Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (367)

Search Parameters:
Keywords = triaxial compressive strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 10877 KiB  
Article
Analysis of Mechanical Properties of Crumb Rubber Tires Mixed with Silty Sand of Various Sizes and Percentages
by Sindambiwe Theogene, Jianxiu Sun, Yanzi Wang, Run Xu, Jie Sun, Yuchen Tao, Changyong Zhang, Qingshuo Sun, Jiandong Wu, Hongya Yue and Hongbo Zhang
Polymers 2025, 17(15), 2144; https://doi.org/10.3390/polym17152144 (registering DOI) - 5 Aug 2025
Abstract
Every year, a billion tires are discarded worldwide, with only a small percentage being recycled. This leads to significant environmental hazards, such as fire risks and improper disposal. Silty sand also presents technical challenges due to its poor shear strength, susceptibility to erosion, [...] Read more.
Every year, a billion tires are discarded worldwide, with only a small percentage being recycled. This leads to significant environmental hazards, such as fire risks and improper disposal. Silty sand also presents technical challenges due to its poor shear strength, susceptibility to erosion, and low permeability. This study explores the incorporation of crumb rubber derived from waste tires into silty sand to enhance its mechanical properties. Crumb rubber particles of varying sizes (3–6 mm, 5–10 mm, and 10–20 mm) were mixed with silty sand at 0%, 3%, 6%, and 9% percentages, respectively. Triaxial compression tests of unconsolidated and consolidated undrained tests with cell pressures of 100, 300, and 500 kPa were conducted. The deviatoric stress, shear stress, and stiffness modulus were investigated. The results revealed that the addition of crumb rubber significantly increased the deviatoric and shear stresses, especially at particle sizes of 5–10 mm, with contents of 3%, 6%, and 9%. Additionally, the stiffness modulus was notably reduced in the mixture containing 6% crumb rubber tire. These findings suggest that incorporating crumb rubber tires into silty sand not only improves silty sand performance but also offers an environmentally sustainable approach to tire waste recycling, making it a viable strategy for silty sand stabilization in construction and geotechnical engineering performance. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

