062 - 23 Mar 2025
Cited by 2 | Viewed by 481
Abstract
Perovksite solar cells have emerged as a promising photovoltaic technology due to their high increasing power conversion efficiency (PCE). However, challenges related to thermal instability and material toxicity, especially in lead-based perovskites, bring the need to investigate alternative materials and structural designs. This [...] Read more.
Perovksite solar cells have emerged as a promising photovoltaic technology due to their high increasing power conversion efficiency (PCE). However, challenges related to thermal instability and material toxicity, especially in lead-based perovskites, bring the need to investigate alternative materials and structural designs. This study investigated the current–voltage and power–voltage characteristics of lead-free PSCs based on tin- and germanium using a two-diode equivalent circuit model. The novelty of this work was based on the intensive evaluation of three different electron transport layers (ETLs)—titanium dioxide (TiO2), zinc oxide (ZnO), and tungsten trioxide (WO3)—under different ambient temperature conditions (5 °C, 25 °C, and 55 °C) to study their impacts on device performance and the thermal stability. SCAPS-1D simulations were used to model the electrical and optical behaviors of the proposed perovskite structures, and the results were validated by using the two-diode model. The main performance parameters that were considered were open-circuit voltage, short-circuit current, maximum power point, and fill factor. The results showed that TiO2 was better than ZnO and WO3 as an ETL, achieving a PCE of 24.83% for Sn-based perovskites, and ZnO was the better choice for Ge-based perovskites at 25 °C, with an efficiency reaching ~15.39%. The three ETL materials showed high thermal stability when analyzing them at high ambient temperatures reaching 55 °C. Full article
Show Figures

Figure 1

17 pages, 3189 KB  
Article
Transition Metal Oxides (WO3-ZrO2) as Promoters and Hydrogen Adsorption Modulators in Pt/WO3-ZrO2-C Electrocatalyst for the Reduction of NOx
by Claudia R. Santiago-Ramírez, Martha L. Hernández-Pichardo, Arturo Manzo-Robledo, Daniel A. Acuña-Leal and Miguel A. Gracia-Pinilla
Electrochem 2025, 6(1), 7; https://doi.org/10.3390/electrochem6010007 - 5 Mar 2025
Viewed by 2264
Abstract
The electrocatalytic reduction of nitric oxide and nitrogen dioxide (NOx) remains a significant challenge due to the need for stable, efficient, and cost-effective materials. This study presents a novel support system for NOx reduction in alkaline media, composed of ZrO2-WO3 [...] Read more.
The electrocatalytic reduction of nitric oxide and nitrogen dioxide (NOx) remains a significant challenge due to the need for stable, efficient, and cost-effective materials. This study presents a novel support system for NOx reduction in alkaline media, composed of ZrO2-WO3-C (ZWC), synthesized via coprecipitation. Platinum nanoparticles (10 wt.%) were loaded onto ZWC and Vulcan carbon support, using similar methods for comparison. Comprehensive physicochemical and electrochemical analyses (N2 physisorption, XRD, XPS, SEM, TEM, and cyclic and linear voltammetry) revealed that PtZWC outperformed PtC and commercial PtEtek in NOx electrocatalysis. Notably, PtZWC exhibited the highest total electric charge for NOx reduction. At the same time, the hydrogen evolution reaction (HER) was shifted to more negative cathodic potentials, indicating reduced hydrogen coverage and a modified dissociative Tafel mechanism on platinum. Additionally, the combination of WO3 and ZrO2 in ZWC enhanced electron transfer and suppressed HER by reducing NO and hydrogen atom adsorption competition. While the incorporation of WO3 and ZrO2 lowered the surface area to 96 m2/g, it significantly improved pore properties, facilitating better Pt nanoparticle dispersion (3.06 ± 0.85 nm, as confirmed by SEM and TEM). XRD analysis identified graphite and Pt phases, with monoclinic WO3 broadening PtZWC peaks (20–25°). At the same time, XPS confirmed oxidation states of Pt, W, and Zr and tungsten-related oxygen vacancies, ensuring chemical stability and enhanced catalytic activity. Full article
Show Figures

