800 kHz Femtosecond Laser Cleaning of Microwave Plasma Chemical Vapor Deposition Diamond Growth Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Laser Cleaning
2.3. Characterization Methods
3. Results and Discussion
3.1. MPCVD Residual Substance Composition Analysis
3.2. Laser Cleaning of Residual Particles on FTR
3.3. Laser Cleaning of IR Residues
3.4. Laser Cleaning of Mo Substrate Cracks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sang, L. Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices. Funct. Diamond. 2021, 1, 174–188. [Google Scholar] [CrossRef]
- Wort, C.; Balmer, R. Diamond as an electronic material. Mater. Today 2008, 11, 22–28. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Guo, Z.; Wei, J.; Liu, J.; Chen, L.; Li, C. Deposition of uniform diamond films on three dimensional Si spheres by using faraday cage in MPCVD reactor. Diam. Relat. Mater. 2024, 142, 110767. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Li, X.; Wang, L.; Xu, F.; Zhang, B. Blue-white electroluminescence of diamond/WS2 quantum dot composite films. Diam. Relat. Mater. 2024, 143, 110941. [Google Scholar] [CrossRef]
- Bolshakov, A.; Ralchenko, V.; Shu, G.; Dai, B.; Yurov, V.; Bushuev, E.; Khomich, A.; Altakhov, A.; Ashkinazi, E.; Antonova, I.; et al. Single crystal diamond growth by MPCVD at subatmospheric pressures. Mater. Today Commun. 2020, 25, 101635. [Google Scholar] [CrossRef]
- Silva, F.; Achard, J.; Brinza, O.; Bonnin, X.; Hassouni, K.; Anthonis, A.; De Corte, K.; Barjon, J. High quality, large surface area, homoepitaxial MPACVD diamond growth. Diam. Relat. Mater. 2009, 18, 683–697. [Google Scholar] [CrossRef]
- Mokuno, Y.; Chayahara, A.; Soda, Y.; Yamada, H.; Horino, Y.; Fujimori, N. High rate homoepitaxial growth of diamond by microwave plasma CVD with nitrogen addition. Diam. Relat. Mater. 2006, 15, 455–459. [Google Scholar] [CrossRef]
- Liang, Q.; Yan, C.; Meng, Y.; Lai, J.; Krasnicki, S.; Mao, H.; Hemley, R. Recent advances in high-growth rate single-crystal CVD diamond. Diam. Relat. Mater. 2009, 18, 698–703. [Google Scholar] [CrossRef]
- Jia, X.; Dong, J.; Chen, Y.; Wang, H.; Zhu, G.; Kozlov, A.; Zhu, X. Nanosecond-millisecond combined pulse laser drilling of alumina ceramic. Opt. Lett. 2020, 45, 1691–1694. [Google Scholar] [CrossRef]
- Jia, X.; Chen, Y.; Wang, H.; Zhu, G.; Zhu, X. Experimental study on nanosecond-millisecond combined pulse laser drilling of alumina ceramic with different spot sizes. Opt. Laser Technol. 2020, 130, 160351. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, Y.; Chen, Y.; Wang, H.; Zhu, G.; Zhu, X. Laser cleaning of slots of chrome-plated die. Opt. Laser Technol. 2019, 119, 105659. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, X.; Huang, W. Mechanism research of laser cleaning rubber layer on tire mold. In Proceedings of the International Conference on Industrial Lasers, Wuhan, China, 8 September 1999. [Google Scholar]
- Song, Y.; Wang, C.; Dong, X.; Yin, K.; Zhang, F.; Xie, Z.; Chu, D. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser. Opt. Laser Technol. 2018, 102, 25–31. [Google Scholar] [CrossRef]
- Brand, J.; Maximova, K.; Madden, S.; Wain, A.; Rode, A.; Rapp, L. Femtosecond pulse laser cleaning of Makrana marble. Appl. Surf. Sci. 2023, 641, 158484. [Google Scholar] [CrossRef]
