Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,004)

Search Parameters:
Keywords = tumor vessels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1233 KiB  
Review
Emerging Strategies for Targeting Angiogenesis and the Tumor Microenvironment in Gastrointestinal Malignancies: A Comprehensive Review
by Emily Nghiem, Briana Friedman, Nityanand Srivastava, Andrew Takchi, Mahshid Mohammadi, Dior Dedushi, Winfried Edelmann, Chaoyuan Kuang and Fernand Bteich
Pharmaceuticals 2025, 18(8), 1160; https://doi.org/10.3390/ph18081160 - 5 Aug 2025
Abstract
Gastrointestinal (GI) cancers represent a significant global health burden, with high morbidity and mortality often linked to late-stage detection and metastatic disease. The progression of these malignancies is critically driven by angiogenesis, the formation of new blood vessels, and the surrounding dynamic tumor [...] Read more.
Gastrointestinal (GI) cancers represent a significant global health burden, with high morbidity and mortality often linked to late-stage detection and metastatic disease. The progression of these malignancies is critically driven by angiogenesis, the formation of new blood vessels, and the surrounding dynamic tumor microenvironment (TME), a complex ecosystem comprising various cell types and non-cellular components. This comprehensive review, based on a systematic search of the PubMed database, synthesizes the existing literature to define the intertwined roles of angiogenesis and the TME in GI tumorigenesis. The TME’s influence creates conditions favorable for tumor growth, invasion, and metastasis, but sometimes induces resistance to current therapies. Available therapeutic strategies for inhibiting angiogenesis involve antibodies and oral tyrosine kinase inhibitors, while immune modulation within the tumor microenvironment is mainly achieved through checkpoint inhibitor antibodies and chemotherapy. Creative emerging strategies encompassing cellular therapies, bispecific antibodies, and new targets such as CD40, DLL4, and Ang2, amongst others, are focused on inhibiting proangiogenic pathways more profoundly, reversing resistance to prior drugs, and modulating the TME to enhance therapeutic efficacy. A deeper understanding of the complex interactions between components of the TME is crucial for addressing the unmet need for novel and effective therapeutic interventions against aggressive GI cancers. Full article
(This article belongs to the Special Issue Multitargeted Compounds: A Promising Approach in Medicinal Chemistry)
Show Figures

Figure 1

11 pages, 1311 KiB  
Case Report
Multisystemic Tuberculosis Masquerading as Aggressive Cardiac Tumor Causing Budd–Chiari Syndrome Disseminated to the Brain Resulting in Death of a Six-Year-Old Boy
by Eman S. Al-Akhali, Sultan Abdulwadoud Alshoabi, Halah Fuad Muslem, Fahad H. Alhazmi, Amirah F. Alsaedi, Kamal D. Alsultan, Amel F. Alzain, Awatif M. Omer, Maisa Elzaki and Abdullgabbar M. Hamid
Pathogens 2025, 14(8), 772; https://doi.org/10.3390/pathogens14080772 - 5 Aug 2025
Abstract
Tuberculosis (TB) is an ancient and re-emerging granulomatous infectious disease that continues to challenge public health. Early diagnosis and prompt effective treatment are crucial for preventing disease progression and reducing both morbidity and mortality. These steps play a vital role in infection control [...] Read more.
Tuberculosis (TB) is an ancient and re-emerging granulomatous infectious disease that continues to challenge public health. Early diagnosis and prompt effective treatment are crucial for preventing disease progression and reducing both morbidity and mortality. These steps play a vital role in infection control and in lowering death rates at both individual and population levels. Although diagnostic methods have improved sufficiently in recent decades, TB can still present with ambiguous laboratory and imaging features. This ambiguity can lead to diagnostic pitfalls and potentially disastrous outcomes due to delayed diagnosis. In this article, we present a case of TB that was difficult to diagnose. The disease had invaded the mediastinum, right atrium, right coronary artery, and inferior vena cava (IVC), resulting in Budd–Chiari syndrome. This rare presentation created clinical, laboratory, and radiological confusion, resulting in a diagnostic dilemma that ultimately led to open cardiac surgery. The patient initially presented with progressive shortness of breath on exertion and fatigue, which suggested possible heart disease. This suspicion was reinforced by computed tomography (CT) imaging, which showed infiltrative mass lesions predominantly in the right side of the heart, invading the right coronary artery and IVC, with imaging features mimicking angiosarcoma. Although laboratory findings revealed an exudative effusion with lymphocyte predominance and elevated adenosine deaminase (ADA), the Gram stain was negative for bacteria, and an acid-fast bacilli (AFB) smear was also negative. These findings contributed to diagnostic uncertainty and delayed the confirmation of TB. Open surgery with excisional biopsy and histopathological analysis ultimately confirmed TB. We conclude that TB should not be ruled out solely based on negative Mycobacterium bacteria in pericardial effusion or AFB smear. TB can mimic aggressive tumors such as angiosarcoma or lymphoma with invasion of the surrounding tissues and blood vessels. Awareness of the clinical presentation, imaging findings, and potential diagnostic pitfalls of TB is essential, especially in endemic regions. Full article
Show Figures