17 pages, 4364 KiB  
Article
An Investigation of the Effectiveness of Super White Cement in Improving the Engineering Properties of Organic Soils by Laboratory Tests
by Eyubhan Avci, Mehmet C. Balci, Muhammed A. Toprak, Melih Uysal, Emre Deveci, Gözde Algun Karataş and Yunus E. Dönertaş
Buildings 2025, 15(15), 2730; https://doi.org/10.3390/buildings15152730 - 2 Aug 2025
Viewed by 204
Abstract
In this study, the efficacy of super white cement (SWC) to improve organic soils was researched. For stabilization, 10%, 15%, and 20% proportions of SWC were added to organic soil. After improvement with SWC, Atterberg limit testing, standard Proctor tests, triaxial compression tests, [...] Read more.
In this study, the efficacy of super white cement (SWC) to improve organic soils was researched. For stabilization, 10%, 15%, and 20% proportions of SWC were added to organic soil. After improvement with SWC, Atterberg limit testing, standard Proctor tests, triaxial compression tests, and swelling and compressibility tests were performed on the organic soil. Proctor tests showed that stabilization of organic soil with SWC increased maximum dry density (MDD) and optimum moisture content (OMC) values. After stabilization, the unconfined compressional strength values of the soil increased. This increase continued until the 28th day and had a reducing trend after improvement with SWC, linked to time. In addition to the reaction between SWC and OS, the time-dependent behavior of OS also contributed to this behavior. With the increase in SWC proportions, the cohesion intercept and internal friction angle values rapidly increased until the 56th day. This increase began to reduce after the 56th day. After stabilization, the swelling percentage and compressibility values for the soil reduced. The addition of SWC within organic soil appeared to improve the engineering properties of the soil. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 4254 KiB  
Article
Strength and Micro-Mechanism of Guar Gum–Palm Fiber Composite for Improvement of Expansive Soil
by Junhua Chen, Yuejian Huang, Aijun Chen, Xinping Ji, Xiao Liao, Shouqian Li and Ying Xiao
Fibers 2025, 13(8), 104; https://doi.org/10.3390/fib13080104 - 31 Jul 2025
Viewed by 152
Abstract
This study investigates the improvement effect and micro-mechanism of guar gum and palm fibers, two eco-friendly materials, on expansive soil. The study uses disintegration tests, unconfined compressive strength tests, triaxial compression tests, and SEM analysis to evaluate the enhancement of mechanical properties. The [...] Read more.
This study investigates the improvement effect and micro-mechanism of guar gum and palm fibers, two eco-friendly materials, on expansive soil. The study uses disintegration tests, unconfined compressive strength tests, triaxial compression tests, and SEM analysis to evaluate the enhancement of mechanical properties. The results show that the guar gum–palm fiber composite significantly improves the compressive and shear strength of expansive soil. The optimal ratio is 2% guar gum, 0.4% palm fiber, and 6 mm palm fiber length. Increasing fiber length initially boosts and then reduces unconfined compressive strength. Guar gum increases unconfined compressive strength by 187.18%, further improved by 20.9% with palm fibers. When fiber length is fixed, increasing palm fiber content increases and then stabilizes peak stress and shear strength (cohesion and internal friction angle), improving by 27.30%, 52.1%, and 12.4%, respectively, compared to soil improved with only guar gum. Micro-analysis reveals that guar gum enhances bonding between soil particles via a gel matrix, improving water stability and mechanical properties, while palm fibers reinforce the soil and inhibit crack propagation. The synergistic effect significantly enhances composite-improved soil performance, offering economic and environmental benefits, and provides insights for expansive soil engineering management. Full article
Show Figures

Figure 1

27 pages, 5072 KiB  
Article
Study on the Mechanical Properties of Optimal Water-Containing Basalt Fiber-Reinforced Concrete Under Triaxial Stress Conditions
by Kaide Liu, Songxin Zhao, Yaru Guo, Wenping Yue, Chaowei Sun, Yu Xia, Qiyu Wang and Xinping Wang
Materials 2025, 18(14), 3358; https://doi.org/10.3390/ma18143358 - 17 Jul 2025
Viewed by 204
Abstract
In response to the high-performance requirements of concrete materials under complex triaxial stress states and water-containing environments in marine engineering, this study focuses on water-containing basalt fiber-reinforced concrete (BFRC). Uniaxial compression and splitting tensile tests were conducted on specimens with different fiber contents [...] Read more.
In response to the high-performance requirements of concrete materials under complex triaxial stress states and water-containing environments in marine engineering, this study focuses on water-containing basalt fiber-reinforced concrete (BFRC). Uniaxial compression and splitting tensile tests were conducted on specimens with different fiber contents (0.0%, 0.05%, 0.10%, 0.15%, and 0.20%) to determine the optimal fiber content of 0.1%. The compressive strength of the concrete with this fiber content increased by 13.5% compared to the control group without fiber, reaching 36.90 MPa, while the tensile strength increased by 15.9%, reaching 2.33 MPa. Subsequently, NMR and SEM techniques were employed to analyze the internal pore structure and micro-morphology of BFRC. It was found that an appropriate amount of basalt fiber (content of 0.1%) can optimize the pore structure and form a reticular three-dimensional structure. The pore grading was also improved, with the total porosity decreasing from 7.48% to 7.43%, the proportion of harmless pores increasing from 4.03% to 4.87%, and the proportion of harmful pores decreasing from 1.67% to 1.42%, thereby significantly enhancing the strength of the concrete. Further triaxial compression tests were conducted to investigate the mechanical properties of BFRC under different confining pressures (0, 3, and 6 MPa) and water contents (0%, 1%, 2%, and 4.16%). The results showed that the stress–strain curves primarily underwent four stages: initial crack compaction, elastic deformation, yielding, and failure. In terms of mechanical properties, when the confining pressure increased from 0 MPa to 6 MPa, taking dry sandstone as an example, the peak stress increased by 54.0%, the elastic modulus increased by 15.7%, the peak strain increased by 37.0%, and the peak volumetric strain increased by 80.0%. In contrast, when the water content increased from 0% to 4.16%, taking a confining pressure of 0 MPa as an example, the peak stress decreased by 27.4%, the elastic modulus decreased by 43.2%, the peak strain decreased by 59.3%, and the peak volumetric strain decreased by 106.7%. Regarding failure characteristics, the failure mode shifted from longitudinal splitting under no confining pressure to diagonal shear under confining pressure. Moreover, as the confining pressure increased, the degree of failure became more severe, with more extensive cracks. However, when the water content increased, the failure degree was relatively mild, but it gradually worsened with further increases in water content. Based on the CDP model, a numerical model for simulating the triaxial compression behavior of BFRC was developed. The simulation results exhibited strong consistency with the experimental data, thereby validating the accuracy and applicability of the model. Full article
Show Figures

