Cancer Metastasis Through the Lymphatics: Invasion and Dissemination
Abstract
1. Cancer Metastasis Through the Lymphatics
2. Role of the Lymphatic System
3. Mechanisms of Lymphatic Metastasis
3.1. Tumor Cell Invasion
3.2. Intravasation and Transport Through Lymphatic Vessels
3.3. Extravasation and Colonization of Regional Lymph Nodes
3.4. Systemic Dissemination via Lymphatics
4. Biomarkers for Diagnosis and Treatment of Lymphatic Metastasis
4.1. Lymphangiogenesis Biomarkers
4.2. Tumor Cell Migration and Invasion Biomarkers
4.3. Lymph Node Colonization Biomarkers
4.4. Systemic Dissemination Biomarkers
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Maman, S.; Witz, I.P. A history of exploring cancer in context. Nat. Rev. Cancer 2018, 18, 359–376. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Leong, S.P. Molecular Mechanisms of Cancer Metastasis via the Lymphatic Versus Hematogenous Routes: Insights from the Sentinel Lymph Node Concept. Clin. Exp. Metastasis 2022, 39, 159–179. [Google Scholar] [CrossRef]
- Alitalo, K. The lymphatic vasculature in disease. Nat. Med. 2011, 17, 1371–1380. [Google Scholar] [CrossRef]
- Farnsworth, R.H.; Achen, M.G.; Stacker, S.A. The Evolving Role of Lymphatics in Cancer Metastasis. Curr. Opin. Immunol. 2018, 53, 64–73. [Google Scholar] [CrossRef]
- Karaman, S.; Detmar, M. Mechanisms of lymphatic metastasis. J. Clin. Investig. 2014, 124, 922–928. [Google Scholar] [CrossRef]
- Zawieja, D.C. Contractile physiology of lymphatics. Lymphat. Res. Biol. 2009, 7, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Padera, T.P.; Kadambi, A.; di Tomaso, E.; Carreira, C.M.; Brown, E.B.; Boucher, Y.; Choi, N.C.; Mathisen, D.; Wain, J.; Mark, E.J.; et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002, 296, 1883–1886. [Google Scholar] [CrossRef]
- Karkkainen, M.J.; Makinen, T.; Alitalo, K. Lymphatic endothelium: A new frontier of metastasis research. Nat. Cell Biol. 2002, 4, E2–E5. [Google Scholar] [CrossRef]
- Tammela, T.; Alitalo, K. Lymphangiogenesis: Molecular Mechanisms and Future Promise. Cell 2016, 140, 460–476. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.M.; Fusenig, N.E. Friends or foes–bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer 2004, 4, 839–849. [Google Scholar] [CrossRef]
- Korbecki, J.; Grochans, S.; Gutowska, I.; Barczak, K.; Baranowska-Bosiacka, I. CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. Int. J. Mol. Sci. 2020, 21, 7619. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.J.; Murphy, K.E.; Kunkel, E.J.; Brightling, C.E.; Soler, D.; Shen, Z.; Boisvert, J.; Greenberg, H.B.; Vierra, M.A.; Goodman, S.B.; et al. CCR7 expression and memory T cell diversity in humans. J. Immunol. 2001, 166, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hung, W. Reprogramming of sentinel lymph node microenvironment during tumor metastasis. J. Biomed. Sci. 2022, 29, 84. [Google Scholar] [CrossRef]
- Chow, A.; Zhou, W.; Liu, L.; Fong, M.Y.; Champer, J.; Van Haute, D.; Chin, A.R.; Ren, X.; Gugiu, B.G.; Meng, Z.; et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB. Sci. Rep. 2014, 4, 5750. [Google Scholar] [CrossRef]
- Kartikasari, A.E.R.; Huertas, C.S.; Mitchell, A.; Plebanski, M. Tumor-Induced Inflammatory Cytokines and the Emerging Diagnostic Devices for Cancer Detection and Prognosis. Front. Oncol. 2021, 11, 692142. [Google Scholar] [CrossRef]
- Zhou, H.; Lei, P.-J.; Padera, T.P. Progression of Metastasis through Lymphatic System. Cells 2021, 10, 627. [Google Scholar] [CrossRef]
- Karlsson, M.C.; Gonzalez, S.F.; Welin, J.; Fuxe, J. Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol. Oncol. 2017, 11, 781–791. [Google Scholar] [CrossRef]
- Wigle, J.T.; Harvey, N.; Detmar, M.; Lagutina, I.; Grosveld, G.; Gunn, M.D.; Jackson, D.G.; Oliver, G. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002, 21, 1505–1513. [Google Scholar] [CrossRef]
- Sleeman, J.P.; Thiele, W. Tumor metastasis and the lymphatic vasculature. Int. J. Cancer 2009, 125, 2747–2756. [Google Scholar] [CrossRef] [PubMed]