Figure 1

30 pages, 955 KiB  
Review
Breaking Barriers with Sound: The Implementation of Histotripsy in Cancer
by Ashutosh P. Raman, Parker L. Kotlarz, Alexis E. Giff, Katherine A. Goundry, Paul Laeseke, Erica M. Knavel Koepsel, Mosa Alhamami and Dania Daye
Cancers 2025, 17(15), 2548; https://doi.org/10.3390/cancers17152548 - 1 Aug 2025
Viewed by 334
Abstract
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and [...] Read more.
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and precisely destroy targeted tissue in a predefined volume while sparing critical structures like bile ducts, ureters, and blood vessels. Such precision is of value when treating tumors near vital structures. The FDA has cleared histotripsy for the treatment of all liver tumors. Major medical centers are currently spearheading clinical trials, and some institutions have already integrated the technology into patient care. Histotripsy is now being studied for a host of other cancers, including primary kidney and pancreatic tumors. Preclinical murine and porcine models have already revealed promising outcomes. One of histotripsy’s primary advantages is its non-thermal mechanical actuation. This feature allows it to circumvent the limitations of heat-based techniques, including the heat sink effect and unpredictable treatment margins near sensitive tissues. In addition to its non-invasive ablative capacities, it is being preliminarily explored for its potential to induce immunomodulation and promote abscopal inhibition of distant, untreated tumors through CD8+ T cell responses. Thus, it may provide a multilayered therapeutic effect in the treatment of cancer. Histotripsy has the potential to improve precision and outcomes across a multitude of specialties, from oncology to cardiovascular medicine. Continued trials are crucial to further expand its applications and validate its long-term efficacy. Due to the speed of recent developments, the goal of this review is to provide a comprehensive and updated overview of histotripsy. It will explore its physics-based mechanisms, differentiating it from similar technologies, discuss its clinical applications, and examine its advantages, limitations, and future. Full article
Show Figures

Figure 1

20 pages, 1953 KiB  
Review
Limited Proteolysis as a Regulator of Lymphatic Vessel Function and Architecture
by Takuro Miyazaki
Int. J. Mol. Sci. 2025, 26(15), 7144; https://doi.org/10.3390/ijms26157144 - 24 Jul 2025
Viewed by 170
Abstract
Recent advances have highlighted the multifaceted roles of the lymphatic vasculature in immune cell trafficking, immunomodulation, nutrient transport, and fluid homeostasis. Beyond these physiological functions, lymphatic vessels are critically involved in pathologies such as cancer metastasis and lymphedema, rendering their structural and functional [...] Read more.
Recent advances have highlighted the multifaceted roles of the lymphatic vasculature in immune cell trafficking, immunomodulation, nutrient transport, and fluid homeostasis. Beyond these physiological functions, lymphatic vessels are critically involved in pathologies such as cancer metastasis and lymphedema, rendering their structural and functional regulation of major interest. Emerging evidence suggests that limited proteolysis is a key regulatory mechanism for lymphatic vascular function. In dyslipidemic conditions, dysregulated calpain activity impairs lymphatic trafficking and destabilizes regulatory T cells, partly via the limited proteolysis of mitogen-activated kinase kinase kinase 1 and inhibitor of κBα. In addition, a disintegrin and metalloprotease with thrombospondin motifs-3-mediated proteolytic activation of vascular endothelial growth factor-C has been implicated in both developmental and tumor-associated lymphangiogenesis. Proteolytic shedding of lymphatic vessel endothelial hyaluronan receptor-1 by a disintegrin and metalloprotease 17 promotes lymphangiogenesis, whereas cleavage by membrane-type 1 matrix metalloproteinase inhibits it. This review is structured around two core aspects—lymphatic inflammation and lymphangiogenesis—and highlights recent findings on how limited proteolysis regulates each of these processes. It also discusses the therapeutic potential of targeting these proteolytic machineries and currently unexplored research questions, such as how intercellular junctions of lymphatic endothelial cells are controlled. Full article
Show Figures