Figure 1

19 pages, 4906 KiB  
Article
Laboratory Investigation and Mechanical Evaluation on Xanthan Gum-Reinforced Clay: Unconfined Compression Test, Triaxial Shear Test, and Microstructure Characterization
by Liangbo Ying, Mengqi Xu, Jiale Luo and Wei Wang
Buildings 2025, 15(14), 2438; https://doi.org/10.3390/buildings15142438 - 11 Jul 2025
Viewed by 285
Abstract
Xanthan gum (XG) has potential application prospects as a biopolymer in soil reinforcement engineering. However, there remains a lack of relevant research on its influence on the mechanical properties, microscopic mechanism, and pH value changes in clay. In this study, the effects of [...] Read more.
Xanthan gum (XG) has potential application prospects as a biopolymer in soil reinforcement engineering. However, there remains a lack of relevant research on its influence on the mechanical properties, microscopic mechanism, and pH value changes in clay. In this study, the effects of different XG dosages (0%, 5%, 10%, 15%, and 20%) on the microscopic mechanism, pH value, and mechanical strength of clay at the 7-day curing age were investigated through tests including Zeta potential, infrared spectroscopy, scanning electron microscopy (SEM), pH value, unconfined compressive strength, and triaxial shear strength. The results show that the addition of XG can not only promote charge exchange to generate hydrogen bonds and increase the bonding force between clays but can also form flocculent aggregates between the matrices, cementing the clay, filling the pores, and reducing the porosity of the samples. It can significantly increase the mechanical strength of the sample. When the content of XG is 20%, the unconfined compressive strength (UCS) and cohesion of the sample reach their maximum, increasing by 296% and 806%, respectively, compared with the reference group without XG. The conclusions drawn from this research can not only provide a theoretical reference for improving soft clay foundations but also expand the application research of XG in clay. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 2412 KiB  
Article
Strength Parameters and Failure Criterion of Granite After High-Temperature and Water-Cooling Treatment
by Jincai Yu, Cheng Cheng, Yuan Xie and Peng Chen
Appl. Sci. 2025, 15(13), 7481; https://doi.org/10.3390/app15137481 - 3 Jul 2025
Viewed by 319
Abstract
Granite is the main rock type in hot dry rock reservoirs, and hydraulic fracturing is always required during the process of geothermal production. It is necessary to understand the strength parameters and failure criterion of granite after high-temperature and water-cooling treatment. In this [...] Read more.
Granite is the main rock type in hot dry rock reservoirs, and hydraulic fracturing is always required during the process of geothermal production. It is necessary to understand the strength parameters and failure criterion of granite after high-temperature and water-cooling treatment. In this paper, laboratory uniaxial and triaxial compression experiments are carried out on granite samples after high-temperature and water-cooling treatment. Combined with some experimental data collected from pre-existing studies, the variation behaviors of cohesion (c), the internal friction angle (φ) and tensile strength σt are systematically studied considering the heating and cooling treatment. It is found that c and φ generally show two different types of variation behaviors with the increasing heating temperature. Tensile strength decreases in a similar way for the different granite samples with the increasing treatment temperature. Empirical equations are provided to describe these strength parameters. Finally, a modified Mohr–Coulomb failure criterion with a “tension cut-off” is established for the granite samples, considering the effects of high-temperature and water-cooling treatment. This study should be helpful for understanding the mechanical behavior of hot dry rock during hydraulic fracturing in geothermal production, and the proposed failure criterion can be applied for the numerical modeling of reservoirs. Full article
(This article belongs to the Special Issue Advances in Geotechnical and Geological Engineering)
Show Figures

