Ammonium Paratungstate Production from Scheelite Ore: Process Study, Morphology and Thermal Stability
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Scheelite Concentrate
2.2. Experimental Design for Acid Leaching
2.3. Leaching Process of the Scheelite
2.4. Obtaining the APT
2.5. Characterization
3. Results and Discussion
3.1. Effect of Acid Leaching Parameters on the Microstructural Properties of Tungstic Acid (H2WO4) Derived from Scheelite
3.2. Effect of Process Variables on Leaching Efficiency
3.3. Adsorption and Desorption of N2 by the BET/BJH Method of H2WO4
3.4. Microstructural Characterization of APT Obtained from H2WO4
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohlouli, A.; Afshar, M.R.; Aboutalebi, M.R.; Seyedein, S.H. Optimization of Tungsten Leaching from Low Manganese Wolframite Concentrate Using Response Surface Methodology (RSM). Int. J. Refract. Met. Hard Mater. 2016, 61, 107–114. [Google Scholar] [CrossRef]
- Shen, L.; Li, X.; Lindberg, D.; Taskinen, P. Tungsten Extractive Metallurgy: A Review of Processes and Their Challenges for Sustainability. Miner. Eng. 2019, 142, 105934. [Google Scholar] [CrossRef]
- Zhang, G.; Guan, W.; Xiao, L.; Zhang, Q. A Novel Process for Tungsten Hydrometallurgy Based on Direct Solvent Extraction in Alkaline Medium. Hydrometallurgy 2016, 165, 233–237. [Google Scholar] [CrossRef]
- Wan, L.; Huang, X.; Deng, D.; Li, H.; Chen, Y. Synthesis of Scheelite from Sodium Tungstate Solution by Calcium Hydroxide Addition. Hydrometallurgy 2015, 154, 17–19. [Google Scholar] [CrossRef]
- Shen, L.; Li, X.; Zhou, Q.; Peng, Z.; Liu, G.; Qi, T.; Taskinen, P. Kinetics of Scheelite Conversion in Sulfuric Acid. JOM 2018, 70, 2499–2504. [Google Scholar] [CrossRef]
- Tu, T.; Guo, H.; Liu, Q.; Wang, X. Response Surface Method Optimization of Mixed Acid Leaching Parameters for Scheelite Concentrate. Mining Met. Explor. 2021, 38, 2537–2546. [Google Scholar] [CrossRef]
- Martins, J.I.; Moreira, A.; Costa, S.C. Leaching of Synthetic Scheelite by Hydrochloric Acid without the Formation of Tungstic Acid. Hydrometallurgy 2003, 70, 131–141. [Google Scholar] [CrossRef]
- Monteiro, R.L.B.P.; Leonardos, O.H.; Correia-Neves, J.M. An Epigenetic Origin for the New Scheelite and Wolframite Occurrences in the Middle Jequitinhonha Valley, Minas Gerais, Brazil. Rev. Bras. Geociências 1990, 20, 68–74. [Google Scholar] [CrossRef]
- Chen, Y.; Huo, G.; Guo, X.; Zhang, L. Leaching Behavior and Mechanism of Scheelite and Wolframite in Treating a Mixed Scheelite–Wolframite Concentrate by Hydrochloric Acid. J. Sustain. Met. 2023, 9, 837–847. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.; Zhao, Z.; Chen, X.; Liu, X.; He, L.; Sun, F. Efficient Extraction of Tungsten, Calcium, and Phosphorus from Low-Grade Scheelite Concentrate. Miner. Eng. 2022, 181, 107462. [Google Scholar] [CrossRef]
- Johnston, W.D.; De Vasconcellos, F.M. Scheelite in Northeastern Brazil. Econ. Geol. 1945, 40, 34–50. [Google Scholar] [CrossRef]
- Corrêa, R.S.; Oliveira, C.G.; Dantas, E.L.; Della Giustina, M.E.S.; Hollanda, M.H.B.M. The Root Zones of the Seridó W-Skarn System, Northeastern Brazil: Constraints on the Metallogenesis of a Large Ediacaran Tungsten Province. Ore Geol. Rev. 2021, 128, 103884. [Google Scholar] [CrossRef]