Figure 1

15 pages, 1078 KiB  
Review
Immunological Insights into Photodynamic Therapy of Glioblastoma Multiforme
by Paweł Woźnicki, Dorota Bartusik-Aebisher, Agnieszka Przygórzewska and David Aebisher
Molecules 2025, 30(15), 3091; https://doi.org/10.3390/molecules30153091 - 24 Jul 2025
Viewed by 312
Abstract
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of [...] Read more.
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of only 6%, underscoring the urgent need for novel therapeutic approaches. Immunotherapy has emerged as a promising strategy, and photodynamic therapy (PDT) in particular has attracted attention for its dual cytotoxic and immunostimulatory effects. In GBM models, PDT induces immunogenic cell death characterized by the release of damage-associated molecular patterns (DAMPs), which promote antigen presentation and activate T cell responses. Additionally, PDT transiently increases blood–brain barrier permeability, facilitating immune cell infiltration into the tumor microenvironment, and enhances clearance of waste products via stimulation of meningeal lymphatic vessels. Importantly, PDT can reprogram or inactivate immunosuppressive tumor-associated macrophages, thereby counteracting the pro-tumoral microenvironment. Despite these encouraging findings, further preclinical and clinical studies are required to elucidate PDT’s underlying immunological mechanisms fully and to optimize treatment regimens that maximize its efficacy as part of integrated immunotherapeutic strategies against GBM. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Figure 1

15 pages, 1896 KiB  
Case Report
Pathogenesis of Cardiac Valvular Hemangiomas: A Case Report and Literature Review
by Kimberly-Allisya Neeter, Catalin-Bogdan Satala, Daniela Mihalache, Alexandru-Stefan Neferu, Gabriela Patrichi, Carmen Elena Opris and Simona Gurzu
Int. J. Mol. Sci. 2025, 26(15), 7114; https://doi.org/10.3390/ijms26157114 - 23 Jul 2025
Viewed by 301
Abstract
Valvular hemangiomas are uncommon vascular anomalies that appear on the surface of heart valves. They can cause an array of non-specific symptoms and are consequently rarely diagnosed, with only 31 such cases (including the present one) reported to date in the literature; the [...] Read more.
Valvular hemangiomas are uncommon vascular anomalies that appear on the surface of heart valves. They can cause an array of non-specific symptoms and are consequently rarely diagnosed, with only 31 such cases (including the present one) reported to date in the literature; the present case is the first report of an arteriovenous hemangioma with a tricuspid localization. During the preoperative echocardiographic examination for a ventricular septal defect, a mass was incidentally discovered on the tricuspid valve of a 9-month-old infant. The involved leaflet was surgically removed and sent to the pathology department for analysis and subsequently diagnosed as an arteriovenous hemangioma. The patient recovered well, with no local tumor recurrence or other complications. The microscopic examination showed multiple blood vessels which stained positive for the endothelial markers CD31 and CD34 and which did not express D2-40, normally found in lymphatic endothelia. Surprisingly, endothelial cells lining the vessels also showed positivity for SMA, a mesenchymal cell marker, indicating a possible involvement of endothelial-to-mesenchymal transition and its opposite process, mesenchymal-to-endothelial transition, in the pathogenesis of these vascular anomalies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 1711 KiB  
Article
Ajuforrestin A Inhibits Tumor Proliferation and Migration by Targeting the STAT3/FAK Signaling Pathways and VEGFR-2
by Sibei Wang, Yeling Li, Mingming Rong, Yuejun Li, Yaxin Lu, Shen Li, Dongho Lee, Jing Xu and Yuanqiang Guo
Biology 2025, 14(8), 908; https://doi.org/10.3390/biology14080908 - 22 Jul 2025
Viewed by 268
Abstract
Natural products, characterized by their structural novelty, multi-target capabilities, and favorable toxicity profiles, represent a prominent reservoir for the discovery of innovative anticancer therapeutics. In the current investigation, we identified ajuforrestin A, a diterpenoid compound extracted from Ajuga lupulina Maxim, as a potent [...] Read more.
Natural products, characterized by their structural novelty, multi-target capabilities, and favorable toxicity profiles, represent a prominent reservoir for the discovery of innovative anticancer therapeutics. In the current investigation, we identified ajuforrestin A, a diterpenoid compound extracted from Ajuga lupulina Maxim, as a potent agent against lung cancer. In vitro, this compound markedly curtailed the proliferation of A549 cells. Mechanistic explorations revealed that ajuforrestin A could arrest A549 cells in the G0/G1 phase of the cell cycle, provoke apoptosis in cancer cells, and impede their migration by modulating the STAT3 and FAK signaling cascades. Angiogenesis is indispensable for tumor formation, progression, and metastatic dissemination. Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 are established as crucial mediators in tumor neovascularization, a process fundamental to both the expansion of tumor cells and the development of new blood vessels within the tumor milieu. Through the combined application of a Tg(fli1:EGFP) zebrafish model and SPR experimentation, we furnished strong evidence for the ability of ajuforrestin A to obstruct tumor angiogenesis via selective engagement with VEGFR-2. Finally, a zebrafish xenograft tumor model demonstrated that ajuforrestin A could effectively restrain tumor growth and metastasis in vivo. Ajuforrestin A therefore shows considerable promise as a lead compound for the future development of therapies against non-small cell lung cancer (NSCLC). Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Graphical abstract

