Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = trench support

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3131 KiB  
Article
Humidity Sensing in Graphene-Trenched Silicon Junctions via Schottky Barrier Modulation
by Akeel Qadir, Munir Ali, Afshan Khaliq, Shahid Karim, Umar Farooq, Hongsheng Xu and Yiting Yu
Nanomaterials 2025, 15(13), 985; https://doi.org/10.3390/nano15130985 - 25 Jun 2025
Viewed by 270
Abstract
In this study, we develop a graphene-trenched silicon Schottky junction for humidity sensing. This novel structure comprises suspended graphene bridging etched trenches on a silicon substrate, creating both free-standing and substrate-contacting regions of graphene that enhance water adsorption sensing. Suspended graphene is intrinsically [...] Read more.
In this study, we develop a graphene-trenched silicon Schottky junction for humidity sensing. This novel structure comprises suspended graphene bridging etched trenches on a silicon substrate, creating both free-standing and substrate-contacting regions of graphene that enhance water adsorption sensing. Suspended graphene is intrinsically insensitive to water adsorption, making it difficult for adsorbed H2O to effectively dope the graphene. In contrast, when graphene is supported on the silicon substrate, water molecules can effectively dope the graphene by modifying the silicon’s impurity bands and their hybridization with graphene. This humidity-induced doping leads to a significant modulation of the Schottky barrier at the graphene–silicon interface, which serves as the core sensing mechanism. We investigate the current–voltage (I–V) characteristics of these devices as a function of trench width and relative humidity. Our analysis shows that humidity influences key device parameters, including the Schottky barrier height, ideality factor, series resistance, and normalized sensitivity. Specifically, larger trench widths reduce the graphene density of states, an effect that is accounted for in our analysis of these parameters. The sensor operates under both forward and reverse bias, enabling tunable sensitivity, high selectivity, and low power consumption. These features make it promising for applications in industrial and home safety, environmental monitoring, and process control. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

18 pages, 6849 KiB  
Article
Study on the Interactions Process of Coupled Model of Furrow Opener–Soil–Pot Seedling Based on Discrete Approach
by Bin Jiang, Jinping Cai, Xiongfei Chen, Junan Liu, Liping Xiao, Jinlong Lin and Yuqiang Chen
Agriculture 2025, 15(11), 1206; https://doi.org/10.3390/agriculture15111206 - 31 May 2025
Viewed by 472
Abstract
The upright state of pot seedlings in the process of rice mechanized throwing operations has an important influence on the growth rate and yield of rice, and pot seedling uprightness is affected by the influence of soil backfilling during trenching. Due to the [...] Read more.
The upright state of pot seedlings in the process of rice mechanized throwing operations has an important influence on the growth rate and yield of rice, and pot seedling uprightness is affected by the influence of soil backfilling during trenching. Due to the complexity of the furrow opener–soil–pot seedling interaction mechanism in the rice pot seedling planting process, the soil backfilling process is difficult to observe. In order to improve the uprightness of pot seedling planting, this paper constructs a soil model and a soil–pot seedling model step by step, based on the discrete element method (DEM), as well as a coupled model of the pot seedling planting system to study the process of furrow opener–soil–pot seedling planting, the reliability of which is then verified. The results showed that the simulation results of the constructed soil model and soil–pot seedling model deviated from the actual calibration results by <6%, and the model could accurately simulate the pot seedling throwing process. The simulation analysis of the trenching process revealed that the soil backfilling process during trenching showed a three-stage evolution pattern of “backfilling-covering-stabilizing”; in addition, the forward speed of the machine was 0.8 m/s, and the falling speed of the seedling discharge cylinder was 3.5 m/s, which made it possible for the model to simulate the pot seedling throwing process accurately. In addition, when the pot seedling with a forward speed of 0.8 m/s and a drop speed of 3.5 m/s fell into the trench after 0.15 s of trenching, its lateral and longitudinal uprightness were 67.0 ± 1.2° and 65.2 ± 1.5°, respectively. After optimization of the structure of the trenchers, the width, depth, and length of the main body were 40 mm, 37.87 mm, and 32.32 mm, respectively, and the lateral and longitudinal uprightness of the pot seedlings increased to 70.0 ± 1.0° and 69.4 ± 0.8, respectively. The coupled model bench validation test showed that its reliability error was <5%. The coupled model provides technical support for the design and parameter optimization of rice planting equipment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

