Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (384)

Search Parameters:
Keywords = treated groundwater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 828 KiB  
Review
Agricultural Irrigation Using Treated Wastewater: Challenges and Opportunities
by Christian C. Obijianya, Elif Yakamercan, Mahmoud Karimi, Sridevi Veluru, Ivan Simko, Sulaymon Eshkabilov and Halis Simsek
Water 2025, 17(14), 2083; https://doi.org/10.3390/w17142083 - 11 Jul 2025
Viewed by 592
Abstract
Reusing and recycling treated wastewater is a sustainable approach to meet the growing demand for clean water, ensuring its availability for both current and future generations. Wastewater can be treated in such advanced ways that it can be used for industrial operations, recharging [...] Read more.
Reusing and recycling treated wastewater is a sustainable approach to meet the growing demand for clean water, ensuring its availability for both current and future generations. Wastewater can be treated in such advanced ways that it can be used for industrial operations, recharging groundwater, irrigation of fields, or even manufacturing drinkable water. This strategy meets growing water demand in water-scarce areas while protecting natural ecosystems. Treated wastewater is both a resource and a challenge. Though it may be nutrient-rich and can increase agricultural output while showing resource reuse and environmental conservation, high treatment costs, public acceptance, and contamination hazards limit its use. Proper treatment can reduce these hazards, safeguarding human health and the environment while enhancing its benefits, including a stable water supply, nutrient-rich irrigation, higher crop yields, economic development, and community resilience. On the one hand, inadequate treatment may lead to soil salinization, environmental degradation, and hazardous foods. Examining the dual benefits and risks of using treated wastewater for agricultural irrigation, this paper investigates the complexities of its use as a valuable resource and as a potential hazard. Modern treatment technologies are needed to address these difficulties and to ensure safe and sustainable use. If properly handled, treated wastewater reuse has enormous potential for reducing water scarcity and expanding sustainable agriculture as well as global food security. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Graphical abstract

31 pages, 3790 KiB  
Systematic Review
Plants Used in Constructed Wetlands for Aquaculture: A Systematic Review
by Erick Arturo Betanzo-Torres, Gastón Ballut-Dajud, Graciano Aguilar-Cortés, Elizabeth Delfín-Portela and Luis Carlos Sandoval Herazo
Sustainability 2025, 17(14), 6298; https://doi.org/10.3390/su17146298 - 9 Jul 2025
Viewed by 758
Abstract
The latest FAO report indicates that aquaculture accounts for 51% of the global production volume of fish and seafood. However, despite the continuous growth of this activity, there is evidence of the excessive use of groundwater in its production processes, as well as [...] Read more.
The latest FAO report indicates that aquaculture accounts for 51% of the global production volume of fish and seafood. However, despite the continuous growth of this activity, there is evidence of the excessive use of groundwater in its production processes, as well as pollution caused by nutrient discharges into surface waters due to the water exchange required to maintain water quality in fishponds. Given this context, the objectives of this study were as follows: (1) to review which emergent and floating plant species are used in constructed wetlands (CWs) for the bioremediation of aquaculture wastewater; (2) to identify the aquaculture species whose wastewater has been treated with CW systems; and (3) to examine the integration of CWs with recirculating aquaculture systems (RASs) for water reuse. A systematic literature review was conducted, selecting 70 scientific articles published between 2003 and 2023. The results show that the most used plant species in CW systems were Phragmites australis, Typha latifolia, Canna indica, Eichhornia crassipes, and Arundo donax, out of a total of 43 identified species. These plants treated wastewater generated by 25 aquaculture species, including Oreochromis niloticus, Litopenaeus vannamei, Ictalurus punctatus, Clarias gariepinus, Tachysurus fulvidraco, and Cyprinus carpio, However, only 40% of the reviewed studies addressed aspects related to the incorporation of RAS elements in their designs. In conclusion, the use of plants for wastewater treatment in CW systems is feasible; however, its application remains largely at the experimental scale. Evidence indicates that there are limited real-scale applications and few studies focused on the reuse of treated water for agricultural purposes. This highlights the need for future research aimed at production systems that integrate circular economy principles in this sector, through RAS–CW systems. Additionally, there is a wide variety of plant species that remain unexplored for these purposes. Full article
Show Figures