16 pages, 2427 KiB  
Review
Pancreatic Cancer Resectability After Neoadjuvant Treatment: An Imaging Challenge
by Ioannis Christofilis, Charikleia Triantopoulou and Spiros Delis
Diagnostics 2025, 15(14), 1810; https://doi.org/10.3390/diagnostics15141810 - 18 Jul 2025
Viewed by 448
Abstract
Background: Assessing pancreatic ductal adenocarcinoma (PDAC) resectability after neoadjuvant therapy (NAT) remains a diagnostic challenge. Traditional computed tomography (CT) criteria often fail to distinguish viable tumor from fibrosis, necessitating a reassessment of imaging-based standards. Methods: A comprehensive literature review was conducted using PubMed, [...] Read more.
Background: Assessing pancreatic ductal adenocarcinoma (PDAC) resectability after neoadjuvant therapy (NAT) remains a diagnostic challenge. Traditional computed tomography (CT) criteria often fail to distinguish viable tumor from fibrosis, necessitating a reassessment of imaging-based standards. Methods: A comprehensive literature review was conducted using PubMed, focusing on prospective and retrospective studies over the past 25 years that evaluated the role of CT and complementary imaging modalities (MRI, PET-CT) in predicting resectability post-NAT in non-metastatic PDAC. Studies with small sample sizes or case reports were excluded. Results: Across studies, conventional CT parameters—particularly >180° vascular encasement—showed a limited correlation with histologic invasion or surgical outcomes after NAT. Persistent vessel contact on CT often reflected fibrosis, rather than active tumor. Dynamic changes, such as regression in the tumor–vessel interface and vessel lumen restoration, correlated more accurately with R0 resection. Adjunct markers like CA 19-9 response and patient performance status further improved resectability prediction. Conclusions: CT-based resectability assessment after NAT should transition from static morphologic criteria to response-based interpretation. Multidisciplinary evaluation integrating radiologic, biochemical, and clinical findings is essential to guide surgical decision-making and improve patient outcomes. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