13 pages, 4718 KiB  
Article
800 kHz Femtosecond Laser Cleaning of Microwave Plasma Chemical Vapor Deposition Diamond Growth Substrate
by Xiwang Wu and Xin Chen
Crystals 2025, 15(6), 517; https://doi.org/10.3390/cryst15060517 - 28 May 2025
Viewed by 337
Abstract
Microwave Plasma Chemical Vapor Deposition (MPCVD) plays a crucial role in the growth of high-quality diamonds. However, during the MPCVD process, residues such as polycrystalline diamond, and graphite often adhere to the high-temperature growth substrate surfaces, potentially degrading diamond growth quality. To effectively [...] Read more.
Microwave Plasma Chemical Vapor Deposition (MPCVD) plays a crucial role in the growth of high-quality diamonds. However, during the MPCVD process, residues such as polycrystalline diamond, and graphite often adhere to the high-temperature growth substrate surfaces, potentially degrading diamond growth quality. To effectively remove these contaminants and improve the quality of diamond growth, this study employed an 800 kHz femtosecond laser to clean growth substrates with residual deposits. We assessed the effects of multiple cleaning cycles on residue removal from the Foundation Trench Region (FTR) and Inwall Region (IR) and on substrate quality. The results indicate that multiple scans at a laser power of 2.38 W, a repetition rate of 800 kHz, a scanning speed of 1800 mm/s, and a scan spacing of 10 μm significantly removed residues, reduced substrate surface roughness, and restored substrate cleanliness. This approach enhances the quality and efficiency of diamond growth via MPCVD. The application of high-repetition-rate femtosecond laser cleaning techniques for growth substrates significantly improves the quality of regenerated diamond films, providing crucial support for the preparation of high-quality diamond materials. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

19 pages, 2734 KiB  
Article
Fields of Conflict: Public Attitudes and Economic Impacts of Human–Wildlife Conflict on Rural Livelihood in District Lakki Marwat, Pakistan
by Tauheed Ullah Khan, Ghulam Nabi, Arshad Iqbal, Kalim Ullah and Huijian Hu
Diversity 2025, 17(3), 180; https://doi.org/10.3390/d17030180 - 3 Mar 2025
Viewed by 1178
Abstract
Human–wildlife conflict poses significant ecological and socio-economic challenges, particularly in rural communities where agriculture and livestock rearing form the backbone of livelihoods. Despite the growing importance of this issue, District Lakki Marwat remains an unexplored area of northwest Pakistan. This study aims to [...] Read more.
Human–wildlife conflict poses significant ecological and socio-economic challenges, particularly in rural communities where agriculture and livestock rearing form the backbone of livelihoods. Despite the growing importance of this issue, District Lakki Marwat remains an unexplored area of northwest Pakistan. This study aims to fill this gap by systematically assessing the status, economic impacts, and community perceptions of five wildlife species: wild boar (Sus scrofa), grey wolf (Canis lupus), golden jackal (Canis aureus), striped hyena (Hyaena hyaena), and red fox (Vulpes vulpes). Using semi-structured surveys with 117 respondents, we analyzed species prevalence, perceived danger levels, crop damage patterns, and predation impacts on livestock and poultry. The findings revealed that wild boars were identified as the primary contributors to agricultural damage, with total annual crop losses surpassing the economic impacts attributed to the studied carnivores. On average, each surveyed household experienced an annual loss of PKR 4510.38. For the 39% of households reporting crop damage, the annual loss per reported household was PKR 11,727, which was higher than the average annual loss across all households, underscoring the severity of the impact on those specifically affected by the wild boar-related crop damage. Notably, community attitudes were most negative toward wild boars, a pattern driven by the economic burden of crop losses, challenging the conventional focus on carnivores as the primary conflict species. A Pearson’s X2 test confirmed strong associations between species and perceived danger levels, while regression analysis demonstrated an association between crop damage and negative attitudes. Traditional deterrents like thorn fences were found ineffective against wild boars. More advanced methods, including game-proof fencing, trenches, bio-fencing, crop rotation, audio and visual deterrents, taste and order repellents, and watchtowers combined with group vigilance, are recommended to reduce crop damage. Integrating these approaches with community-based education, habitat management, and government-supported compensation schemes can mitigate wild boar impacts. This study contributes new insights into multi-species HWC dynamics, demonstrating that community perceptions are primarily shaped by the economic impact of a species, regardless of whether it is a carnivore or an omnivore. The attitudes of local communities are driven by the financial losses incurred, rather than the species' behavior or ecological role. This study underscores the need for collaborative efforts to reduce human–wildlife conflict, foster coexistence, and ensure ecological balance in vulnerable rural areas. Full article
(This article belongs to the Special Issue Conflict and Coexistence Between Humans and Wildlife)
Show Figures

