Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = trichlorosilane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4366 KiB  
Article
Numerical Simulation of the Effect of APCVD Reactor Tilted Ceiling Height on Silicon Epitaxial Layer Thickness Uniformity
by Ba-Phuoc Le, Jyh-Chen Chen, Chieh Hu, Wei-Jie Lin, Chun-Chin Tu and Liang-Chin Chen
Crystals 2025, 15(5), 477; https://doi.org/10.3390/cryst15050477 - 18 May 2025
Viewed by 391
Abstract
As the linewidth of semiconductor nanostructures continues to decrease, the criteria for acceptable surface homogeneity of silicon (Si) epi-films are becoming increasingly stringent. To address this challenge, the effect of different tilted ceiling heights on the Si epi thickness homogeneity in an atmospheric [...] Read more.
As the linewidth of semiconductor nanostructures continues to decrease, the criteria for acceptable surface homogeneity of silicon (Si) epi-films are becoming increasingly stringent. To address this challenge, the effect of different tilted ceiling heights on the Si epi thickness homogeneity in an atmospheric pressure chemical vapor deposition (APCVD) reactor is investigated numerically. In this study, the deposition temperature on the wafer is controlled at 1373 K. When a tilted ceiling with decreasing height along the streamwise direction is used, the average gas mixture velocity increases with the streamwise direction, which can reduce the impact of flow distortion caused by the rotation of the susceptor. At the same time, the growth of the reaction boundary layer on the wafer is suppressed, which helps with the diffusion of trichlorosilane (TCS) on the wafer surface. This makes the drop in the TCS concentration along the streamwise direction more linear, thereby improving the linearity of the growth rate on the wafer surface along the streamwise direction. Therefore, the present results for a reactor without an inlet plate show that the thickness homogeneity across the entire surface of the wafer after a complete susceptor rotation can be significantly improved by linearly reducing the ceiling height in the streamwise direction. A further increase in the inclination of the inclined ceiling leads to a further improvement in the deposition homogeneity. However, the growth rate values at the same position perpendicular to the streamwise direction are inconsistent, which is not conducive to deposition homogeneity. This shortcoming can be improved upon by using a four-inlet plate reactor with an inclined top plate and by properly selecting the position of each partition and the inlet gas mixture velocity of each inlet channel, thereby greatly increasing the deposition homogeneity of the Si epi-layer. For the cases considered in this study, the deposition thickness non-homogeneity across the wafer surface decreased from 38% to 3%. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 3406 KiB  
Article
Implication of Surface Passivation on the In-Plane Charge Transport in the Oriented Thin Films of P3HT
by Nisarg Hirens Purabiarao, Kumar Vivek Gaurav, Shubham Sharma, Yoshito Ando and Shyam Sudhir Pandey
Electron. Mater. 2025, 6(2), 6; https://doi.org/10.3390/electronicmat6020006 - 7 May 2025
Viewed by 1101
Abstract
Optimizing charge transport in organic semiconductors is crucial for advancing next-generation optoelectronic devices. The performance of organic field-effect transistors (OFETs) is significantly influenced by the alignment of films in the channel direction and the quality of the dielectric surface, which should be uniform, [...] Read more.
Optimizing charge transport in organic semiconductors is crucial for advancing next-generation optoelectronic devices. The performance of organic field-effect transistors (OFETs) is significantly influenced by the alignment of films in the channel direction and the quality of the dielectric surface, which should be uniform, smooth, and free of charge-trapping defects. Our study reports the enhancement of OFET performance using large-area, uniform, and oriented thin films of regioregular poly[3-hexylthiophene] (RR-P3HT), prepared via the Floating Film Transfer Method (FTM) on octadecyltrichlorosilane (OTS) passivated SiO2 surfaces. SiO2 surfaces inherently possess dangling bonds that act as charge traps, but these can be effectively passivated through optimized surface treatments. OTS treatment has improved the optical anisotropy of thin films and the surface wettability of SiO2. Notably, using octadecene as a solvent during OTS passivation, as opposed to toluene, resulted in a significant enhancement of charge carrier transport. Specifically, passivation with OTS-F (10 mM OTS in octadecene at 100 °C for 48 h) led to a >150 times increase in mobility and a reduction in threshold voltage compared to OTS-A (5 mM OTS in toluene for 12 h at room temperature). Under optimal conditions, these FTM-processed RR-P3HT films achieved the best device performance, with a saturated mobility (μsat) of 0.18 cm2V−1s−1. Full article
Show Figures