Figure 1

22 pages, 3320 KiB  
Article
Permeability Characteristics and Strength Degradation Mechanisms of Drilling Fluid Invading Bedding-Shale Fluid
by Guiquan Wang, Fenfen Li, Yu Suo, Cuilong Kong, Xiaoguang Wang and Lingzhi Zhou
Symmetry 2025, 17(7), 981; https://doi.org/10.3390/sym17070981 - 21 Jun 2025
Viewed by 570
Abstract
The development of shale bedding and fractures exacerbates the invasion of drilling fluid, leading to significant reservoir damage. This article elucidates the strength degradation behavior of shale with bedding orientations of 0° and 90° under drilling fluid immersion, as determined through triaxial compression [...] Read more.
The development of shale bedding and fractures exacerbates the invasion of drilling fluid, leading to significant reservoir damage. This article elucidates the strength degradation behavior of shale with bedding orientations of 0° and 90° under drilling fluid immersion, as determined through triaxial compression experiments. An improved Hooke–Brown anisotropic strength criterion has been established to quantitatively characterize the degradation effects. Additionally, a dynamic mechanism of pore pressure accumulation was simulated. The research findings indicate the following: (1) As the intrusion pressure increases from 6 MPa to 8 MPa, the penetration depth significantly increases. In the horizontal bedding direction (0°), cracks dominate the flow mode, resulting in a sudden drop in strength; (2) An increase in bedding density or opening exacerbates the degree of invasion and strength degradation in the horizontal bedding direction, with a degradation rate exceeding 40%. In contrast, the vertical bedding direction is influenced by permeability anisotropy and crack blockage, leading to limited seepage and minimal degradation. By optimizing the dosage of emulsifiers and other treatment agents through orthogonal experiments, a low-viscosity, high-shear-strength plugging oil-based drilling fluid system was developed, effectively reducing the invasion depth of the drilling fluid by over 30%. The primary innovations of this article include the establishment of a quantitative model for Reynolds number degradation for the first time, which elucidates the mechanism of accelerated crack propagation during turbulent transition (when the Reynolds number exceeds the critical value of 10). Additionally, a novel method for synergistic control between sealing and rheology is introduced, significantly decreasing the degradation rate of horizontal bedding. Furthermore, the development of the Darcy–Forchheimer partitioning algorithm addresses the issue of prediction bias exceeding 15% in high-Reynolds-number regions (Re > 30). The research findings provide a crucial theoretical foundation and data support for the optimized design of drilling fluids. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