Graphical abstract

27 pages, 12936 KiB  
Article
Bionic Optimal Design and Performance Study of Soil Loosening Shovels for Degraded Grasslands
by Zhaoyu Wang, Yong You, Xuening Zhang, Decheng Wang and Chengzhong Pan
Agriculture 2025, 15(5), 487; https://doi.org/10.3390/agriculture15050487 - 24 Feb 2025
Cited by 2 | Viewed by 556
Abstract
To improve the soil loosening effects of degraded grasslands, this study investigates the performance of a bionic loosening shovel designed based on the claws of prairie zokor. A single-factor simulation test of the bionic loosening shovel was conducted using EDEM software to analyze [...] Read more.
To improve the soil loosening effects of degraded grasslands, this study investigates the performance of a bionic loosening shovel designed based on the claws of prairie zokor. A single-factor simulation test of the bionic loosening shovel was conducted using EDEM software to analyze the effects of loosening depth (H) and operating speed (V) on key parameters, including the ridge disturbance area (As), furrow disturbance area (Af), loosening resistance (Fr), and trench specific resistance (Fc). Additionally, field tests were performed to validate the simulation results of the bionic loosening shovel. The findings indicate that the difference ratio (Da1) between the simulated and test values for the bionic loosening shovel remained consistently low, confirming the reliability of the simulation model in predicting variations in response parameters. Furthermore, comparative field tests were conducted to evaluate the loosening performance of the bionic loosening shovel against standard loosening shovels (the diamond-shaped loosening shovel and the arrow-shaped loosening shovel). The results show that the bionic loosening shovel achieved the lowest values for As, Af, and Fr under the same operating parameters. However, its effect on improving Af was limited. These findings provide valuable technical support for the enhancement and optimization of loosening shovels for degraded grasslands. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 10181 KiB  
Article
Study on Mechanical Properties and Damage Characteristics of Fiber-Reinforced Ecological-Matrix-Cemented Aeolian Sand Materials
by Danfei Wang, Han Yan, Chunxiao Qi, Shasha Lu and Bo Li
Buildings 2025, 15(5), 714; https://doi.org/10.3390/buildings15050714 - 24 Feb 2025
Cited by 1 | Viewed by 672
Abstract
To improve the quality of trench, backfill projects, this study utilizes solid waste to prepare a controllable low-strength material. Through uniaxial compression, three-point bending tests, and scanning electron microscopy (SEM), the mechanical performance evolution and fiber reinforcement mechanisms of the backfill material are [...] Read more.
To improve the quality of trench, backfill projects, this study utilizes solid waste to prepare a controllable low-strength material. Through uniaxial compression, three-point bending tests, and scanning electron microscopy (SEM), the mechanical performance evolution and fiber reinforcement mechanisms of the backfill material are revealed. Based on a two-parameter Weibull distribution probability model, an intrinsic correlation between the number of freeze–thaw cycles, damage variables, and compressive strength is established. The research results indicate that when the NaOH content is 3%, the water-to-solid ratio is 0.4, and the number of freeze–thaw cycles is 0, the sample’s mechanical properties reach their local optimum. After curing for 28 days, a significant amount of amorphous gel-like substance is formed inside the system, filling the intergranular spaces between aeolian sand particles, resulting in a relatively dense structure for the backfill material. In response to the degradation caused by the initial defects in the sample, fibers effectively prevent crack initiation. Based on the stochastic characteristics of freeze–thaw damage, the number of freeze–thaw cycles (n) follows the Weibull distribution model well. Using experimental data, evolution equations for the number of freeze–thaw cycles, intrinsic damage, and compressive strength were developed, ultimately establishing the intrinsic relationship between sample damage and strength. The findings provide theoretical support for addressing trench backfill engineering disasters in seasonally frozen regions. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Graphical abstract