Figure 1

16 pages, 2582 KB  
Article
Surface Characteristics and Performance Optimization of W-Doped Vanadium Dioxide Thin Films
by Chuen-Lin Tien, Chun-Yu Chiang, Jia-Kai Tien, Ching-Chiun Wang and Shih-Chin Lin
Surfaces 2024, 7(4), 1109-1124; https://doi.org/10.3390/surfaces7040073 - 20 Dec 2024
Viewed by 1148
Abstract
This study explores the surface characteristics evaluation and performance optimization of tungsten (W)-doped vanadium dioxide (VO2) thin films. W-doped vanadium dioxide films were deposited on B270 glass substrates using an electron beam evaporation technique combined with the ion beam-assisted deposition (IAD) [...] Read more.
This study explores the surface characteristics evaluation and performance optimization of tungsten (W)-doped vanadium dioxide (VO2) thin films. W-doped vanadium dioxide films were deposited on B270 glass substrates using an electron beam evaporation technique combined with the ion beam-assisted deposition (IAD) method. The Taguchi method was used to analyze the performance optimization of VO2 thin films, and L16 orthogonal array design and Minitab software were used for optimization calculations. The surface roughness, visible light transmittance, infrared transmittance, and residual stress of un-doped and tungsten-doped (3–5%) VO2 thin films are set as the quality performance indicators of thin films. The goal is to identify the key factors that affect the performance of VO2 thin films during deposition and optimize their process parameters. The experimental results showed that a VO2 thin film with 3% tungsten doping, an oxygen flow rate of 60 sccm, a heating temperature of 280 °C, and a film thickness of 60 nm exhibited the lowest surface roughness of 2.12 nm. A VO2 thin film with 5% tungsten doping, an oxygen flow rate of 0 sccm, a heating temperature of 280 °C, and a film thickness of 60 nm had the highest visible light transmittance at 64.33%. When the oxygen flow rate was 60 sccm, the heating temperature was 295 °C, the film thickness was 150 nm, and the tungsten doping was 5%, the VO2 thin film showed the lowest infrared transmittance of 31.34%. A thin film with 5% tungsten doping, an oxygen flow rate of 20 sccm, a heating temperature of 265 °C, and a film thickness of 120 nm exhibited the lowest residual stress of −0.195 GPa. Full article
Show Figures

Figure 1

24 pages, 6889 KB  
Article
Study on the Smart Dyeing and Performance of Poplar Veneers Modified by Deep Eutectic Solvents
by Yadong Liu and Kuiyan Song
Forests 2024, 15(12), 2120; https://doi.org/10.3390/f15122120 - 30 Nov 2024
Cited by 2 | Viewed by 1378
Abstract
Imitation precious wood materials have become a research focus due to their good quality, high safety level, excellent performance, rich color, varied textures, and high utilization rates. However, their uneven dyeing, poor color stability, and lack of durability limit their further application. This [...] Read more.
Imitation precious wood materials have become a research focus due to their good quality, high safety level, excellent performance, rich color, varied textures, and high utilization rates. However, their uneven dyeing, poor color stability, and lack of durability limit their further application. This study utilized a neural network model optimized with the Gray Wolf Algorithm (GWA) for color matching, using acidic dyes as raw materials and deep eutectic solvents (DESs) for modification. Functional reagents like nano tungsten trioxide (WO3) and titanium dioxide (TiO2) were introduced alongside polyvinyl alcohol (PVA) as a modifier. A dyeing-enhancement modification process was employed to create a poplar veneer that exhibited uniform and stable color performance with a smooth surface, mimicking that of precious wood. Computerized color matching was used to adjust the dye formulation for staining, ensuring stable colorimetric values on the veneer surface, which closely resembled natural precious wood. The average mean squared error in dye concentration prediction, after processing with the Gray Wolf Algorithm and a basic neural network algorithm, decreased from 0.13 to 0.006, ensuring repeatability and consistency in wood dyeing. Analysis and characterization using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and permeability testing revealed that nano TiO2 and WO3 particles were uniformly distributed within the wood cell lumens and firmly bonded. Mechanical testing on PVA-glued veneers showed that compared to untreated poplar veneers, the tensile strength of the imitation wood increased by approximately 62.5%, and the bending strength reached 809.09 MPa, significantly improving the flexibility and tensile properties of the poplar veneer. This study is the first to adopt a DES-modified dyeing-enhancement modification process to improve the dyeing performance, uniformity, durability, and structural stability of wood, showcasing its great potential in architectural decoration, high-end furniture, and artisanal crafts. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