20 pages, 3367 KiB  
Review
Intravascular Lymphoma: A Unique Pattern Underlying a Protean Disease
by Mario Della Mura, Joana Sorino, Filippo Emanuele Angiuli, Gerardo Cazzato, Francesco Gaudio and Giuseppe Ingravallo
Cancers 2025, 17(14), 2355; https://doi.org/10.3390/cancers17142355 - 15 Jul 2025
Viewed by 297
Abstract
Intravascular lymphoma (IVL) is a rare, aggressive subtype of non-Hodgkin lymphoma (NHL) characterized by the selective proliferation of neoplastic lymphoid cells within small and medium-sized blood vessels, most frequently of B-cell origin (IVLBCL). Its protean clinical presentation, lack of pathognomonic findings, and absence [...] Read more.
Intravascular lymphoma (IVL) is a rare, aggressive subtype of non-Hodgkin lymphoma (NHL) characterized by the selective proliferation of neoplastic lymphoid cells within small and medium-sized blood vessels, most frequently of B-cell origin (IVLBCL). Its protean clinical presentation, lack of pathognomonic findings, and absence of tumor masses or lymphadenopathies often lead to diagnostic delays and poor outcomes. IVLBCL can manifest in classic, hemophagocytic syndrome-associated (HPS), or cutaneous variants, with extremely variable organ involvement including the central nervous system (CNS), skin, lungs, and endocrine system. Diagnosis requires histopathologic identification of neoplastic intravascular lymphoid cells via targeted or random tissue biopsies. Tumor cells are highly atypical and display a non-GCB B-cell phenotype, often expressing CD20, MUM1, BCL2, and MYC; molecularly, they frequently harbor mutations in MYD88 and CD79B, defining a molecular profile shared with ABC-type DLBCL of immune-privileged sites. Therapeutic approaches are based on rituximab-containing chemotherapy regimens (R-CHOP), often supplemented with CNS-directed therapy due to the disease’s marked neurotropism. Emerging strategies include autologous stem cell transplantation (ASCT) and novel immunotherapeutic approaches, potentially exploiting the frequent expression of PD-L1 by tumor cells. A distinct but related entity, intravascular NK/T-cell lymphoma (IVNKTCL), is an exceedingly rare EBV-associated lymphoma, showing unique own histologic, immunophenotypic, and molecular features and an even poorer outcome. This review provides a comprehensive overview of the current understandings about clinicopathological, molecular, and therapeutic landscape of IVL, emphasizing the need for increased clinical awareness, standardized diagnostic protocols, and individualized treatment strategies for this aggressive yet intriguing malignancy. Full article
(This article belongs to the Special Issue Advances in Pathology of Lymphoma and Leukemia)
Show Figures

Figure 1

22 pages, 2265 KiB  
Review
Lung Stereotactic Body Radiotherapy (SBRT): Challenging Scenarios and New Frontiers
by Serena Badellino, Francesco Cuccia, Marco Galaverni, Marianna Miele, Matteo Sepulcri, Maria Alessia Zerella, Ruggero Spoto, Emanuele Alì, Emanuela Olmetto, Luca Boldrini, Antonio Pontoriero and Paolo Borghetti
J. Clin. Med. 2025, 14(14), 4871; https://doi.org/10.3390/jcm14144871 - 9 Jul 2025
Viewed by 652
Abstract
Stereotactic Body Radiotherapy (SBRT) has emerged as a pivotal treatment modality for early-stage non-small cell lung cancer (NSCLC), offering highly precise, high-dose radiation delivery. However, several clinical challenges remain, particularly in the treatment of central or ultracentral tumors, which are located near critical [...] Read more.
Stereotactic Body Radiotherapy (SBRT) has emerged as a pivotal treatment modality for early-stage non-small cell lung cancer (NSCLC), offering highly precise, high-dose radiation delivery. However, several clinical challenges remain, particularly in the treatment of central or ultracentral tumors, which are located near critical structures such as the heart, bronchi, and great vessels. The introduction of MRI-guided SBRT has significantly improved targeting precision, allowing for better assessment of tumor motion and adjacent organ structures. Additionally, SBRT has demonstrated efficacy in multifocal NSCLC, providing an effective option for patients with multiple primary tumors. Recent advances also highlight the role of SBRT in locally advanced NSCLC, where it is increasingly used as a complementary approach to concurrent chemotherapy or in cases where surgery is not feasible. Moreover, the combination of SBRT with immunotherapy has shown promising potential, enhancing tumor control and immunological responses. Furthermore, SBRTs application in SCLC is gaining momentum as a palliative and potentially curative option for selected patients. This narrative review explores these evolving clinical scenarios, the technical innovations supporting SBRT, and the integration of immunotherapy, providing an in-depth look at the new frontiers of SBRT in lung cancer treatment. Despite the challenges, the ongoing development of personalized approaches and technological advancements continues to push the boundaries of SBRTs clinical utility in lung cancer. Full article
Show Figures