Figure 1

10 pages, 699 KiB  
Article
Method for Removing Impurities by Treating Silicon Tetrachloride with Hydrogen Plasma
by Roman Kornev, Georgy Mochalov, Nikita Maleev, Sergei Romanov, Konstantin Kornev and Alexandra Kalinina
Inorganics 2025, 13(3), 80; https://doi.org/10.3390/inorganics13030080 - 10 Mar 2025
Viewed by 940
Abstract
The transformation of organochlorine and organic impurities such as CCl4, C2H2Cl2, C2HCl3, C2Cl4, C2H2Cl4, CH4, C3H8 [...] Read more.
The transformation of organochlorine and organic impurities such as CCl4, C2H2Cl2, C2HCl3, C2Cl4, C2H2Cl4, CH4, C3H8, C4H10, and C6H6 in the content range of 10−2–10−6 wt.%, as well as BCl3 impurities at the level of 3 × 10−2 wt.%, was considered. A method has been developed for removing limiting impurities of carbon and boron during the process of the hydrogen reduction of silicon tetrachloride in a high-frequency arc gas discharge at atmospheric pressure. The thermodynamic and gas-dynamic analyses of the reduction process of silicon tetrachloride in hydrogen plasma, along with the behavior of organochlorine impurities, organic substances, and boron trichloride, was conducted. These analyses suggest that under equilibrium conditions, the conversion reactions of impurities result in the formation of silicon carbide and boron silicide. Potential chemical reactions for the conversion of the studied impurities into silicon carbide and boron silicide have been proposed. A new potential for plasma chemical processes has been identified, enabling the effective purification of chlorosilanes from both limiting and limited impurities. The results demonstrate the possibility of significantly reducing the concentrations of organochlorine and organic impurities, as well as boron trichloride, during the reduction of silicon tetrachloride in hydrogen plasma. The maximum conversion rates achieved included 99% for the organochlorine impurity CCl4 to silicon carbide, 91% for benzene impurity to silicon carbide, and 86% for boron trichloride to boron silicide. Full article
Show Figures

Figure 1

15 pages, 7639 KiB  
Article
Superhydrophobic Surfaces as a Potential Skin Coating to Prevent Jellyfish Stings: Inhibition and Anti-Tentacle Adhesion in Nematocysts of Jellyfish Nemopilema nomurai
by Yichen Xie, Yuanyuan Sun, Rongfeng Li, Song Liu, Ronge Xing, Pengcheng Li and Huahua Yu
Materials 2024, 17(23), 5983; https://doi.org/10.3390/ma17235983 - 6 Dec 2024
Viewed by 1131
Abstract
The development of skin-protective materials that prevent the adhesion of cnidarian nematocysts and enhance the mechanical strength of these materials is crucial for addressing the issue of jellyfish stings. This study aimed to construct superhydrophobic nanomaterials capable of creating a surface that inhibits [...] Read more.
The development of skin-protective materials that prevent the adhesion of cnidarian nematocysts and enhance the mechanical strength of these materials is crucial for addressing the issue of jellyfish stings. This study aimed to construct superhydrophobic nanomaterials capable of creating a surface that inhibits nematocyst adhesion, therefore preventing jellyfish stings. We investigated wettability and nematocyst adhesion on four different surfaces: gelatin, polydimethylsiloxane (PDMS), dodecyl trichlorosilane (DTS)-modified SiO2, and perfluorooctane triethoxysilane (PFOTS)-modified TiO2. Our findings revealed that an increase in hydrophobicity significantly inhibited nematocyst adhesion. Furthermore, DTS-modified sprayed SiO2 and PFOTS-modified sprated TiO2 were further enhanced with low-surface-energy substances—cellulose nanofibers (CNF) and chitin nanocrystals (ChNCs)—to improve both hydrophobicity and mechanical strength. After incorporating CNF and ChNCs, the surface of s-TiO2-ChNCs exhibited a contact angle of 153.49° even after undergoing abrasion and impact tests, and it maintained its hydrophobic properties with a contact angle of 115.21°. These results indicate that s-TiO2-ChNCs can serve as an effective skin coating to resist tentacle friction. In conclusion, this study underscores the importance of utilizing hydrophobic skin materials to inhibit the adhesion of tentacle nematocysts, providing a novel perspective for protection against jellyfish stings. Full article
Show Figures