16 pages, 9492 KB  
Article
WO3-Based Thin Films Grown by Pulsed Laser Deposition as Gas Sensors for NO2 Detection
by Alessandro Bellucci, Angela De Bonis, Mariangela Curcio, Antonio Santagata, Maria Lucia Pace, Eleonora Bolli, Matteo Mastellone, Riccardo Polini, Raffaella Salerno, Veronica Valentini and Daniele M. Trucchi
Sensors 2024, 24(22), 7366; https://doi.org/10.3390/s24227366 - 19 Nov 2024
Cited by 5 | Viewed by 1482
Abstract
Thin films based on tungsten oxide (WO3) were grown by nanosecond pulsed laser deposition on alumina printed-circuit boards to fabricate electrochemical sensors for nitrogen dioxide (NO2) detection. Samples exposed to thermal annealing (400 °C for 3 h) were also [...] Read more.
Thin films based on tungsten oxide (WO3) were grown by nanosecond pulsed laser deposition on alumina printed-circuit boards to fabricate electrochemical sensors for nitrogen dioxide (NO2) detection. Samples exposed to thermal annealing (400 °C for 3 h) were also produced to compare the main properties and the sensor performance. Before gas testing, the morphology and structural properties were investigated. Scanning electron microscopy and atomic force microscopy showed the formation of granular films with a more compact structure before the thermal treatment. Features of the main WO3 phases were identified for both as-deposited and annealed samples by Raman spectroscopy, whereas X-ray diffraction evidenced the amorphous nature of the as-deposited samples and the formation of crystalline phases after thermal annealing. The as-deposited samples showed a higher W/O ratio, as displayed by energy-dispersive X-ray spectroscopy. An Arrhenius plot revealed a lower activation energy (0.11 eV) for the as-deposited thin films, which are the most electrically conductive samples, presenting a better gas response (30% higher than the response of the annealed ones) in the investigated NO2 concentration range of 5–20 ppm at the moderate device operating temperature of 75 °C. This behavior is explained by a larger quantity of oxygen vacancies, which enhances the sensing mechanism. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 4454 KB  
Article
Effect of Tungsten Doping on the Properties of Titanium Dioxide Dye-Sensitized Solar Cells
by Ming-Cheng Kao, Jun-Hong Weng, Chih-Hung Chiang, Kai-Huang Chen, Der-Yuh Lin and Tsung-Kuei Kang
Energies 2024, 17(20), 5118; https://doi.org/10.3390/en17205118 - 15 Oct 2024
Cited by 2 | Viewed by 1476
Abstract
Tungsten-doped TiO2 thin films were prepared by sol–gel method on fluorine-doped tin oxide-coated substrates as working electrodes of dye-sensitized solar cells. The influences of different W doping (0, 2, 4, 6, and 8 at%) on the microstructure, optical, and photovoltaic properties of [...] Read more.
Tungsten-doped TiO2 thin films were prepared by sol–gel method on fluorine-doped tin oxide-coated substrates as working electrodes of dye-sensitized solar cells. The influences of different W doping (0, 2, 4, 6, and 8 at%) on the microstructure, optical, and photovoltaic properties of the W-TiO2 thin-film DSSCs were studied by the measurement of X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) analysis, and electrochemical impedance spectroscopy (EIS). An optimal DSSCs performance was observed with a 6 at% W-doped TiO2 thin film, resulting in a Voc of 0.68 V, a Jsc of 20.2 mA/cm2, an FF of 68.6%, and an efficiency (η) of 9.42%. The efficiency of DSSCs with 6 at% W-doped TiO2 photoanode improved by 75%. This is because the 6 at% W-doped TiO2 thin film increases the specific surface area and electron transfer rate. Full article
Show Figures