18 pages, 3367 KiB  
Article
The Effects of Rainfall and Terracing–Mulch Combinations on Soil Erosion in a Loess Hilly Area, China: Insights from Plot Simulations and WEPP Modeling
by Michael Aliyi Ame, Wei Wei, Shuming Zhang, Wen Liu and Liding Chen
Land 2025, 14(2), 432; https://doi.org/10.3390/land14020432 - 19 Feb 2025
Viewed by 1296
Abstract
Soil erosion is a major environmental concern, especially in sensitive ecosystems like the Loess Plateau of China, where certain geological and climatic circumstances exacerbate the erosion process. Terracing and mulching are popular soil erosion management strategies in this region. However, their combined effects [...] Read more.
Soil erosion is a major environmental concern, especially in sensitive ecosystems like the Loess Plateau of China, where certain geological and climatic circumstances exacerbate the erosion process. Terracing and mulching are popular soil erosion management strategies in this region. However, their combined effects under varied rainfall intensities are poorly understood. The purpose of this study is to assess the performance of various terracing–mulch combinations in reducing water erosion under different rainfall intensities. The experimental layout included a control plot (C), non-terraced mulch applications (NTr-M), fish-scale pits with mulch (FSPs-M), zig terraces with mulch (ZTr-M), level bench terraces with mulch (LBTr-M), and trench terraces with mulch (TTr-M). Controlled artificial rainfall experiments were carried out under different intensities, and runoff and soil loss data were collected to evaluate the effects of the combinations. The event-based WEPP simulations, calibrated for the Loess Plateau, demonstrated strong predictive accuracy, as evidenced by the high correlation coefficients (R2 = 0.97 for runoff; R2 = 0.86 for soil loss) and Nash–Sutcliffe efficiency (NSE = 0.93 for runoff; NSE = 0.89 for soil loss), confirming their reliability in simulating erosion processes when compared to measured values. Our results revealed significant differences (p < 0.05) in mean runoff and soil loss among the treatments, ranked in the order LBTr-M < TTr-M < ZTr-M < FSPs-M < NTr-M < C. Incremental response analysis also revealed that the control plot (C) was the most sensitive to changes in rainfall intensity, followed by FSPs-M and NTr-M. In contrast, LBTr-M was found to be the most stable strategy. These findings highlight the importance of optimizing micro-relief construction and mulch application to enhance erosion control and support the recommendation of LBTr-M, TTr-M, and ZTr-M as effective strategies. Conversely, FSPs-M and NTr-M proved less effective under higher rainfall intensities. These findings emphasize the need to optimize micro-relief construction and mulch application for erosion management, as well as suggest that such strategies could be applied to the Loess Plateau and other erosion-prone regions worldwide with similar climatic and topographic conditions. Full article
(This article belongs to the Special Issue Soils and Land Management under Climate Change)
Show Figures