Figure 1

13 pages, 4060 KiB  
Article
Promising Catalyst for Chlorosilane Dismutation
by Olesya Zhuchok, Yegor Stolmakov, Alexandra Kalinina, Vitaly Medov, Darya Belousova, Nikita Maleev and Georgy Mochalov
Sci 2024, 6(3), 38; https://doi.org/10.3390/sci6030038 - 1 Jul 2024
Viewed by 1318
Abstract
Currently, the most common method of silane synthesis for electronics and photovoltaics is trichlorosilane dismutation. Therefore, an experimental study of the kinetics of the dismutation reaction of chlorosilanes is of scientific and practical interest. A catalyst has been proposed that allows the dismutation [...] Read more.
Currently, the most common method of silane synthesis for electronics and photovoltaics is trichlorosilane dismutation. Therefore, an experimental study of the kinetics of the dismutation reaction of chlorosilanes is of scientific and practical interest. A catalyst has been proposed that allows the dismutation reaction to be carried out in a wide range of temperatures and pressures. Both kinetic and thermodynamic data on the dependence of the rate of the dismutation reactions of trichlorosilane, dichlorosilane, and monochlorosilane on pressure were experimentally obtained. In addition, the dependence of saturated vapor pressure on temperature for monochlorosilane and dichlorosilane were also experimentally determined. Using the example of TCS, it was experimentally established that increasing the pressure to six atmospheres makes it possible to increase the specific productivity of the reactor by at least an order of magnitude due to the acceleration of the chemical reaction and the increase in the molar concentration of chlorosilanes in the vapor mixture. Consequently, it becomes possible to multiply the reactor’s load on the substance and, accordingly, the performance of the chlorosilane dismutation apparatus in general. Full article
(This article belongs to the Section Chemistry Science)
Show Figures

Figure 1

14 pages, 5739 KiB  
Article
Bifunctional Silica-Supported Ionic Liquid Phase (SILP) Catalysts in Silane Production: Their Synthesis, Characterization and Catalytic Activity
by Nataliia V. Abarbanel, Sergey S. Suvorov, Anton N. Petukhov, Artem S. Belousov, Artem N. Markov, Dmitriy M. Zarubin, Alexandra V. Barysheva, Ilya V. Vorotyntsev, Alexander A. Kapinos, Artem D. Kulikov and Andrey V. Vorotyntsev
Int. J. Mol. Sci. 2024, 25(1), 68; https://doi.org/10.3390/ijms25010068 - 20 Dec 2023
Cited by 1 | Viewed by 2001
Abstract
A mesoporous silica support was synthesized using the sol–gel method from trichlorosilane. There is a tendency for the specific surface area and the proportion of silica particles mesopores to increase during all stages of sol–gel synthesis. It has been shown that the insertion [...] Read more.
A mesoporous silica support was synthesized using the sol–gel method from trichlorosilane. There is a tendency for the specific surface area and the proportion of silica particles mesopores to increase during all stages of sol–gel synthesis. It has been shown that the insertion of hexane and toluene, as additional solvents, into the structure-forming polyethylene glycol, makes it possible to regulate the pore size and specific surface area of silica. Silica functionalization was carried out using SILP technology. The activities of the catalytic systems based on polymer and inorganic supports immobilized by imidazole-based ionic liquids during the trichlorosilane disproportionation reaction were compared. There is a tendency for the monosilane yield for catalytic systems based on an inorganic support to increase. We identified the most promising catalyst in terms of monosilane yield and proposed a bifunctional catalyst that exhibited activity in two parallel reactions: trichlorosilane disproportionation and silicon tetrachloride hydrogenation. Full article
Show Figures