18 pages, 4967 KiB  
Article
Effect of Pre-Damage on the Behavior of Axially and Eccentrically Compressed Concrete Cylinders Confined with PBO-FRCM
by Maciej Pazdan, Tomasz Trapko and Michał Musiał
Materials 2025, 18(12), 2881; https://doi.org/10.3390/ma18122881 - 18 Jun 2025
Viewed by 279
Abstract
In the case of strengthening building structures, the process usually involves elements that have a certain loading history and are typically subjected to loading during the strengthening process. In scientific research, on the other hand, strengthening is usually applied to elements that are [...] Read more.
In the case of strengthening building structures, the process usually involves elements that have a certain loading history and are typically subjected to loading during the strengthening process. In scientific research, on the other hand, strengthening is usually applied to elements that are not representative of real structures. This article presents a study of the effect of pre-damage on the behavior of eccentrically compressed concrete cylinders confined with PBO-FRCM (fabric-reinforced cementitious matrix with PBO fibers) composite. Concrete confinement introduces a favorable triaxial stress state, which leads to an increase in the compressive strength of concrete. FRCM systems are an alternative to FRP (fiber-reinforced polymer) composites. Replacing the polymer matrix with a mineral matrix primarily improves the fire resistance of the strengthening system. The elements were made of concrete with a compressive strength of about 40 MPa, which is typical for current reinforced concrete columns. Pre-damage was induced by loading the test elements to 80% of the average compressive strength and then fully unloading. The elements were then strengthened with three layers of PBO-FRCM composite and subjected to axial or eccentric compression with force applied at two different eccentricities. In addition to electric strain gauges, a digital image correlation system was used for measurements, to identify the initiation of PBO mesh overlap delamination. This study analyzed the elements in terms of load-bearing capacity, deformability, ductility, and failure mechanisms. In general, there was no negative effect of pre-damage on the behavior of the tested elements. Full article
(This article belongs to the Special Issue Strengthening, Repair, and Retrofit of Reinforced Concrete)
Show Figures

Figure 1

18 pages, 4203 KiB  
Article
Long-Term Anisotropic Mechanical Characterization of Layered Shale—An Experimental Study for the BaoKang Tunnel of the Zhengwan Railway, China
by Jun Zhao, Changming Li and Wei Huang
Processes 2025, 13(6), 1900; https://doi.org/10.3390/pr13061900 - 16 Jun 2025
Viewed by 428
Abstract
With the further implementation and development of the Western Development Strategy, studying the mechanical behavior and deformation characteristics of deep-buried tunnels in layered hard rock under high ground stress conditions holds considerable engineering significance. To study the mechanical properties and long-term deformation and [...] Read more.
With the further implementation and development of the Western Development Strategy, studying the mechanical behavior and deformation characteristics of deep-buried tunnels in layered hard rock under high ground stress conditions holds considerable engineering significance. To study the mechanical properties and long-term deformation and failure characteristics of different bedding stratified rocks, this research employed an MTS815 electro-hydraulic servo rock testing system and a French TOP rheometer. Triaxial compression tests, rheological property tests, and long-term cyclic and unloading tests were conducted on shale samples under varying confining pressures and bedding angles. The results indicate that (1) under triaxial compression, shale demonstrates pronounced anisotropic behavior. When the confining pressure is constant, the peak strength of the rock sample exhibits a “U”-shaped variation with the bedding angle (its minimum value at 60°). For a fixed bedding angle, the peak strength of the rock sample progressively increases as the confining pressure rises. (2) The mode of shale failure varies with the angle: at 0°, shale exhibits conjugate shear failure; at 30°, shear slip failure along the bedding is controlled by the bedding weak plane; at 60° and 90°, failure occurs through the bedding. (3) During the creep process of layered shale, brittle failure characteristics are evident, with microcracks within the sample gradually failing at stress concentration points. The decelerated and stable creep stages are prominent; while the accelerated creep stage is less noticeable, the creep rate increases with increasing stress level. (4) Under low confining pressure, the peak strength during cyclic loading and unloading creep processes is lower than that of conventional triaxial tests when the bedding plane dip angles are 0° and 30°, which is the opposite at 60° and 90°. (5) In the cyclic loading and unloading process, Poisson’s ratio gradually increases, whereas the elastic modulus, shear modulus, and bulk modulus gradually decrease. Full article
Show Figures