Figure 1

23 pages, 859 KiB  
Review
Caught-In/Between Accidents in the Construction Industry: A Systematic Review
by Aminu Darda’u Rafindadi, Bishir Kado, Abdurra’uf M. Gora, Ibrahim B. Dalha, Sadi I. Haruna, Yasser E. Ibrahim and Omar Ahmed Shabbir
Safety 2025, 11(1), 12; https://doi.org/10.3390/safety11010012 - 4 Feb 2025
Viewed by 3229
Abstract
This systematic review examines caught-in/between accidents in construction, revealing complex safety challenges involving machinery errors, vehicle incidents, loading mistakes, and structural collapses. The analysis highlights significant risks, including heavy equipment rollovers, trench cave-ins, and material shifts, with injuries ranging from minor to fatal. [...] Read more.
This systematic review examines caught-in/between accidents in construction, revealing complex safety challenges involving machinery errors, vehicle incidents, loading mistakes, and structural collapses. The analysis highlights significant risks, including heavy equipment rollovers, trench cave-ins, and material shifts, with injuries ranging from minor to fatal. Despite the critical nature of these accidents, existing research demonstrates notable gaps, particularly in understanding long-term worker health impacts, economic consequences, and nuanced risk factors. Most studies insufficiently explore correlations between worker experience, age, and accident susceptibility, while gender-specific risks remain poorly documented. Training inadequacies and safety protocol non-adherence emerge as primary contributors to these incidents. This review identifies a pressing need for standardized, comprehensive safety interventions that address technological, human, and organizational factors. Recommendations include stricter safety regulations, enhanced training programs, advanced safety technologies, and robust support systems for workers. By fostering a holistic safety culture and addressing research gaps, the construction industry can potentially mitigate caught-in/between accidents, ultimately protecting worker well-being and improving overall productivity. Full article
Show Figures

Figure 1

34 pages, 16609 KiB  
Article
Palaeoclimatic Signatures Based on Pollen Fingerprints: Reconstructing Mid–Late Holocene Climate Dynamics in Northwestern Himalaya, India
by Anupam Nag, Anjali Trivedi, Anjum Farooqui and P. Morthekai
Quaternary 2025, 8(1), 6; https://doi.org/10.3390/quat8010006 - 28 Jan 2025
Cited by 1 | Viewed by 1448
Abstract
This study presents a high-resolution palaeoclimate reconstruction based on a radiocarbon-dated 240 cm deep trench profile from Renuka Lake, Northwestern Himalaya, India. The palynological analysis provides insight into the palaeovegetation and palaeoclimatic dynamics of a subtropical, dense, mixed deciduous forest, predominantly characterized by [...] Read more.
This study presents a high-resolution palaeoclimate reconstruction based on a radiocarbon-dated 240 cm deep trench profile from Renuka Lake, Northwestern Himalaya, India. The palynological analysis provides insight into the palaeovegetation and palaeoclimatic dynamics of a subtropical, dense, mixed deciduous forest, predominantly characterized by Sal (Shorea robusta). The fossil pollen reveals the presence of tropical Sal mixed deciduous taxa, including Shorea robusta, Emblica officinalis, Murraya koenigii, Toona ciliata, Syzygium cumini, and Terminalia spp., which indicate that the region experiences a warm and humid climate with the strong Indian Summer Monsoon (ISM) during ~7500–4460 cal yr BP. Subsequently, Sal-mixed deciduous forests were replaced by highland taxa, viz., Pinus roxburghii and Abies pindrow, suggesting dry and cold conditions during ~4460–3480 cal yr BP. Additionally, warm and humid (~3480–3240, ~3060–2680, ~2480–2270 cal yr BP) and cold and dry conditions (~3240–3060, ~2680–2480, ~2270–1965 cal yr BP) recorded alternatively in this region. Improved ISM prevailed ~1965–940 cal yr BP, followed by cold and dry conditions ~940–540 cal yr BP. From ~540 cal yr BP to present, the appearance of moist deciduous taxa alongside dry deciduous and highland taxa in similar proportions suggests moderate climate conditions in the region. Environmental reconstructions are supported by the Earth System Palaeoclimate Simulation (ESPS) model, providing an independent validation of the pollen-based interpretations. This research contributes to our understanding of long-term vegetation dynamics in the Northwestern Himalaya and offers valuable insights into the historical variability of the Indian Summer Monsoon, establishing a foundation for future investigations of climate-driven vegetation changes in the region. Full article
Show Figures