Figure 1

14 pages, 2126 KiB  
Article
Basic Research on the Adsorption Capacity and Enhancement of Bamboo Charcoal for the Prevention of Nitrate Groundwater Pollution
by Nur Maisarah Mohamad Sarbani, Hiroyuki Harada, Mitsuru Aoyagi, Jun Nishimoto and Seiichiro Yonemura
Water 2025, 17(13), 1979; https://doi.org/10.3390/w17131979 - 30 Jun 2025
Viewed by 310
Abstract
Pollution of soil and groundwater by chemical fertilizers is an alarming environmental problem. Both bamboo powder and charcoal are known to adsorb nitrates. This study aimed to recommend an effective method by applying a mixture of chemical fertilizers and bamboo charcoal to soil [...] Read more.
Pollution of soil and groundwater by chemical fertilizers is an alarming environmental problem. Both bamboo powder and charcoal are known to adsorb nitrates. This study aimed to recommend an effective method by applying a mixture of chemical fertilizers and bamboo charcoal to soil to prevent NO3 leaching through adsorption. Magnesium treatment and hydrogelation were investigated to increase the amount of NO3 adsorption and improve handling properties, and subsequently, their behavior in soil was examined. The maximum adsorption of nitrate in bamboo charcoal powder (BC) with a particle size of 15 µm or less was 4.44 mg/g. When the BC was treated with magnesium chloride (Mg-BC), the maximum adsorption capacity was 99.09 mg/g. The Langmuir adsorption model fits well for both BC and Mg-BC. When Mg-BC was hydrogelized (Gel-Mg-BC), the Freundlich equation provided a better fit, with the maximum adsorption estimated at 25–30 mg/g. When the soil was mixed with Mg-BC hydrogel and treated with a nitric acid solution, the nitrate concentration in the leachate decreased by approximately 15–60% (depending on the feed concentration) compared to that in the leachate from the soil alone. Full article
(This article belongs to the Special Issue Adsorption Technologies in Wastewater Treatment Processes)
Show Figures

Figure 1

11 pages, 473 KiB  
Article
Investigating Antibiotic Susceptibility of Pathogenic Micro-Organisms in Groundwater from Boreholes and Shallow Wells in T/A Makhwira, Chikwawa
by Baleke Vinjeru Banda, Harold Wilson Tumwitike Mapoma and Bernard Thole
Microbiol. Res. 2025, 16(7), 137; https://doi.org/10.3390/microbiolres16070137 - 30 Jun 2025
Viewed by 771
Abstract
Many rural communities in Malawi use groundwater from boreholes and shallow wells for drinking and cooking with limited or no treatment because it is considered as a safe source of water. The contamination of groundwater sources by antimicrobial resistant bacteria renders the water [...] Read more.
Many rural communities in Malawi use groundwater from boreholes and shallow wells for drinking and cooking with limited or no treatment because it is considered as a safe source of water. The contamination of groundwater sources by antimicrobial resistant bacteria renders the water unsafe to use. This study investigated the antibiotic susceptibility of pathogenic micro-organisms isolated from groundwater sources in T/A Makhwira, Chikwawa. Water samples were collected from 13 boreholes and 7 protected shallow wells from T/A Makhwira, Chikwawa. E. coli, Salmonella enterica ssp. Arizona, K. pneumoniae, ESBL E. coli, and ESBL K. pneumoniae were detected in some water samples. Antibiotic susceptibility tests showed that the isolates had a high resistance to Ampicillin (42%), followed by Trimethoprim-sulfamethoxazole (26%), Ciprofloxacin (21%), Doxycycline, and Amoxicillin/clavulanic acid (16%). The isolates had a very high sensitivity to Gentamicin (89%). The study revealed that the water from some boreholes and shallow wells in T/A Makhwira is highly contaminated and needs to be treated before consumption. Drinking untreated water from these sources could transfer antibiotic-resistant bacteria to humans because the groundwater may act as a vehicle for the transmission of these antibiotic-resistant bacteria. Full article
Show Figures