- Liu, X.; Xiong, J.; Chen, X.; Li, J.; He, L.; Sun, F.; Zhao, Z. Acidic Decomposition of Scheelite by Organic Sodium Phytate at Atmospheric Pressure. Miner. Eng. 2021, 172, 107125. [Google Scholar] [CrossRef]
- Liu, D.G.; Liao, C.F.; Liu, Y.X.; Xu, G.Z.; Zhou, F.; He, B.X.; Liang, Y. Efficient Extracting of Tungsten from Scheelite via NaOH-SiO2 Roasting Followed by Water Leaching. J. Cent. South Univ. 2023, 30, 1856–1864. [Google Scholar] [CrossRef]
- Li, J.-T.; Gao, L.-L.; Zhao, Z.-W.; Liu, X.-H.; Chen, X.-Y. Efficient Recovery of Tungsten from Scheelite Concentrates Using a Sulfur-Phosphorus Mixed Acid Leaching System. Tungsten 2024, 6, 821–832. [Google Scholar] [CrossRef]
- Olayiwola, A.U.; Du, H.; Wang, S.N.; Liu, B.; Lv, Y.Q.; Pan, B. Cleaner Production of Ammonium Paratungstate by Membrane Electrolysis-Precipitation of Sodium Tungstate Solution. Tungsten 2023, 5, 145–159. [Google Scholar] [CrossRef]
- Lei, Y.; Sun, F.; Liu, X.; Zhao, Z. Understanding the Wet Decomposition Processes of Tungsten Ore: Phase, Thermodynamics and Kinetics. Hydrometallurgy 2022, 213, 105928. [Google Scholar] [CrossRef]
- Yin, C.; Ji, L.; Chen, X.; Liu, X.; Zhao, Z. Efficient Leaching of Scheelite in Sulfuric Acid and Hydrogen Peroxide Solution. Hydrometallurgy 2020, 192, 105292. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.; Che, J.; Wang, C.; Ma, B. Green Leaching of Tungsten from Synthetic Scheelite with Sulfuric Acid-Hydrogen Peroxide Solution to Prepare Tungstic Acid. Sep. Purif. Technol. 2020, 241, 116752. [Google Scholar] [CrossRef]
- Gong, D.; Zhou, K.; Peng, C.; He, D.; Chen, W. Resin-Enhanced Acid Leaching of Tungsten from Scheelite. Hydrometallurgy 2018, 182, 75–81. [Google Scholar] [CrossRef]
- Orefice, M.; Nguyen, V.T.; Raiguel, S.; Jones, P.T.; Binnemans, K. Solvometallurgical Process for the Recovery of Tungsten from Scheelite. Ind. Eng. Chem. Res. 2022, 61, 754–764. [Google Scholar] [CrossRef]
- Li, X.; Jiang, H.; Peng, Z.; Duan, A.; Zhang, T.; Gong, Z. Leaching of Scheelite Concentrate for Tungsten Extraction. Minerals 2025, 15, 475. [Google Scholar] [CrossRef]
- Cao, C.; Qiu, X.; Li, Y.; Yang, L.; Pang, Z.; Yuan, Z. Study on Leaching Behaviour of Tungstates in Acid Solution Containing Phosphoric Acid. Hydrometallurgy 2020, 197, 105392. [Google Scholar] [CrossRef]
- Zhang, W.; Wen, P.; Xia, L.; Chen, J.; Che, J.; Wang, C.; Ma, B. Understanding the Role of Hydrogen Peroxide in Sulfuric Acid System for Leaching Low-Grade Scheelite from the Perspective of Phase Transformation and Kinetics. Sep. Purif. Technol. 2021, 277, 119407. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Z.; Yin, C.; Chen, X.; Liu, X.; Chen, A.; Li, J.; He, L.; Sun, F.; Zhao, Z. A Kinetic Study on the Leaching of Scheelite Sulfuric Acid Decomposition Residue with Hydrogen Peroxide. J. Sustain. Metall. 2023, 9, 1526–1534. [Google Scholar] [CrossRef]
- COD 9004174; The Crystal Structure of Tungstite, WO3·H2O (Szymanski, J.T.; Roberts, A.C.). Crystallography Open Database (COD): Vilnius, Lithuania, 1984.