- Rivas, T.; Lopez, A.; Ramil, A.; Pozo, S.; Fiorucci, M.; de Silanes, M.; García, A.; de Aldana, J.; Romero, C.; Moreno, P. Comparative study of ornamental granite cleaning using femtosecond and nanosecond pulsed lasers. Appl. Surf. Sci. 2013, 278, 226–233. [Google Scholar] [CrossRef]
- Ersoy, T.; Tunay, T.; Uğuryol, M.; Mavili, G.; Akturk, S. Femtosecond laser cleaning of historical paper with sizing. J. Cult. Herit. 2014, 15, 258–265. [Google Scholar] [CrossRef]
- Maharjan, N.; Zhou, W.; Zheng, H.; Zhou, Y.; Wu, N. Surface Cleaning of a Titanium Alloy Using Femtosecond Laser Pulses. Laser Eng. 2019, 43, 223–235. [Google Scholar]
- Jia, X.; Chen, Y.; Liu, L.; Wang, C. Combined pulse laser: Reliable tool for high-quality, high-efficiency material processing. Opt. Laser Technol. 2022, 153, 108209. [Google Scholar] [CrossRef]
- Shin, S.; Hur, J.; Park, J.; Kim, D. Thermal damage free material processing using femtosecond laser pulses for fabricating fine metal masks: Influences of laser fluence and pulse repetition rate on processing quality. Opt. Laser Technol. 2021, 134, 106618. [Google Scholar] [CrossRef]
- Kononenko, T.; Meier, M.; Komlenok, M.; Pimenov, S.; Romano, V.; Pashinin, V.; Konov, V. Microstructuring of diamond bulk by IR femtosecond laser pulses. Appl. Phys. A 2008, 90, 645–651. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, Z.; Yin, J.; Xiong, B.; Jin, M. Experiment on Ablation Threshold of Single Crystal Diamond Produced by Femtosecond Laser Processing. Chin. J. Lasers 2019, 46, 0402001. [Google Scholar]
- Yan, Y.; Zhang, S.; Zhao, X.; Han, Y.; Hou, L. Raman spectral research on MPCVD diamond film. Chin. Sci. Bull. 2003, 48, 2029–2030. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Chen, T.; Ma, G.; Zhang, W.; Huang, L. Influence of Pulse Energy and Defocus Amount on the Mechanism and Surface Characteristics of Femtosecond Laser Polishing of SiC Ceramics. Micromachines 2022, 13, 1118. [Google Scholar] [CrossRef]
Element | O | S | Mo |
---|---|---|---|
Content (wt.%) | 21.45 | 4.22 | 74.33 |
Parameters | Values |
---|---|
Repetition Rate (kHz) | 800 |
Average Power (W) | 2.38 |
Pulse Width (fs) | 250 |
Spot Diameter (μm) | 15 |
Scanning Speed (mm/s) | 1800 |
Scanning Interval (μm) | 10 |
Repetition Rate (kHz) | 800 |
Mo | C | O | S | |
---|---|---|---|---|
(a) 1 | 1.38 | 98.62 | - | - |
(b) 2 | 85.56 | - | 9.68 | 4.76 |
(c) 3 | 74.33 | - | 21.45 | 4.22 |
(d) 4 | 86.24 | - | 8.94 | 4.82 |
Position in Figure 8 | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Roughness before cleaning (Sa, μm) | 6.919 | 6.047 | 6.724 | 6.539 |
Roughness after cleaning (Sa, μm) | 5.181 | 5.309 | 5.202 | 5.233 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Chen, X. 800 kHz Femtosecond Laser Cleaning of Microwave Plasma Chemical Vapor Deposition Diamond Growth Substrate. Crystals 2025, 15, 517. https://doi.org/10.3390/cryst15060517
Wu X, Chen X. 800 kHz Femtosecond Laser Cleaning of Microwave Plasma Chemical Vapor Deposition Diamond Growth Substrate. Crystals. 2025; 15(6):517. https://doi.org/10.3390/cryst15060517
Chicago/Turabian StyleWu, Xiwang, and Xin Chen. 2025. "800 kHz Femtosecond Laser Cleaning of Microwave Plasma Chemical Vapor Deposition Diamond Growth Substrate" Crystals 15, no. 6: 517. https://doi.org/10.3390/cryst15060517
APA StyleWu, X., & Chen, X. (2025). 800 kHz Femtosecond Laser Cleaning of Microwave Plasma Chemical Vapor Deposition Diamond Growth Substrate. Crystals, 15(6), 517. https://doi.org/10.3390/cryst15060517