Figure 1

20 pages, 10249 KiB  
Article
The Effect of Cementation on Microstructural Evolution and Particle Characteristics of Calcareous Sand Under Triaxial Loading
by Wanying Wang, Jiepeng Huang, Degao Chen, Qingzi Luo and Bingxiang Yuan
Buildings 2025, 15(12), 2041; https://doi.org/10.3390/buildings15122041 - 13 Jun 2025
Viewed by 430
Abstract
Calcareous sands are widely distributed across the South China Sea’s continental shelf and coastlines. Understanding their mechanical behavior and microstructural evolution under cementation is critical for coastal engineering applications. While previous studies have investigated cemented calcareous sands, the comparative analyses of particle breakage [...] Read more.
Calcareous sands are widely distributed across the South China Sea’s continental shelf and coastlines. Understanding their mechanical behavior and microstructural evolution under cementation is critical for coastal engineering applications. While previous studies have investigated cemented calcareous sands, the comparative analyses of particle breakage and microstructural characteristics between cemented and pure sands remain limited. This study combines triaxial compression tests with X-ray CT scanning and Digital Volume Correlation analysis to systematically examine both material types. Pre- and post-loading CT scans enabled the detailed tracking of microstructural transformations. Results demonstrate that cemented specimens exhibit higher strength–stiffness properties with strain-softening behavior compared to pure sand under 200 kPa confining pressures. A quantitative analysis revealed greater particle breakage in cemented sand, while pure sand showed more pronounced increases in particle sphericity and the aspect ratio during deformation, accompanied by reduced porosity variation along specimen height (coefficient of variation decreased from 15.2% to 12.8% for pure sand. Microstructural analysis indicated moderate increases in pore sphericity and reduced anisotropy in both materials. Fractal dimension analysis demonstrated more significant structural reorganization in cemented sands. Both materials exhibited increases in key morphological parameters, including the throat equivalent radius, channel length, pore equivalent radius, and coordination number, with changes being more substantial in cemented sands. Within shear band regions, cemented sands displayed marked reductions in pore and throat quantities. These findings elucidate fundamental relationships between cementation effects and micro–macro mechanical responses, providing theoretical support for geotechnical applications involving calcareous sands. Full article
Show Figures

Figure 1

27 pages, 12274 KiB  
Article
Mechanical Properties and Microstructure Damage of Limestone Concrete Under Triaxial Stress
by Kaide Liu, Songxin Zhao, Dingbo Wang, Wenping Yue, Chaowei Sun, Yu Xia and Qiyu Wang
Buildings 2025, 15(11), 1924; https://doi.org/10.3390/buildings15111924 - 2 Jun 2025
Cited by 1 | Viewed by 433
Abstract
This study takes limestone crushed stone concrete as the research object and systematically investigates its mechanical property changes and microstructural damage characteristics under different confining pressures using triaxial compression tests, scanning electron microscope (SEM) tests, and digital image processing techniques. The results show [...] Read more.
This study takes limestone crushed stone concrete as the research object and systematically investigates its mechanical property changes and microstructural damage characteristics under different confining pressures using triaxial compression tests, scanning electron microscope (SEM) tests, and digital image processing techniques. The results show that, in terms of macro-mechanical properties, as the confining pressure increases, the peak strength increases by 192.66%, the axial peak strain increases by 143.66%, the elastic modulus increases by 133.98%, and the ductility coefficient increases by 54.61%. In terms of microstructure, the porosity decreases by 64.35%, the maximum pore diameter decreases by 75.69%, the fractal dimension decreases by 19.56%, and the interfacial transition zone cracks gradually extend into the aggregate interior. The optimization of the microstructure makes the concrete more compact, reduces stress concentration, and thereby enhances the macro-mechanical properties. Additionally, the failure characteristics of the specimens shift from diagonal shear failure to compressive flow failure. According to the Mohr–Coulomb strength criterion, the calculated cohesion is 6.96 MPa, the internal friction angle is 38.89°, and the breakage angle is 25.53°. A regression analysis established a quantitative relationship between microstructural characteristics and macro-mechanical properties, revealing the significant impact of microstructural characteristics on macro-mechanical properties. Under low confining pressure, early volumetric expansion and rapid volumetric strain occur, with microcracks mainly concentrated at the aggregate interface that are relatively wide. Under high confining pressure, volumetric expansion is delayed, volumetric strain increases slowly, and microcracks extend into the interior of the aggregate, becoming finer and more dispersed. Full article
(This article belongs to the Special Issue Advanced Research on Concrete Materials in Construction)
Show Figures