- Witz, I.P. The tumor microenvironment: The making of a paradigm. Cancer Microenviron. 2009, 2 (Suppl. S1), 9–17. [Google Scholar] [CrossRef] [PubMed]
- Salven, P.; Mustjoki, S.; Alitalo, R.; Alitalo, K.; Rafii, S. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 2003, 101, 168–172. [Google Scholar] [CrossRef]
- Grobbelaar, C.; Steenkamp, V.; Mabeta, P. Vascular Endothelial Growth Factor Receptors in the Vascularization of Pancreatic Tumors: Implications for Prognosis and Therapy. Curr. Issues Mol. Biol. 2025, 47, 179. [Google Scholar] [CrossRef]
- Corbeil, D.; Roper, K.; Fargeas, C.A.; Joester, A.; Huttner, W.B. Prominin: A story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2001, 2, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Lorico, A.; Rappa, G. Phenotypic heterogeneity of breast cancer stem cells. J. Oncol. 2011, 2011, 135039. [Google Scholar] [CrossRef]
- Moreno-Londono, A.P.; Robles-Flores, M. Functional Roles of CD133: More than Stemness Associated Factor Regulated by the Microenvironment. Stem Cell. Rev. Rep. 2024, 20, 25–51. [Google Scholar] [CrossRef]
- Grosse-Gehling, P.; Fargeas, C.A.; Dittfeld, C.; Garbe, Y.; Alison, M.R.; Corbeil, D.; Kunz-Schughart, L.A. CD133 as a biomarker for putative cancer stem cells in solid tumours: Limitations, problems and challenges. J. Pathol. 2013, 229, 355–378. [Google Scholar] [CrossRef]
- Liou, G. CD133 as a regulator of cancer metastasis through the cancer stem cells. Int. J. Biochem. Cell Biol. 2019, 106, 1–7. [Google Scholar] [CrossRef]
- Fargeas, C. Prominin–1 (CD133): From progenitor cells to human diseases. Future Lipidol. 2006, 1, 213–225. [Google Scholar] [CrossRef]
- Anderson, L.H.; Boulanger, C.A.; Smith, G.H.; Carmeliet, P.; Watson, C.J. Stem cell marker prominin-1 regulates branching morphogenesis, but not regenerative capacity, in the mammary gland. Dev. Dyn. 2011, 240, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.H.; Calcagno, A.M.; Salcido, C.D.; Carlson, M.D.; Ambudkar, S.V.; Varticovski, L. Brca1 breast tumors contain distinct CD44+/CD24− and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res. 2008, 10, R10. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Song, X.; Yang, Y.; Wan, X.; Alvarez, A.A.; Sastry, N.; Feng, H.; Hu, B.; Cheng, S.Y. Autophagy and hallmarks of cancer. Crit. Rev. Oncog. 2018, 23, 247–267. [Google Scholar] [CrossRef]
- Chai, X.; Wu, X.; Ren, J.; Du, K.; Wu, X.; Feng, F.; Zheng, J. Expression of HIF-1α, ANXA3, CD133 and their associations with clinicopathological parameters in human colon carcinoma. Transl. Cancer Res. 2022, 11, 1644–1651. [Google Scholar] [CrossRef]
- Ozmen, Z.C.; Kupeli, M. Clinical importance of serum and pleural fluid prominin-1 and hypoxia-inducible factor-1α concentration in the evaluation of lymph node involvement in patients with malignant pleural effusion. Biochem. Med. 2023, 33, 030701. [Google Scholar] [CrossRef]
- Kim, H.S.; Song, H.J.; Kim, H.U.; Jeong, I.H.; Koh, H.M.; Shin, J.H.; Jang, B.G. Expression profile of intestinal stem cell and cancer stem cell markers in gastric cancers with submucosal invasion. Pathol. Res. Pract. 2021, 218, 153336. [Google Scholar] [CrossRef] [PubMed]
- Meliante, P.G.; Pizzolante, S.; Perna, L.; Filippi, C.; Bandiera, G.; Barbato, C.; Minni, A.; de Vincentiis, M.; Covelli, E. Molecular Markers of Occult Lymph Node Metastasis in Head and Neck Squamous Cell Carcinoma (HNSCC) Patients. Front. Biosci. 2025, 30, 25267. [Google Scholar] [CrossRef]
- Brugnoli, F.; Grassilli, S.; Al-Qassab, Y.; Capitani, S.; Bertagnolo, V. CD133 in Breast Cancer Cells: More than a Stem Cell Marker. J. Oncol. 2019, 2019, 7512632. [Google Scholar] [CrossRef]
- Gong, X.; Wang, A.; Song, W. Clinicopathological significances of PLOD2, epithelial-mesenchymal transition markers, and cancer stem cells in patients with esophageal squamous cell carcinoma. Medicine 2022, 101, e30112. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Zheng, X.; Jin, F.; Dong, H. Expression of CD133, PAX2, ESA, and GPR30 in invasive ductal breast carcinomas. Chin. Med. J. 2009, 122, 2763–2769. [Google Scholar] [CrossRef]