Figure 1

24 pages, 5625 KiB  
Article
Ultrastructural Changes of the Peri-Tumoral Collagen Fibers and Fibrils Array in Different Stages of Mammary Cancer Progression
by Marco Franchi, Valentina Masola, Maurizio Onisto, Leonardo Franchi, Sylvia Mangani, Vasiliki Zolota, Zoi Piperigkou and Nikos K. Karamanos
Cells 2025, 14(13), 1037; https://doi.org/10.3390/cells14131037 - 7 Jul 2025
Viewed by 1151
Abstract
Breast cancer invasion and subsequent metastasis to distant tissues occur when cancer cells lose cell–cell contact, develop a migrating phenotype, and invade the basement membrane (BM) and the extracellular matrix (ECM) to penetrate blood and lymphatic vessels. The identification of the mechanisms which [...] Read more.
Breast cancer invasion and subsequent metastasis to distant tissues occur when cancer cells lose cell–cell contact, develop a migrating phenotype, and invade the basement membrane (BM) and the extracellular matrix (ECM) to penetrate blood and lymphatic vessels. The identification of the mechanisms which induce the development from a ductal carcinoma in situ (DCIS) to a minimally invasive breast carcinoma (MIBC) is an emerging area of research in understanding tumor invasion and metastatic potential. To investigate the progression from DCIS to MIBC, we analyzed peritumoral collagen architecture using correlative scanning electron microscopy (SEM) on histological sections from human biopsies. In DCIS, the peritumoral collagen organizes into concentric lamellae (‘circular fibers’) parallel to the ducts. Within each lamella, type I collagen fibrils align in parallel, while neighboring lamellae show orthogonal fiber orientation. The concentric lamellar arrangement of collagen may physically constrain cancer cell migration, explaining the lack of visible tumor cell invasion into the peritumoral ECM in DCIS. A lamellar dissociation or the development of small inter fiber gaps allowed isolated breast cancer cell invasion and exosomes infiltration in the DCIS microenvironment. The radially arranged fibers observed in the peri-tumoral microenvironment of MIBC biopsies develop from a bending of the circular fibers of DCIS and drive a collective cancer cell invasion associated with an intense immune cell infiltrate. Type I collagen fibrils represent the peri-tumoral nano-environment which can play a mechanical role in regulating the development from DCIS to MIBC. Collectively, it is plausible to suggest that the ECM effectors implicated in breast cancer progression released by the interplay between cancer, stromal, and/or immune cells, and degrading inter fiber/fibril hydrophilic ECM components of the peritumoral ECM, may serve as key players in promoting the dissociation of the concentric collagen lamellae. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

16 pages, 5295 KiB  
Article
Upper Limb-Salvage Surgery in Pediatric Patients with Malignant Bone Tumors Using Microsurgical Free Flaps: Long-Term Follow-Up
by Jakub Opyrchał, Bartosz Pachuta, Daniel Bula, Krzysztof Dowgierd, Dominika Krakowczyk, Anna Raciborska and Łukasz Krakowczyk
Biomedicines 2025, 13(7), 1638; https://doi.org/10.3390/biomedicines13071638 - 4 Jul 2025
Viewed by 434
Abstract
Background: Primary malignant bone tumors among adolescent patients are most commonly associated with burdensome surgeries that can severely affect young patients’ early life. To this day, despite available autologous tissue donor sites, cement spacers or endoprostheses are still most commonly used as [...] Read more.
Background: Primary malignant bone tumors among adolescent patients are most commonly associated with burdensome surgeries that can severely affect young patients’ early life. To this day, despite available autologous tissue donor sites, cement spacers or endoprostheses are still most commonly used as a form of reconstruction of post-resection defects. Methods: The study group includes 20 adolescent patients diagnosed with Osteosarcoma or Ewing Sarcoma involving the upper limbs. The inclusion criteria were as follows: primary malignant bone tumors sensitive to neoadjuvant chemotherapy, tumors not infiltrating major blood vessels and nerves, and the appliance of the microsurgical free flap as a reconstructive method. Poor tumor response to neodajuvant chemotherapy or patients with incomplete follow-up were excluded from this study. To achieve the functional reconstruction of post-resection defects, fibula free flaps were applied. In cases of resection, including the metaphysis of a long bone, a modification of the flap harvest was applied in order to prevent arthrodesis. The MSTS (Musculoskeletal Tumor Society Scoring System) scale was used as a functional outcome measurement tool. Results: The reported outcomes of this study prove the efficiency of the treatment’s approach of combining the resection of the tumor with subsequent microsurgical restoration with the use of autologous tissues. The average score on the MSTS scale, which assesses the functional outcome, was 26.8/30 points, which indicates great motor outcomes. There were no reports of local recurrence during follow-up. Conclusions: Patients with primary malignant bone tumors in the upper limbs can benefit from microsurgical techniques, which are highly customized; effective; and give sufficient functionality following extensive resection. Full article
Show Figures