- Hassanzadeh-Tabrizi, S.A. Precise Calculation of Crystallite Size of Nanomaterials: A Review. J. Alloys Compd. 2023, 968, 171914. [Google Scholar] [CrossRef]
- Kahruman, C.; Yusufoglu, I. Leaching Kinetics of Synthetic CaWO4 in HCl Solutions Containing H3PO4 as Chelating Agent. Hydrometallurgy 2006, 81, 182–189. [Google Scholar] [CrossRef]
- Gholtash, J.E.; Farahi, M. Tungstic Acid-Functionalized Fe3O4@TiO2: Preparation, Characterization and Its Application for the Synthesis of Pyrano[2,3-c]Pyrazole Derivatives as a Reusable Magnetic Nanocatalyst. RSC Adv. 2018, 8, 40962–40967. [Google Scholar] [CrossRef]
- Villaseca, L.; Moreno, B.; Lorite, I.; Jurado, J.R.; Chinarro, E. Synthesis and Characterization of Tungsten Nitride (W2N) from WO3 and H2WO4 to Be Used in the Electrode of Electrochemical Devices. Ceram. Int. 2015, 41, 4282–4288. [Google Scholar] [CrossRef]
- Shams, S.F.; Kashefi, M.; Schmitz-Antoniak, C. Statistical Approach of Synthesize CoFe2O4 Nanoparticles to Optimize Their Characteristics Using Response Surface Methodology. J. Magn. Magn. Mater. 2017, 432, 362–372. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Ke, J.; Zhou, H.; Liu, J.; Duan, X.; Zhang, H.; Liu, S.; Wang, S. Crystal Transformation of 2D Tungstic Acid H2WO4 to WO3 for Enhanced Photocatalytic Water Oxidation. J. Colloid Interface Sci. 2018, 514, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Fait, M.J.G.; Radnik, J.; Lunk, H.J. Surface Tungsten Reduction during Thermal Decomposition of Ammonium Paratungstate Tetrahydrate in Oxidising Atmosphere: A Paradox? Thermochim. Acta 2016, 633, 77–81. [Google Scholar] [CrossRef]
- ICSD 15237; Die Kristallstruktur des Ammoniumparawolframat-Tetrahydrats (NH4)10H2W12O42·(H2O)4. Inorganic Crystal Structure Database (ICSD): Karlsruhe, Germany, 1972.
- Madarász, J.; Szilágyi, I.M.; Hange, F.; Pokol, G. Comparative Evolved Gas Analyses (TG-FTIR, TG/DTA-MS) and Solid State (FTIR, XRD) Studies on Thermal Decomposition of Ammonium Paratungstate Tetrahydrate (APT) in Air. J. Anal. Appl. Pyrolysis 2004, 72, 197–201. [Google Scholar] [CrossRef]








| Parameters | −1 | 0 | 1 |
|---|---|---|---|
| Reaction time | 2 h | 3 h | 4 h |
| Temperature | 70 °C | 80 °C | 90 °C |
| Concentration (HCl) | 4 mol/L | 5 mol/L | 6 mol/L |
| Experiments | Temperature (°C) | Time (h) | Concentration HCl (mol/L) |
|---|---|---|---|
| 01 | 70 | 2 | 4 |
| 02 | 90 | 2 | 4 |
| 03 | 70 | 4 | 4 |
| 04 | 90 | 4 | 4 |
| 05 | 70 | 2 | 6 |
| 06 | 90 | 2 | 6 |
| 07 | 70 | 4 | 6 |
| 08 | 90 | 4 | 6 |
| 09 | 80 | 3 | 5 |
| 10 | 80 | 3 | 5 |
| 11 | 80 | 3 | 5 |
| 12 | 80 | 3 | 5 |
| 13 | 80 | 3 | 5 |
| 14 | 80 | 3 | 5 |
| Nº Exp | Temperature (°C) | Time (h) | HCl Concentration (mol/L) | Efficiency (%) | |||
|---|---|---|---|---|---|---|---|
| cod-x1 | cod-x2 | cod-x3 | |||||
| 1 | 70 | −1 | 2 | −1 | 4 | −1 | 94.1 |
| 2 | 90 | 1 | 2 | −1 | 4 | −1 | 90.3 |
| 3 | 70 | −1 | 4 | 1 | 4 | −1 | 96.7 |
| 4 | 90 | 1 | 4 | 1 | 4 | −1 | 88.6 |
| 5 | 70 | −1 | 2 | −1 | 6 | 1 | 98.4 |
| 6 | 90 | 1 | 2 | −1 | 6 | 1 | 95.9 |
| 7 | 70 | −1 | 4 | 1 | 6 | 1 | 98.6 |
| 8 | 90 | 1 | 4 | 1 | 6 | 1 | 96.1 |
| 9 | 80 | 0 | 3 | 0 | 5 | 0 | 96.8 |
| 10 | 80 | 0 | 3 | 0 | 5 | 0 | 96.7 |
| 11 | 80 | 0 | 3 | 0 | 5 | 0 | 97.3 |
| 12 | 80 | 0 | 3 | 0 | 5 | 0 | 96.3 |
| 13 | 80 | 0 | 3 | 0 | 5 | 0 | 96.7 |