Figure 1

19 pages, 4712 KiB  
Article
An Independent Suspension and Trafficability Analysis for an Unmanned Ground Platform
by Jianying Li, Yinghong Xie and Yongwang Huo
Symmetry 2025, 17(1), 128; https://doi.org/10.3390/sym17010128 - 17 Jan 2025
Viewed by 1164
Abstract
The objective of this paper was to investigate and design a novel vertical- and horizontal-arm independent suspension system aimed at enhancing the autonomous obstacle-crossing capabilities of unmanned ground platforms in complex, unstructured environments such as mountainous regions, hills, and mining areas. By thoroughly [...] Read more.
The objective of this paper was to investigate and design a novel vertical- and horizontal-arm independent suspension system aimed at enhancing the autonomous obstacle-crossing capabilities of unmanned ground platforms in complex, unstructured environments such as mountainous regions, hills, and mining areas. By thoroughly considering factors such as the suspension structure design, changes in the centroid position, distribution of driving forces, and dynamic stability analysis, we proposed an innovative suspension structure. An unmanned ground platform model equipped with this suspension system was developed using ADAMS and MATLAB/Simulink. Subsequently, a joint simulation was conducted to validate the performance of the suspension system. The results indicated that the unmanned ground platform could successfully traverse vertical steps up to 370 mm high and trenches measuring up to 600 mm wide. Furthermore, when confronted with intricate obstacles including vertical barriers, trenches, and side slopes, the platform demonstrated exceptional traversing capabilities. In conclusion, the proposed suspension system significantly enhances both the obstacle-surmounting ability and the terrain adaptability of unmanned ground platforms while providing crucial technical support for their deployment in complex unstructured environments. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

14 pages, 1880 KiB  
Article
Trench MOS Schottky Diodes: A Physics-Based Analytical Model Approach to Charge Sharing
by Mohammed Tanvir Quddus, Alvaro D. Latorre-Rey, Zeinab Ramezani and Mihir Mudholkar
Micromachines 2025, 16(1), 90; https://doi.org/10.3390/mi16010090 - 14 Jan 2025
Viewed by 1163
Abstract
Trench MOS Barrier Schottky (TMBS) rectifiers offer superior static and dynamic electrical characteristics when compared with planar Schottky rectifiers for a given active die size. The unique structure of TMBS devices allows for efficient manipulation of the electric field, enabling higher doping concentrations [...] Read more.
Trench MOS Barrier Schottky (TMBS) rectifiers offer superior static and dynamic electrical characteristics when compared with planar Schottky rectifiers for a given active die size. The unique structure of TMBS devices allows for efficient manipulation of the electric field, enabling higher doping concentrations in the drift region and thus achieving a lower forward voltage drop (VF) and reduced leakage current (IR) while maintaining high breakdown voltage (BV). While the use of trenches to push electric fields away from the mesa surface is a widely employed concept for vertical power devices, a significant gap exists in the analytical modeling of this effect, with most prior studies relying heavily on computationally intensive numerical simulations. This paper introduces a new physics-based analytical model to elucidate the behavior of electric field and potential in the mesa region of a TMBS rectifier in reverse bias. Our model leverages the concept of shared charge between the Schottky and MOS junctions, capturing how electric field distribution is altered in response to trench geometry and bias conditions. This shared charge approach not only simplifies the analysis of electric field distribution but also reveals key design parameters, such as trench depth, oxide thickness, and doping concentration, that influence device performance. This model employs the concept of shared charge between the vertical Schottky and MOS junction. Additionally, it provides a detailed view of the electric field suppression mechanism in the TMBS device, highlighting the significant effects of the inversion charge on the MOS interface. By comparing our analytical results with TCAD simulations, we demonstrate strong agreement, underscoring the model’s accuracy and its potential to serve as a more accessible alternative to resource-intensive simulations. This work contributes to a valuable tool for TMBS device design, offering insights into electric field management that support high-efficiency, high-voltage applications, including power supplies, automotive electronics, and renewable energy systems. Full article
Show Figures