Figure 1

9 pages, 3832 KiB  
Case Report
Non-Invasive Diagnostic Imaging in Kaposi Sarcoma Evaluation
by Carmen Cantisani, Antonio Di Guardo, Marco Ardigò, Mariano Suppa, Salvador Gonzalez, Caterina Longo, Alberto Taliano, Emanuele Rovaldi, Elisa Cinotti and Giovanni Pellacani
Diagnostics 2025, 15(13), 1665; https://doi.org/10.3390/diagnostics15131665 - 30 Jun 2025
Viewed by 437
Abstract
Background and Clinical Significance: Kaposi sarcoma (KS) is a rare angio-proliferative mesenchymal tumor that predominantly affects the skin and mucous membranes but may involve lymph nodes and visceral organs. Clinically, it manifests as red-purple-brown papules, nodules, or plaques, either painless or painful, often [...] Read more.
Background and Clinical Significance: Kaposi sarcoma (KS) is a rare angio-proliferative mesenchymal tumor that predominantly affects the skin and mucous membranes but may involve lymph nodes and visceral organs. Clinically, it manifests as red-purple-brown papules, nodules, or plaques, either painless or painful, often with disfiguring potential. The diagnosis is traditionally based on clinical and histopathological evaluation, although non-invasive imaging techniques are increasingly used to support diagnosis and treatment monitoring. We report a case of HHV-8-negative Kaposi sarcoma evaluated with multiple non-invasive imaging modalities to highlight their diagnostic utility. Case Presentation: An 83-year-old man presented with multiple painful, violaceous papulo-nodular lesions, some ulcerated, on the lateral aspect of his left foot. Dermoscopy revealed the characteristic rainbow pattern. Dynamic Optical Coherence Tomography (D-OCT) allowed real-time visualization of microvascular abnormalities, identifying large serpentine and branching vessels with clearly delineated capsules. Line-field Optical Coherence Tomography (LC-OCT) showed irregular dermal collagen, vascular lacunae, and the presence of spindle cells and slit-like vessels. Histological analysis confirmed the diagnosis of Kaposi sarcoma, revealing a proliferation of spindle-shaped endothelial cells forming angulated vascular spaces, with red blood cell extravasation and a mixed inflammatory infiltrate. Conclusions: Non-invasive imaging tools, including dermoscopy, D-OCT, and LC-OCT, have emerged as valuable adjuncts in the diagnosis and monitoring of KS. These techniques enable in vivo assessment of vascular architecture and tissue morphology, enhancing clinical decision-making while reducing the need for immediate biopsy. Dermoscopy reveals polychromatic vascular features, such as the rainbow pattern, while D-OCT and LC-OCT provide high-resolution insights into vascular proliferation, tissue heterogeneity, and cellular morphology. Dermoscopy, dynamic OCT, and LC-OCT represent promising non-invasive diagnostic tools for the assessment of Kaposi sarcoma. These technologies provide detailed morphological and vascular information, enabling earlier diagnosis and more personalized management. While histopathology remains the gold standard, non-invasive imaging offers a valuable complementary approach for diagnosis and follow-up, particularly in complex or atypical presentations. Ongoing research and technological refinement are essential to improve accessibility and clinical applicability. Full article
(This article belongs to the Special Issue Optical Coherence Tomography in Non-Invasive Diagnostic Imaging)
Show Figures