Figure 1

18 pages, 3615 KiB  
Article
Shear Strength and Ultimate Bearing Capacity of Silt-Based Foamed Concrete Under Local Vertical Loading
by Chuanyi Ma, Jun Wang, Ning Zhang, Chuyi Wang, Shengtao Zhang, Yuchen Tao, Shurong Lou, Qingshuo Sun, Xianfu Ren and Hongbo Zhang
Buildings 2025, 15(11), 1914; https://doi.org/10.3390/buildings15111914 - 2 Jun 2025
Viewed by 434
Abstract
With the rapid development of lightweight and environmentally friendly building materials, foamed concrete has been widely adopted as a novel material for lightweight filling and foundation applications. However, its bearing capacity under localized loading conditions requires further investigation. This study focuses on silt-based [...] Read more.
With the rapid development of lightweight and environmentally friendly building materials, foamed concrete has been widely adopted as a novel material for lightweight filling and foundation applications. However, its bearing capacity under localized loading conditions requires further investigation. This study focuses on silt-based foamed concrete with a 30% silt content. A series of unconfined compression tests and triaxial shear tests were conducted to determine its key mechanical properties. Large-scale indoor model tests were then carried out to evaluate the effects of the wet density (600 kg/m3, 700 kg/m3, and 800 kg/m3) and the loading position on vertical bearing performance. The results show that silt-based foamed concrete exhibits a basin-shaped deformation pattern under vertical loading, similar to traditional foundations. Based on experimental data and shear strength parameters, a formula for the ultimate bearing capacity of silt-based foamed concrete was developed by extending Terzaghi’s bearing capacity theory. This provides a theoretical basis for its application in geotechnical engineering. Full article
(This article belongs to the Special Issue Research on Performance of Buildings Structures and Materials)
Show Figures

Figure 1

23 pages, 14922 KiB  
Article
Strain Rate Effects on Characteristic Stresses and Dynamic Strength Criterion in Granite Under Triaxial Quasi-Static Compression
by Lu Liu, Jinhui Ouyang, Wencheng Yang and Sijing Wang
Appl. Sci. 2025, 15(11), 6214; https://doi.org/10.3390/app15116214 - 31 May 2025
Viewed by 512
Abstract
To investigate the effects of the strain rate and confinement on characteristic stresses and strength criterion in granite under static to quasi-static loading, triaxial compression tests were systematically conducted across strain rates of 10−6 to 10−2 s−1 and confining pressures [...] Read more.
To investigate the effects of the strain rate and confinement on characteristic stresses and strength criterion in granite under static to quasi-static loading, triaxial compression tests were systematically conducted across strain rates of 10−6 to 10−2 s−1 and confining pressures of 0–40 MPa. Stress–strain curves, characteristic stresses, macro-fracture patterns, and dynamic strength criterion were analyzed. The experimental results indicate the following: (1) crack damage stress (σcd) and peak stress (σp) show strong linear correlations with logarithmic strain rate, while crack initiation stress (σci) exhibits weaker rate dependence; (2) linear regression establishes characteristic stress ratios σci = 0.58σp and σcd = 0.85σp; (3) macroscopic fractures transition from Y-shaped shear patterns under low confinement and strain rate conditions to X-shaped shear failures at higher confinement and strain rate; (4) the Mohr–Coulomb criterion effectively characterizes dynamic strength evolution in granite, with cohesion increasing 22% across tested strain rates while internal friction angle remains stable at around 50°; (5) variations in microcrack activity intensity during rock deformation stages result in the dynamic increase factor for characteristic stresses (CSDIF) of σci being lower than σcd and σp. More importantly, σcd and σp exhibit CSDIF reductions as confining pressure increases. This differential behavior is explained by confinement-enhanced shear fracturing dominance during crack propagation stages, combined with the lower strain rate sensitivity of shear versus tensile fracture toughness. Full article
Show Figures