| 14 | 80 | 0 | 3 | 0 | 5 | 0 | 96.6 |
| Factor | Effect | Std. Err. Pure Err. | t(5) | p | −95% Cnf.Limt | +95% Cnf.Limt | Coeff. |
|---|---|---|---|---|---|---|---|
| Mean/Interc. | 95.650 | 0.087 | 1095.808 | 0.000000 | 95.425 | 95.874 | 95.650 |
| Conc.HCl (mol/L) (x3) | 4.825 | 0.230 | 20.893 | 0.000005 | 4.231 | 5.418 | 2.412 |
| Temperature (°C) (x1) | −4.225 | 0.230 | −18.295 | 0.000009 | −4.818 | −3.631 | −2.112 |
| x1 ∗ x3 | 1.725 | 0.230 | 7.469 | 0.000679 | 1.131 | 2.318 | 0.862 |
| x1 ∗ x2 ∗ x3 | 1.075 | 0.230 | 4.655 | 0.005558 | 0.481 | 1.668 | 0.537 |
| x1 ∗ x2 | −1.075 | 0.230 | −4.655 | 0.005558 | −1.668 | −0.481 | −0.537 |
| Time (h) (x2) | 0.325 | 0.230 | 1.407 | 0.218361 | −0.268 | 0.918 | 0.162 |
| x2 ∗ x3 | −0.125 | 0.230 | −0.541 | 0.61156 | −0.718 | 0.468 | −0.062 |
| Source of Variation | SQ | df | MQ | Fcalculated | p-Value |
|---|---|---|---|---|---|
| Regression | 93.0789 | 7 | 13.2970 | 6.21 | 0.030 |
| Temperature (x1) | 35.7013 | 1 | 35.7013 | 334.72 | <0.00001 |
| Time (x2) | 0.2112 | 1 | 0.2112 | 1.98 | 0.218 |
| HCl Con. (x3) | 46.5613 | 1 | 46.5613 | 436.54 | <0.00001 |
| x1 × x2 | 2.3113 | 1 | 2.3113 | 21.67 | 0.00556 |
| x1 × x3 | 5.9512 | 1 | 5.9512 | 55.80 | 0.000679 |
| x2 × x3 | 0.0313 | 1 | 0.0313 | 0.29 | 0.611 |
| x1 × x2 × x3 | 2.3113 | 1 | 2.3113 | 21.67 | 0.00556 |
| Residuals | 12.8562 | 6 | 2.1427 | — | — |
| Lack of Fit | 12.3229 | 1 | 12.3229 | 115.53 | 0.000121 |
| Pure Error | 0.5333 | 5 | 0.1067 | — | — |
| Total | 105.9350 | 13 | — | — | — |
| Samples | Multipoint BET Surface Area (m2/g) | Total Pore Volume (cc/g) | Average Pore Diameter (nm) |
|---|---|---|---|
| H2WO4-Exp.5 | 33.21 | 0.0164 | 0.9846 |
| H2WO4-Exp.7 | 25.67 | 0.0126 | 0.9862 |
| Crystal Structure Parameters | Quality of Fit | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Phase Name | Cryst. Size (nm) | Lattice Parameter, a (Å) | Lattice Parameter, b (Å) | Lattice Parameter, c (Å) | Phase (%) | CIF | Rwp | Rexp | χ2 |
| APT | 38.45 | 13.93 | 13.37 | 10.14 | 100% | ICSD-15237 | 0.95 | 2.3 | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lima, M.J.; Silva, F.E.S.; Lourenço, C.d.S.; Silva, A.; Vitoriano, J.; Araujo, K.; Silva, M.; Morales, M.; Gomes, U. Ammonium Paratungstate Production from Scheelite Ore: Process Study, Morphology and Thermal Stability. Powders 2026, 5, 3. https://doi.org/10.3390/powders5010003
Lima MJ, Silva FES, Lourenço CdS, Silva A, Vitoriano J, Araujo K, Silva M, Morales M, Gomes U. Ammonium Paratungstate Production from Scheelite Ore: Process Study, Morphology and Thermal Stability. Powders. 2026; 5(1):3. https://doi.org/10.3390/powders5010003
Chicago/Turabian StyleLima, Maria José, Fernando E. S. Silva, Cleber da Silva Lourenço, Ariadne Silva, Jussier Vitoriano, Kivia Araujo, Matheus Silva, Marco Morales, and Uílame Gomes. 2026. "Ammonium Paratungstate Production from Scheelite Ore: Process Study, Morphology and Thermal Stability" Powders 5, no. 1: 3. https://doi.org/10.3390/powders5010003
APA StyleLima, M. J., Silva, F. E. S., Lourenço, C. d. S., Silva, A., Vitoriano, J., Araujo, K., Silva, M., Morales, M., & Gomes, U. (2026). Ammonium Paratungstate Production from Scheelite Ore: Process Study, Morphology and Thermal Stability. Powders, 5(1), 3. https://doi.org/10.3390/powders5010003