Figure 1

5 pages, 159 KiB  
Editorial
Toxic Pollutants in Water: Health Risk Assessment and Removal
by Shakeel Ahmad, Shicheng Zhang, Mujtaba Baqar and Eric Danso-Boateng
Water 2025, 17(13), 1896; https://doi.org/10.3390/w17131896 - 26 Jun 2025
Viewed by 513
Abstract
Clean water is a fundamental human right; however, it is increasingly under threat from toxic pollutants that infiltrate rivers, lakes, groundwater, and even treated drinking water supplies [...] Full article
(This article belongs to the Special Issue Toxic Pollutants in Water: Health Risk Assessment and Removal)
29 pages, 2696 KiB  
Article
Hydrogeochemical Characterization and Water Quality Index-Based Evaluation of Groundwater for Drinking, Livestock, and Irrigation Use in the Arid Ewaso Ng’iro–Lagh Dera Basin, Kenya
by Githinji Tabitha Wambui, Dindi Edwin Wandubi, Kuria Zacharia Njuguna, Olago Daniel Ochieng and Gicheruh Chrysanthus Muchori
Hydrology 2025, 12(7), 160; https://doi.org/10.3390/hydrology12070160 - 20 Jun 2025
Viewed by 1057
Abstract
Groundwater is the main source of water for both domestic and agricultural use in arid regions. This study assessed the hydrogeochemical characteristics and suitability of groundwater for drinking and irrigation in Kenya’s Ewaso Ng’iro–Lagh Dera Basin. A total of 129 borehole groundwater samples [...] Read more.
Groundwater is the main source of water for both domestic and agricultural use in arid regions. This study assessed the hydrogeochemical characteristics and suitability of groundwater for drinking and irrigation in Kenya’s Ewaso Ng’iro–Lagh Dera Basin. A total of 129 borehole groundwater samples were collected and analyzed for pH, electrical conductivity (EC), total hardness, and major ions. The groundwater was found to be mostly neutral to slightly alkaline and ranged from marginal to brackish in salinity. The dominant water type is Na-HCO3, with the ionic order Na+ > Ca2+ > Mg2+ > K+ and HCO3 > Cl > SO42− > NO3. Mineral saturation indices indicate that the water is undersaturated with gypsum and anhydrite but is saturated with calcite, dolomite, and aragonite. Groundwater chemistry is primarily influenced by ion exchange, the mixing of fresh and paleo-saline water, and rock weathering processes. The water quality index (WQI) reveals that 80.5% of groundwater is suitable for drinking. The rest have high levels of sodium, EC, and bicarbonate. Thus, they are not suitable. The irrigation water quality index (IWQI) places most samples in the moderate-to-severe restriction category due to high salinity and sodicity. These findings highlight the importance of properly treating groundwater before use. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

19 pages, 3453 KiB  
Article
Influence of Mixed Acids on Coal Fractal Characteristics and Permeability
by Jiafeng Fan, Feng Cai and Qian Zhang
Fractal Fract. 2025, 9(6), 386; https://doi.org/10.3390/fractalfract9060386 - 17 Jun 2025
Viewed by 367
Abstract
The acidification modification treatment of coal is a key technical means to improve the permeability of coal seams and enhance the efficiency of coalbed methane extraction. Yet, current acidic fracturing fluids are highly corrosive, corroding downhole pipelines and contaminating groundwater. By compounding environmentally [...] Read more.
The acidification modification treatment of coal is a key technical means to improve the permeability of coal seams and enhance the efficiency of coalbed methane extraction. Yet, current acidic fracturing fluids are highly corrosive, corroding downhole pipelines and contaminating groundwater. By compounding environmentally friendly and non-polluting acidic fracturing fluids and combining fractal theory and the Frenkel–Halsey–Hill (FHH) model, this paper systematically investigates their effects on the pore structure, permeability, and mechanical properties of coal bodies. It was found that the complex acid treatment significantly reduced the surface fractal dimension D1 and spatial fractal dimension D2 of the coal samples and optimized pore connectivity, thus improving gas transport efficiency. Meanwhile, a static splitting test and digital image analysis showed that the fracture evolution pattern of the treated coal samples changed from a centralized strain extension of the original coal to a discrete distribution, peak stress and strain were significantly reduced, and permeability was significantly increased. These findings can offer dramatic support for the optimal optimization of acidic fracturing fluids. Full article
Show Figures

Figure 1

20 pages, 1308 KiB  
Article
Identification, Comparison, and Profiling of Selected Diarrhoeagenic Pathogens from Diverse Water Sources and Human and Animal Faeces Using Whole-Genome Sequencing
by Arinao Murei and Maggy Ndombo Benteke Momba
Microorganisms 2025, 13(6), 1373; https://doi.org/10.3390/microorganisms13061373 - 12 Jun 2025
Viewed by 494
Abstract
Consumption of contaminated drinking water is known to cause waterborne diseases such as diarrhoea, dysentery, typhoid, and hepatitis. This study applied whole-genome sequencing (WGS) to detect, identify, compare, and profile diarrhoeagenic pathogens (Vibrio cholerae, Shiga toxin-producing Escherichia coli, and Escherichia [...] Read more.
Consumption of contaminated drinking water is known to cause waterborne diseases such as diarrhoea, dysentery, typhoid, and hepatitis. This study applied whole-genome sequencing (WGS) to detect, identify, compare, and profile diarrhoeagenic pathogens (Vibrio cholerae, Shiga toxin-producing Escherichia coli, and Escherichia coli O157:H7) from 3168 water samples and 135 faecal samples (human and animal). Culture-based methods, MALDI-TOF mass spectrometry, and PCR were employed prior to WGS for identification of pathogens. Culture-based results revealed high presumptive prevalence of STEC (40.2%), V. cholerae (37.1%), and E. coli O157:H7 (22.7%). The MALDI-TOF confirmed 555 isolates with V. cholerae identified as Vibrio albensis. Shiga toxin-producing Escherichia coli (STEC) was more prevalent in wastewater (60%), treated water (54.1%), and groundwater (36.8%). PCR detected 46.4% of virulence genes from the water isolates and 66% of virulence genes from the STEC stool isolates. WGS also revealed STEC (92.9%) as the most prevalent species and found common virulence (e.g., hcp1/tssD1 and hlyE) and resistance (e.g., acrA and baeR) genes in all three types of samples. Five resistance and thirteen virulence genes overlapped among treated water and stool isolates. These findings highlight the diarrhoeagenic pathogens’ public health risk in water sources and underscore the need for better water quality monitoring and treatment standards. Full article
(This article belongs to the Special Issue Microbes in Wastewater Treatment)
Show Figures