Figure 1

17 pages, 2916 KiB  
Article
Development and Characterisation of Novel Fluid–Solid Coupled Similar Materials Under Dry–Wet Cycling Conditions
by Chunpeng Song, Xiaoliang Xu and Lehua Wang
Buildings 2025, 15(11), 1794; https://doi.org/10.3390/buildings15111794 - 23 May 2025
Viewed by 381
Abstract
This study aims to develop fluid–solid coupled similar materials to enhance the reliability of geotechnical model tests simulating reservoir slope stability under water-level fluctuations. Using an orthogonal experimental method, materials were prepared with quartz sand and barite as aggregates, cement and gypsum as [...] Read more.
This study aims to develop fluid–solid coupled similar materials to enhance the reliability of geotechnical model tests simulating reservoir slope stability under water-level fluctuations. Using an orthogonal experimental method, materials were prepared with quartz sand and barite as aggregates, cement and gypsum as binders, and water as the regulator. Tests on density, uniaxial and triaxial compressive strength, and flow properties determined the relationships between material properties and raw components. Uniaxial compressive strength tests under dry–wet cycles revealed that cement-to-binder ratio primarily influenced density, uniaxial compressive strength, cohesion, and hydraulic conductivity, while the binder-to-aggregate ratio affected elastic modulus and internal friction angle. Uniaxial compressive strength continuously degraded with cycles but at a decreasing rate. A water-damage resistance coefficient was defined to quantify degradation. Multiple linear regression analysis established a robust model for uniaxial compressive strength prediction, providing a theoretical basis for material proportioning. These findings improve the simulation accuracy in hydrologically active zones, with applications in designing stable reservoir slopes. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 12341 KiB  
Article
The Synergistic Effects of the Particle Elongation Index and Flat Index on Aggregate Strength and Dilatancy: A Discrete Element Method Study
by Yiming Liu, Zhangshuaihang Cao and Haijun Mao
Appl. Sci. 2025, 15(10), 5567; https://doi.org/10.3390/app15105567 - 16 May 2025
Viewed by 346
Abstract
To address the limitations in conventional granular morphology characterization where excessive emphasis has been placed on elongation index (EI) while neglecting flatness index (FI) and their coupled interactions, this study establishes an EI/FI co-regulated dual-parameter morphological characterization framework. Through integrated triaxial compression experiments [...] Read more.
To address the limitations in conventional granular morphology characterization where excessive emphasis has been placed on elongation index (EI) while neglecting flatness index (FI) and their coupled interactions, this study establishes an EI/FI co-regulated dual-parameter morphological characterization framework. Through integrated triaxial compression experiments and discrete element simulations, we systematically investigate multi-scale mechanical responses spanning macroscopic stress–strain behavior to microscopic force-chain evolution. The results show that (1) the regulation of pore structure by morphological parameters presents non-linear characteristics, and (2) the evolution of peak shear strength is predominantly governed by morphological anisotropy. (3) The parabolic relationship between the maximum dilatancy angle and the morphological parameters is shown. (4) The micro mechanical analysis reveals that EI/FI parameters have limited influence on the statistical distribution characteristics of the contact force chain, but have a significant regulatory effect on the anisotropic evolution of the force-chain network. Full article
Show Figures

Figure 1

Back to TopTop