Figure 1

14 pages, 5953 KiB  
Article
Highly Transparent and Zirconia-Enhanced Sol-Gel Hybrid Coating on Polycarbonate Substrates for Self-Cleaning Applications
by Bing Zhang, Ruohan Xia, Yao Yan, Jia Liu and Zisheng Guan
Materials 2023, 16(8), 3138; https://doi.org/10.3390/ma16083138 - 16 Apr 2023
Cited by 3 | Viewed by 2688
Abstract
To improve the efficacy of polymer-based substrate hybrid coatings, it is essential to simultaneously optimize mechanical strength and preserve the optical properties. In this study, a mixture of zirconium oxide (ZrO2) sol and methyltriethoxysilane modified silica (SiO2) sol-gel was [...] Read more.
To improve the efficacy of polymer-based substrate hybrid coatings, it is essential to simultaneously optimize mechanical strength and preserve the optical properties. In this study, a mixture of zirconium oxide (ZrO2) sol and methyltriethoxysilane modified silica (SiO2) sol-gel was dip-coated onto polycarbonate (PC) substrates to form zirconia-enhanced SiO2 hybrid coatings. Additionally, a solution containing 1H, 1H, 2H, and 2H-perfluorooctyl trichlorosilane (PFTS) was employed for surface modification. The results show that the ZrO2-SiO2 hybrid coating enhanced the mechanical strength and transmittance. The average transmittance of the coated PC reached up to 93.9% (400–800 nm), while the peak transmittance reached up to 95.1% at 700 nm. SEM images and AFM morphologies demonstrate that the ZrO2 and SiO2 nanoparticles were evenly distributed, and a flat coating was observed on the PC substrate. The PFTS-modified ZrO2-SiO2 hybrid coating also exhibited good hydrophobicity (WCA, 113°). As an antireflective coating on PC, with self-cleaning capability, the proposed coating has application prospects in optical lenses and automotive windows. Full article
(This article belongs to the Special Issue Advanced Multifunctional Coatings for New Applications)
Show Figures

Figure 1

17 pages, 6159 KiB  
Article
Study on the Difference of Superhydrophobic Characteristics of Different Wood Furniture Substrates
by Xingzhou Yao, Zhangqian Kong, Feng Yang, Xinyu Wu and Yan Wu
Polymers 2023, 15(7), 1644; https://doi.org/10.3390/polym15071644 - 25 Mar 2023
Cited by 11 | Viewed by 2243
Abstract
To enhance the stability of wood and decrease restrictions on its use in the furniture industry, hydrophobic modification can be employed to confer waterproof, anti-fouling, and self-cleaning properties. The present study outlines the preparation of silica sol using the sol–gel method, followed by [...] Read more.
To enhance the stability of wood and decrease restrictions on its use in the furniture industry, hydrophobic modification can be employed to confer waterproof, anti-fouling, and self-cleaning properties. The present study outlines the preparation of silica sol using the sol–gel method, followed by impregnation and chemical vapor deposition methods to modify the sol. After grafting 1H,1H,2H,2H-perfluoro-decyl trichlorosilane (FDTS), hydrophobic and superhydrophobic properties were imparted to the wood substrate. To explore the correlation between the surface properties of the wood substrate and superhydrophobic coatings, the densities, porosities, and surface roughness of various tree species were compared. The results showed that the sol–gel method successfully constructed hydrophobic coatings on different wood substrates, with six samples (poplar, elm, toon wood, paulownia, ashtree, and black walnut) achieving superhydrophobic surfaces, with densities ranging from 0.386 to 0.794 g/cm3, porosity ranging from 13.66 to 42.36%, roughness ranging from 4.660 to 11.244 um, and maximum water contact angle of 165.2°. Whereas beech and rosewood only reach the hydrophobic surface. Although the coatings demonstrated good resistance to water, pollutants, self-cleaning, and chemical agents, further improvements are necessary to enhance mechanical wear resistance. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 3821 KiB  
Article
Thermodynamics and Kinetics of the Reaction of Catalytic Dismutation of Chlorosilanes in the Vapor Phase in the Temperature Range of 353–393 K
by Georgy Mochalov, Yegor Stolmakov and Olesya Zhuchok
ChemEngineering 2023, 7(1), 13; https://doi.org/10.3390/chemengineering7010013 - 10 Feb 2023
Cited by 4 | Viewed by 2876
Abstract
Currently, the most common method of silane synthesis for electronics and photovoltaics is trichlorosilane (TS) dismutation. TS dismutation proceeds in the form of a reactions cascade, therefore its study is of both practical and scientific interest. The results of calculating the equilibrium composition [...] Read more.
Currently, the most common method of silane synthesis for electronics and photovoltaics is trichlorosilane (TS) dismutation. TS dismutation proceeds in the form of a reactions cascade, therefore its study is of both practical and scientific interest. The results of calculating the equilibrium composition of the reaction mixture in the vapor phase based on literature data from various sources were not reliable. Therefore, the dependence of the composition of the reaction mixture on the time of contact of the TS vapor with the catalyst under static conditions was experimentally investigated. The stationary composition of the mixture, close to equilibrium, was determined. A good agreement of the obtained results with the literature data in one of the sources was shown. The kinetics of the dismutation reaction of TS and dichlorosilane (DCS) was carried out by the flow method. As a result of regression analysis of experimental data, the rate constants of the direct and reverse dismutation reactions of TS, DCS, and monochlorosilane (MSC) were obtained. The rate constants were used to calculate the equilibrium composition of the reaction mixture. A good agreement between the calculated and experimental data was shown. Full article
Show Figures