Figure 1

14 pages, 6972 KB  
Article
Optical, Electrical, Structural, and Thermo-Mechanical Properties of Undoped and Tungsten-Doped Vanadium Dioxide Thin Films
by Chuen-Lin Tien, Chun-Yu Chiang, Ching-Chiun Wang and Shih-Chin Lin
Materials 2024, 17(10), 2382; https://doi.org/10.3390/ma17102382 - 16 May 2024
Cited by 4 | Viewed by 2053
Abstract
The undoped and tungsten (W)-doped vanadium dioxide (VO2) thin films were prepared by electron beam evaporation associated with ion-beam-assisted deposition (IAD). The influence of different W-doped contents (3–5%) on the electrical, optical, structural, and thermo-mechanical properties of VO2 thin films [...] Read more.
The undoped and tungsten (W)-doped vanadium dioxide (VO2) thin films were prepared by electron beam evaporation associated with ion-beam-assisted deposition (IAD). The influence of different W-doped contents (3–5%) on the electrical, optical, structural, and thermo-mechanical properties of VO2 thin films was investigated experimentally. Spectral transmittance results showed that with the increase in W-doped contents, the transmittance in the visible light range (400–750 nm) decreases from 60.2% to 53.9%, and the transmittance in the infrared wavelength range (2.5 μm to 5.5 μm) drops from 55.8% to 15.4%. As the W-doped content increases, the residual stress in the VO2 thin film decreases from −0.276 GPa to −0.238 GPa, but the surface roughness increases. For temperature-dependent spectroscopic measurements, heating the VO2 thin films from 30 °C to 100 °C showed the most significant change in transmittance for the 5% W-doped VO2 thin film. When the heating temperature exceeds 55 °C, the optical transmittance drops significantly, and the visible light transmittance drops by about 11%. Finally, X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to evaluate the microstructure characteristics of VO2 thin films. Full article
(This article belongs to the Special Issue Electrical and Optical Properties of Metal Oxide Thin Films)
Show Figures

Figure 1

17 pages, 3740 KB  
Article
Magnetron-Sputtered Long-Term Superhydrophilic Thin Films for Use in Solid-State Cooling Devices
by Maria Barrera, Olaf Zywitzki, Thomas Modes and Fred Fietzke
Coatings 2024, 14(5), 622; https://doi.org/10.3390/coatings14050622 - 14 May 2024
Cited by 2 | Viewed by 1861
Abstract
Pulse-magnetron-sputtered long-term superhydrophilic coatings have been synthesized to functionalize the surfaces of solid-state cooling devices, e.g., electrocaloric heat pumps, where not only a complete wetting of the surface by a fluid is intended, but also fast wetting and dewetting processes are required. The [...] Read more.
Pulse-magnetron-sputtered long-term superhydrophilic coatings have been synthesized to functionalize the surfaces of solid-state cooling devices, e.g., electrocaloric heat pumps, where not only a complete wetting of the surface by a fluid is intended, but also fast wetting and dewetting processes are required. The coatings consist of a (Ti,Si)O2 outer layer that provides lasting hydrophilicity thanks to the mesoporous structure, followed by an intermediate WO3 film that enables the reactivation of the wettability through visible light irradiation, and a W underlayer which can work as a top electrode of the electrocaloric components thanks to its suitable electrical and thermal conductivity properties. Process parameter optimization for each layer of the stack as well as the influence of the microstructure and composition on the wetting properties are presented. Finally, water contact angle measurements, surface energy evaluations, and a contact line dynamics assessment of evaporating drops on the coatings demonstrate that their enhanced wetting performance is attributed not only to their intrinsic hydrophilic nature but also to their porous microstructure, which promotes wicking and spreading at the nanometric scale. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

Back to TopTop