- Currie, M.J.; Beardsley, B.E.; Harris, G.C.; Gunningham, S.P.; Dachs, G.U.; Dijkstra, B.; Morrin, H.R.; Wells, J.E.; Robinson, B.A. Immunohistochemical analysis of cancer stem cell markers in invasive breast carcinoma and associated ductal carcinoma in situ: Relationships with markers of tumor hypoxia and microvascularity. Hum. Pathol. 2013, 44, 402–411. [Google Scholar] [CrossRef]
- Xia, P. CD133 mRNA may be a suitable prognostic marker for human breast cancer. Stem Cell. Investig. 2017, 4, 87. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Gao, X.; Gu, X.; Guo, W.; Ma, M.; Qi, X.; Cui, M.; Xie, M.; Bai, Y.; Peng, C.; et al. Prognostic significance of cancer stem cell marker CD133 expression in breast cancer. Int. J. Clin. Exp. Med. 2017, 10, 4829–4837. [Google Scholar]
- Joseph, C.; Arshad, M.; Kurozomi, S.; Althobiti, M.; Miligy, I.M.; Al-Izzi, S.; Toss, M.S.; Goh, F.Q.; Johnston, S.J.; Martin, S.G.; et al. Overexpression of the cancer stem cell marker CD133 confers a poor prognosis in invasive breast cancer. Breast Cancer Res. Treat. 2019, 174, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Bjorndahl, M.A.; Religa, P.; Clasper, S.; Garvin, S.; Galter, D.; Meister, B.; Ikomi, F.; Tritsaris, K.; Dissing, S.; et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 2004, 6, 333–345. [Google Scholar] [CrossRef]
- Cornice, J.; Verzella, D.; Arboretto, P.; Vecchiotti, D.; Capece, D.; Zazzeroni, F.; Franzoso, G. NF-kappaB: Governing Macrophages in Cancer. Genes 2024, 15, 197. [Google Scholar] [CrossRef]
- Sansone, P.; Berishaj, M.; Rajasekhar, V.K.; Ceccarelli, C.; Chang, Q.; Strillacci, A.; Savini, C.; Shapiro, L.; Bowman, R.L.; Mastroleo, C.; et al. Evolution of Cancer Stem-like Cells in Endocrine-Resistant Metastatic Breast Cancers Is Mediated by Stromal Microvesicles. Cancer Res. 2017, 77, 1927–1941. [Google Scholar] [CrossRef]
- Sloan, A.R.; Thapliyal, M.; Lathia, J.D. New T-cell therapies for brain metastasis, CD133 in the driver’s seat. Clin. Cancer Res. 2024, 30, 477–479. [Google Scholar] [CrossRef]
Biomarker | Function | Clinical Significance | References |
---|---|---|---|
LYVE-1 | Lymphatic vessel receptor | Imaging biomarker for lymphatic metastasis | [15,20] |
VEGFR-3 | Lymphangiogenesis receptor | Target for VEGF-C/D inhibitors | [6,11,23,24] |
Podoplanin (PDPN) | Lymphatic endothelial glycoprotein | Marker for lymph node metastasis | [15,21,22] |
PROX-1 | Lymphatic differentiation factor | Diagnostic marker for lymphatic invasion | [20,21] |
CD133 | Cancer stem cell marker | Target for CSC-directed therapies | [23,25,26] |
VEGF-C | Pro-lymphangiogenic factor | Predicts aggressive lymphatic spread | [6,11,22] |
IL-6 | Inflammatory cytokine | Associated with VEGF-C-mediated metastasis | [27,28] |
Function | Molecules | References |
---|---|---|
Autophagy | HIF | [34,35] |
Stemness | Wnt signaling | [36] |
PI3K/Akt pathway | [24,27,28] | |
Notch signaling | [24,37] | |
Invasion | Tropomyosin-4 (Tm4) | [27,28,38] |
c-Met | [27,28] | |
STAT 3 | [27,28] | |
Metastasis | N-cadherin | [39] |
Lymph Node Involvement | Tm4 | [27,28] |
Epithelial–Mesenchymal Transition | N-cadherin | [39] |
MALAT1 | [27,28] | |
HuR | [27,28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.-A.A.; Baum, C.; Xie, Y. Cancer Metastasis Through the Lymphatics: Invasion and Dissemination. Lymphatics 2025, 3, 17. https://doi.org/10.3390/lymphatics3030017
Hu C-AA, Baum C, Xie Y. Cancer Metastasis Through the Lymphatics: Invasion and Dissemination. Lymphatics. 2025; 3(3):17. https://doi.org/10.3390/lymphatics3030017
Chicago/Turabian StyleHu, Chien-An A., Christina Baum, and Yahui Xie. 2025. "Cancer Metastasis Through the Lymphatics: Invasion and Dissemination" Lymphatics 3, no. 3: 17. https://doi.org/10.3390/lymphatics3030017
APA StyleHu, C.-A. A., Baum, C., & Xie, Y. (2025). Cancer Metastasis Through the Lymphatics: Invasion and Dissemination. Lymphatics, 3(3), 17. https://doi.org/10.3390/lymphatics3030017