Figure 1

15 pages, 3711 KiB  
Article
Conversion of Carbonaceous Organic Impurities (Methyldichlorosilane) in Trichlorosilane Using Weakly Basic Anion-Exchange Resin as Solid Catalyst
by Jianhua Liu, Miaolei Zhang and Guoqiang Huang
Processes 2023, 11(2), 429; https://doi.org/10.3390/pr11020429 - 31 Jan 2023
Cited by 2 | Viewed by 2120
Abstract
Trichlorosilane (SiHCl3) is an important raw material for preparing solar cells and semiconductor chips in the Siemens method. Since the boiling points of SiHCl3 and methyldichlorosilane (CH3SiHCl2) are close to each other, it is difficult to [...] Read more.
Trichlorosilane (SiHCl3) is an important raw material for preparing solar cells and semiconductor chips in the Siemens method. Since the boiling points of SiHCl3 and methyldichlorosilane (CH3SiHCl2) are close to each other, it is difficult to remove CH3SiHCl2 from the raw material to obtain high-purity products by traditional distillation methods. Therefore, we propose an efficient catalytic approach to convert CH3SiHCl2 to methyltrichlorosilane (CH3SiCl3) with an anion-exchange resin as the catalyst and tetrachlorosilane (SiCl4) as the Cl donor in a continuous-flow fixed bed reactor. Seven anion-exchange resins, including D201, D301, D303, 201 × 7, D301F, D315 and D380 were evaluated. The results showed that D301 resin had the best performance. Reaction conditions such as reaction temperature, reactant molar ratio and catalyst stability were investigated. The maximum conversion of CH3SiHCl2 was 60% at an optimum reaction temperature of 150 °C, n(CH3SiHCl2):n(SiCl4) = 1:3 and a liquid hourly space velocity (LHSV) of 3.0 h−1. A possible reaction mechanism is explained based on the reaction data obtained in the current work. Full article
(This article belongs to the Section Catalysis Enhanced Processes)
Show Figures