Figure 1

21 pages, 11975 KiB  
Article
Development and Optimization of a Recyclable Non-Embedded Support System for Thermal Pipeline Trenches in Urban Environments
by Jianfei Ma, Shaohui He and Gangshuai Jia
Materials 2025, 18(1), 68; https://doi.org/10.3390/ma18010068 - 27 Dec 2024
Viewed by 1042
Abstract
Existing support systems for thermal pipeline trenches often fail to meet the specific needs of narrow strips, tight timelines, and short construction periods in urban environments. This study introduces a novel recyclable, non-embedded support system composed of corrugated steel plates, retractable horizontal braces, [...] Read more.
Existing support systems for thermal pipeline trenches often fail to meet the specific needs of narrow strips, tight timelines, and short construction periods in urban environments. This study introduces a novel recyclable, non-embedded support system composed of corrugated steel plates, retractable horizontal braces, angle steel, and high-strength bolts designed to address these challenges. The system’s effectiveness was validated through prototype testing and optimized using Abaqus finite element simulations. The research hypothesizes that this new support structure will enhance construction efficiency, reduce installation costs, and provide adaptable and sustainable solutions in urban trench applications. Prototype tests demonstrated that the proposed support had maintained safety and stability in trenches of 2 m and 3 m depth under a 58 kPa load and rainfall, as well as the 4 m deep trenches under asymmetric loading of 80 kPa. Optimization of the proposed system included installing two screw jacks on each horizontal brace and adjusting the corrugated plates, resulting in reduced weight, improved node strength, and enhanced screw jack adjustability. Numerical simulations confirmed the optimized system’s reliability in trenches up to 3 m deep, with caution required for deeper applications to avoid structural failure. The proposed support system offers notable advantages over traditional methods by improving construction efficiency, flexibility, and adaptability while also reducing costs, ensuring safety, and promoting environmental sustainability. Its modular design allows for rapid installation and disassembly, making it suitable for projects with strict deadlines and diverse construction conditions. The findings uphold the initial hypotheses and demonstrate the system’s practicality in urban trench projects. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 430 KiB  
Article
Adoption and Impact of ChatGPT in Computer Science Education: A Case Study on a Database Administration Course
by Daniel López-Fernández and Ricardo Vergaz
AI 2024, 5(4), 2321-2337; https://doi.org/10.3390/ai5040114 - 11 Nov 2024
Cited by 2 | Viewed by 2185
Abstract
The irruption of GenAI such as ChatGPT has changed the educational landscape. Therefore, methodological guidelines and more empirical experiences are needed to better understand these tools and know how to use them to their fullest potential. This contribution presents an exploratory and correlational [...] Read more.
The irruption of GenAI such as ChatGPT has changed the educational landscape. Therefore, methodological guidelines and more empirical experiences are needed to better understand these tools and know how to use them to their fullest potential. This contribution presents an exploratory and correlational study conducted with 37 computer science students who used ChatGPT as a support tool to learn database administration. The article addresses three questions: The first one explores the degree of use of ChatGPT among computer science students to learn database administration, the second one explores the profile of students who get the most out of tools like ChatGPT to deal with database administration activities, and the third one explores how the utilization of ChatGPT can impact in academic performance. To empirically shed light on these questions the student’s grades and a comprehensive questionnaire were employed as research instruments. The obtained results indicate that traditional learning resources, such as teacher’s explanations and student’s reports, were widely used and correlated positively with student’s grades. The usage and perceived utility of ChatGPT were moderate, but positive correlations between students’ grades and ChatGPT usage were found. Indeed, a significantly higher use of this tool was identified among the group of outstanding students. This indicate that high-performing students are the ones who are using ChatGPT the most. So, a new digital trench could be rising between these students and those with a lower degree of fundamentals and worse prompting skills, who may not take advantage of all the ChatGPT possibilities. Full article
(This article belongs to the Topic Explainable AI in Education)
Show Figures