Figure 1

17 pages, 2821 KiB  
Article
The Anti-Metastatic Properties of Glutathione-Stabilized Gold Nanoparticles—A Preliminary Study on Canine Osteosarcoma Cell Lines
by Sylwia S. Wilk, Klaudia I. Kukier, Arkadiusz M. Michałowski, Marek Wojnicki, Bartosz Smereczyński, Michał Wójcik and Katarzyna A. Zabielska-Koczywąs
Int. J. Mol. Sci. 2025, 26(13), 6102; https://doi.org/10.3390/ijms26136102 - 25 Jun 2025
Viewed by 517
Abstract
Osteosarcoma (OSA) is the most common primary bone malignancy in dogs, characterized by aggressive growth and high metastatic potential. Despite advances in treatment, the prognosis for affected animals remains poor, mainly due to metastatic disease. Metastasis is a complex process that involves forming [...] Read more.
Osteosarcoma (OSA) is the most common primary bone malignancy in dogs, characterized by aggressive growth and high metastatic potential. Despite advances in treatment, the prognosis for affected animals remains poor, mainly due to metastatic disease. Metastasis is a complex process that involves forming new blood vessels in the primary tumor (angiogenesis), intravasation, the transport of cancer cells to other locations, extravasation, and the growth of cancer cells in the secondary site. Gold nanoparticles (AuNPs), due to their unique physicochemical properties, are considered promising tools in cancer therapy, both as drug delivery systems and potential anti-metastatic agents. Previously, it has been demonstrated that 500 µg/mL glutathione-stabilized gold nanoparticles (Au-GSH NPs) inhibit cancer cell extravasation—one of the steps of the metastatic cascade. This study aimed to evaluate the anti-metastatic properties of Au-GSH NPs through their influence on OSA cell migration, proliferation, and colony formation in vitro, as well as their antiangiogenic properties on the chick embryo chorioallantoic (CAM) model. Additionally, we investigated whether these effects are associated with changes in alpha-2-macroglobulin (A2M) expression, as it was previously demonstrated to play an essential role in the metastatic cascade. Au-GSH NPs significantly inhibited migration and colony formation in canine osteosarcoma cells (from OSCA-8, OSCA-32, and D-17 cell lines) at 200 µg/mL concentrations. Interestingly, at 500 µg/mL, Au-GSH NPs inhibited angiogenesis on the CAM model and cancer cell migration, but fewer colonies were formed. These results may be directly related to the higher efficiency of Au-GSH NPs uptake by OSA cells at the dose of 200 μg/mL than at the dose of 500 μg/mL, as demonstrated using Microwave Plasma Atomic Emission Spectroscopy (MP-AES). Moreover, this is the first study that demonstrates a significant increase in A2M expression in cancer cells after Au-GSH NPs treatment. This study provides new insight into the potential use of Au-GSH NPs as anti-metastatic agents in canine osteosarcoma, indicating that their anti-metastatic properties may be related to A2M. However, further in vitro and in vivo studies are needed to explore the molecular mechanism underlying these effects and to evaluate the clinical relevance of AuNPs in veterinary oncology. Full article
(This article belongs to the Special Issue Nanoparticles for Cancer Treatment)
Show Figures

Figure 1

11 pages, 2248 KiB  
Review
Cancer Metastasis Through the Lymphatics: Invasion and Dissemination
by Chien-An A. Hu, Christina Baum and Yahui Xie
Lymphatics 2025, 3(3), 17; https://doi.org/10.3390/lymphatics3030017 - 24 Jun 2025
Viewed by 496
Abstract
Cancer metastasis often accounts for the primary cause of cancer-related mortality, with the lymphatic system playing a pivotal role in the dissemination of malignant cells. While hematogenous vessel spread is commonly associated with distant organ metastasis, the lymphatic system serves as an early [...] Read more.
Cancer metastasis often accounts for the primary cause of cancer-related mortality, with the lymphatic system playing a pivotal role in the dissemination of malignant cells. While hematogenous vessel spread is commonly associated with distant organ metastasis, the lymphatic system serves as an early conduit for tumor cell invasion and dissemination. The process of lymphatic metastasis is a highly coordinated sequence of events that involves cancer cell invasion, intravasation into lymphatic vessels, survival, transport, and colonization of regional lymph nodes (LNs). Cancerous cells then establish micro-metastases at the colonized sites and expand in the new microenvironment, ultimately resulting in the generation of secondary tumors. Tumor-secreted factors, such as vascular endothelial growth factors (VEGF-C and VEGF-D), contribute to metastasis through lymphangiogenesis, the formation of new lymphatic vessels. In addition, cancer cells utilize pre-existing chemokine signaling pathways by expressing chemokine receptors, such as CCR7, which bind to chemokine ligands, such as CCL19 and CCL21, to facilitate targeted migration into the lymphatic vessels. LNs are often the initial sites for metastasis and therefore are indicators of distant organ involvement. It is well established that the location and extent of LN involvement provides significant prognostic information, although the optimal treatment approach for LN metastases remains a subject of debate. Understanding the mechanisms of lymphatic metastasis offers potential therapeutic targets to mitigate cancer progression. Full article
Show Figures

Figure 1

Back to TopTop