Figure 1

12 pages, 3595 KiB  
Article
Patterning of Silicon Substrate with Self-Assembled Monolayers Using Vertically Aligned Carbon Nanotube Electron Sources
by Yi Yin Yu, Alfi Rodiansyah, Jaydip Sawant and Kyu Chang Park
Nanomaterials 2022, 12(24), 4420; https://doi.org/10.3390/nano12244420 - 11 Dec 2022
Cited by 3 | Viewed by 2636
Abstract
We introduce a novel patterning technique based on e-beam lithography using vertically aligned carbon nanotube (VACNT) emitters with self-assembled monolayers (SAMs). A 20 μm line width of silicon wafer patterning was successfully demonstrated using octadecyl trichlorosilane (OTS) as a photoresist. To investigate surface [...] Read more.
We introduce a novel patterning technique based on e-beam lithography using vertically aligned carbon nanotube (VACNT) emitters with self-assembled monolayers (SAMs). A 20 μm line width of silicon wafer patterning was successfully demonstrated using octadecyl trichlorosilane (OTS) as a photoresist. To investigate surface modification by the irradiated electrons from the emitters, both contact angle measurement and energy dispersive X-ray (EDX) analysis were conducted. The patterning mechanism of the electron beam irradiated on OTS-coated substrate by our cold cathode electron beam (C-beam) was demonstrated by the analyzed results. The effect of current density and exposure time on the OTS patterning was studied and optimized for the Si wafer patterning in terms of the electronic properties of the VACNTs. The authors expect the new technique to contribute to the diverse applications to microelectromechanical (MEMS) technologies owing to the advantages of facile operation and precise dose control capability based on field electron emission current from the VACNT emitter arrays. Full article
(This article belongs to the Special Issue The Research Related to Nanomaterial Cold Cathode)
Show Figures

Figure 1

8 pages, 2567 KiB  
Article
Robust Super-Amphiphobic Titanium Surface for Liquid/Liquid Mini Separations
by Yuping Zhang, Ning Wang, Chengxing Cui, Jun Chen, Na Chen and Yijun Zhang
Coatings 2022, 12(6), 805; https://doi.org/10.3390/coatings12060805 - 9 Jun 2022
Cited by 1 | Viewed by 1978
Abstract
Super-amphiphobic surface with low robustness is not suitable for practical application due to its weak mechanical strength. In this work, an in-site growth of micro-/nanoscale flower-like TiO2 on the surface of a titanium mesh was successfully fabricated through hydrothermal synthesis, followed by [...] Read more.
Super-amphiphobic surface with low robustness is not suitable for practical application due to its weak mechanical strength. In this work, an in-site growth of micro-/nanoscale flower-like TiO2 on the surface of a titanium mesh was successfully fabricated through hydrothermal synthesis, followed by chemical modification with low-surface-energy heptadecafluoro-1,1,2,2-tetrahydrodecyl trichlorosilane. The resultant super-amphiphobic coating was highly repellent to all of the ethanol–water mixtures with surface tensions ranging over 26.0–72.8 mN/m, as well as excellent chemical and mechanical durability. After it was irradiated for 8 h with ultraviolet light, it was used for oil/water and oil/oil mini-separation with the help of its Janus characteristic. This was attributed to its unidirectional penetration for liquid droplets with different surface tension values. This kind of smart super-amphiphobic mesh with photochemical activity could potentially gate and sort liquids via surface tensions. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

14 pages, 4906 KiB  
Article
Auger Electron Spectroscopy (AES) and X-ray Photoelectron Spectroscopy (XPS) Profiling of Self Assembled Monolayer (SAM) Patterns Based on Vapor Deposition Technique
by Shi Li, Hongru Zhang, Zheng Liu, Junquan Xu, Guofang Fan, Wei Li, Qi Li, Xiaodong Hu and Gaoshan Jing
Appl. Sci. 2022, 12(3), 1245; https://doi.org/10.3390/app12031245 - 25 Jan 2022
Cited by 7 | Viewed by 5620
Abstract
It is crucial to develop novel metrology techniques in the semiconductor fabrication process to accurately measure a film’s thickness in a few nanometers, as well as the material profile of the film. Highly uniform trichlorosilane (1H,1H,2H,2H-perfluorodecyltrichlorosilane, FDTS) derived SAM film patterns were fabricated [...] Read more.
It is crucial to develop novel metrology techniques in the semiconductor fabrication process to accurately measure a film’s thickness in a few nanometers, as well as the material profile of the film. Highly uniform trichlorosilane (1H,1H,2H,2H-perfluorodecyltrichlorosilane, FDTS) derived SAM film patterns were fabricated by several conventional semiconductor fabrication methods combined, including photolithography, SAM vapor deposition, and the lift-off technique. Substantial information can be collected for FDTS SAM film patterns when Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) techniques are incorporated to investigate this material. Precise two-dimensional (2D) FDTS SAM film patterns were reconstructed through mapping analysis of corresponding elements and chemical state peaks by AES and XPS. Additionally, three-dimensional (3D) FDTS SAM film patterns were also reconstructed layer by layer through gas cluster ion beam (GCIB) etching and XPS analysis. These characterization results demonstrate that FDTS SAM film patterns based on the vapor deposition method are highly uniform because the vacuum and precise gas-delivery system exclude ambient environmental interference efficiently and ensure reaction process repeatability. AES and XPS techniques could be used for metrology applications in the semiconductor process with high-quality SAM microstructures and nanostructures. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