Figure 1

15 pages, 2929 KiB  
Article
Study on the Spatiotemporal Distribution Characteristics of Meiofauna in Baiyangdian Lake and Its Influencing Factors
by Yingkun Cao, Jiandong Mu, Zhe Pan, Futang Ma, Jianxia Liu, Haojun Dong, Wei Zhang and Liqing Wang
Water 2024, 16(14), 1959; https://doi.org/10.3390/w16141959 - 11 Jul 2024
Viewed by 1135
Abstract
Baiyangdian Lake, the largest freshwater shallow lake on the North China Plain, plays a pivotal role in maintaining the regional ecological balance and biodiversity. Meiofauna are integral components of Baiyangdian Lake; however, their community characteristics and relationship with environmental factors have not yet [...] Read more.
Baiyangdian Lake, the largest freshwater shallow lake on the North China Plain, plays a pivotal role in maintaining the regional ecological balance and biodiversity. Meiofauna are integral components of Baiyangdian Lake; however, their community characteristics and relationship with environmental factors have not yet been studied. The aim of the following study was to evaluate the density, spatiotemporal patterns, and habitat response dynamics of meiofauna in Baiyangdian Lake. A field investigation was conducted at 33 sites spanning various habitats, including aquatic plant-dominant, trench, and pelagic areas, across the spring, summer, and autumn seasons of 2021. The results revealed that the meiofauna in Baiyangdian Lake primarily comprise freshwater nematodes (91.78%), ostracods, and copepods, with a mean abundance of 69.40 ± 35.20 ind. 10 cm−2, peaking in the spring, followed by summer and autumn. The mean biomass was 164.95 ± 99.39 dwt. 10 cm−2, with that of ostracods being the most substantial and that of copepods being the least, with both of them exhibiting seasonal fluctuations. Notably, in the summer, the abundance of meiofauna was positively correlated with the water depth and negatively correlated with ammonia nitrogen levels (R² = 0.13 and R² = 0.24, respectively; p < 0.05 and p < 0.01; n = 33). The results of our study indicate that the distribution and abundance of meiofauna are significantly affected by environmental factors, with the water depth and ammonia nitrogen levels being potential key determinants. The results of the present study are conducive to evaluating the health status of the Baiyangdian ecosystem, protecting biodiversity, and studying the impacts of anthropogenic activities and environmental changes on the lake, and can also provide scientific support for its ecological restoration and governance as well as the assessment of ecological service functions. Full article
(This article belongs to the Special Issue Freshwater Ecosystems—Biodiversity and Protection)
Show Figures

Figure 1

7 pages, 1117 KiB  
Communication
Efficient Optical Coupling between Dielectric Strip Waveguides and a Plasmonic Trench Waveguide
by Jia-Ren Wu, Anjali Chandel, Chiashain Chuang and Sheng Hsiung Chang
Photonics 2024, 11(7), 608; https://doi.org/10.3390/photonics11070608 - 27 Jun 2024
Cited by 1 | Viewed by 1833
Abstract
Buttcoupling is the most efficient way to excite surface plasmon polariton (SPP) waves at dielectric/metal interfaces in order to realize applications in broadband and ultra-compact integrated circuits (IOCs). We propose a reasonable waveguide structure to efficiently excite and collect the SPP waves supported [...] Read more.
Buttcoupling is the most efficient way to excite surface plasmon polariton (SPP) waves at dielectric/metal interfaces in order to realize applications in broadband and ultra-compact integrated circuits (IOCs). We propose a reasonable waveguide structure to efficiently excite and collect the SPP waves supported in a plasmonic trench waveguide in the long-haul telecommunication wavelength range. Our simulation results show that the coupling efficiency between the dielectric strip waveguides and a plasmonic trench waveguide can be optimized, which is dominated by the zigzag propagation path length in the dielectric strip loaded on the metal substrate. It is noted that nearly a 100% coupling efficiency can be achieved when the distance between the excitation source and the plasmonic waveguide is about 6.76 μm. Full article
(This article belongs to the Special Issue Integrated Waveguide-Based Photonic Devices)
Show Figures

Figure 1

Back to TopTop