13 pages, 15920 KiB  
Article
Development of Multifunctional CoAl Based Layered Double Hydroxide Protective Film on Aluminum Alloy
by Muhammad Ahsan Iqbal, Humaira Asghar and Michele Fedel
Corros. Mater. Degrad. 2021, 2(4), 708-720; https://doi.org/10.3390/cmd2040038 - 1 Dec 2021
Cited by 5 | Viewed by 3416
Abstract
A protective CoAl-layered double hydroxide (LDH) thin film was developed directly on the aluminum substrate. Further, the low-surface-energy molecules (1H, 1H, 2H, 2H perfluorododecyl trichlorosilane) were incorporated inside the LDH network through an anion exchange mechanism to obtain a superhydrophobic CoAl-LDH surface. The [...] Read more.
A protective CoAl-layered double hydroxide (LDH) thin film was developed directly on the aluminum substrate. Further, the low-surface-energy molecules (1H, 1H, 2H, 2H perfluorododecyl trichlorosilane) were incorporated inside the LDH network through an anion exchange mechanism to obtain a superhydrophobic CoAl-LDH surface. The developed films were characterized by scanning electron microscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR), and additional contact angle measurements were made to evaluate the superhydrophobicity of modified CoAl-LDHs against different solutions. The water contact angle (WCA) of the modified CoAl-LDH surface was observed to be about 153° and remained sufficiently stable after long-term immersion in NaCl solution. The effect of excessive ultrasonication on film structural variations and superhydrophobicity was also analyzed for outdoor applications. The high charge transfer resistance observed from the analysis of long-term electrochemical impedance spectroscopy (EIS) indicates the significant corrosion-resistance properties of the developed CoAl-LDHs. This research on protective CoAl-LDHs will bring insights into the understanding of new aspects of surface protection and implementation in many engineering applications. Full article
Show Figures

Figure 1

19 pages, 3376 KiB  
Article
Rational Design of Simple Organocatalysts for the HSiCl3 Enantioselective Reduction of (E)-N-(1-Phenylethylidene)aniline
by María Maciá, Raúl Porcar, Vicente Martí-Centelles, Eduardo García-Verdugo, Maria Isabel Burguete and Santiago V. Luis
Molecules 2021, 26(22), 6963; https://doi.org/10.3390/molecules26226963 - 18 Nov 2021
Cited by 2 | Viewed by 3318
Abstract
Prolinamides are well-known organocatalysts for the HSiCl3 reduction of imines; however, custom design of catalysts is based on trial-and-error experiments. In this work, we have used a combination of computational calculations and experimental work, including kinetic analyses, to properly understand this process [...] Read more.
Prolinamides are well-known organocatalysts for the HSiCl3 reduction of imines; however, custom design of catalysts is based on trial-and-error experiments. In this work, we have used a combination of computational calculations and experimental work, including kinetic analyses, to properly understand this process and to design optimized catalysts for the benchmark (E)-N-(1-phenylethylidene)aniline. The best results have been obtained with the amide derived from 4-methoxyaniline and the N-pivaloyl protected proline, for which the catalyzed process is almost 600 times faster than the uncatalyzed one. Mechanistic studies reveal that the formation of the component supramolecular complex catalyst-HSiCl3-substrate, involving hydrogen bonding breaking and costly conformational changes in the prolinamide, is an important step in the overall process. Full article
Show Figures

Figure 1

Back to TopTop