Figure 1

19 pages, 1224 KiB  
Review
Environmental Impact of Wastewater on Surface and Groundwater in Central Asia
by Marzhan S. Kalmakhanova, Assel A. Kurtebayeva, Zhanna T. Tleuova, Bagdat Satybaldiev, Seitzhan A. Orynbayev, Arindam Malakar, Helder T. Gomes and Daniel D. Snow
Sustainability 2025, 17(12), 5370; https://doi.org/10.3390/su17125370 - 11 Jun 2025
Viewed by 675
Abstract
This review aims to increase attention on present water quality issues on Central Asia, finding gaps in the literature on ways to address treatment needs, and help ensure future use of Central Asia surface waters and groundwater for all beneficial uses. Central Asia [...] Read more.
This review aims to increase attention on present water quality issues on Central Asia, finding gaps in the literature on ways to address treatment needs, and help ensure future use of Central Asia surface waters and groundwater for all beneficial uses. Central Asia is a landlocked region known for its harsh climatic conditions and scarce water resources, despite being home to some of the world’s largest internal drainage basins. The available literature suggests that increasing salinity has rendered water unsuitable for irrigation and consumption; hazardous trace elements are found throughout Central Asia, most often associated with mining and industrial sources; and that legacy pesticides influence water quality, particularly in agriculturally influenced basins. This study also focuses on the effects of municipal and industrial wastewater discharge. Additionally, the impact of inadequately treated wastewater on water resources is analyzed through a review of available data and reports regarding surface and groundwater quantity and quality. Given the challenges of water scarcity and accessibility, the reuse of treated wastewater is becoming increasingly important, offering a valuable alternative that necessitates careful oversight to ensure public health, environmental sustainability, and water security. However, due to insufficient financial and technical resources, along with underdeveloped regulatory frameworks, many urban areas lack adequate wastewater treatment facilities, significantly constraining their safe and sustainable reuse. Proper management of wastewater effluent is critical, as it directly influences the quality of both surface and groundwater, which serve as key sources for drinking water and irrigation. Due to their persistent and biologically active nature even at trace levels, we discuss contaminants of emerging concern such as antibiotics, pharmaceuticals, and modern agrochemicals. This review thus highlights gaps in the literature reporting on impacts of wastewater inputs to water quality in Central Asia. It is recommended that future research and efforts should focus on exploring sustainable solutions for water quality management and pollution control to assure environmental sustainability and public health. Full article
Show Figures

Figure 1

16 pages, 2566 KiB  
Article
Interdisciplinary Approach as Basis for Enhancing Construction and Operation Safety of Industrial Hydraulic Structures
by Regina E. Dashko and Darya L. Kolosova
Sustainability 2025, 17(12), 5244; https://doi.org/10.3390/su17125244 - 6 Jun 2025
Viewed by 457
Abstract
This article analyses the necessity of employing an interdisciplinary approach in the geotechnical practice of designing, constructing, and operating industrial hydraulic structures—tailings dams of processing plants. Tailings dam failures often lead to irreversible consequences for the ecological state of the environment. The interdisciplinary [...] Read more.
This article analyses the necessity of employing an interdisciplinary approach in the geotechnical practice of designing, constructing, and operating industrial hydraulic structures—tailings dams of processing plants. Tailings dam failures often lead to irreversible consequences for the ecological state of the environment. The interdisciplinary approach involves treating the foundation soils of structures and anthropogenic tailings deposits as a multicomponent system. In this system, soil acts as a medium hosting groundwater of varying compositions and contamination levels, containing biotic components and their metabolic products, including the gaseous phase. It has been demonstrated that the justified application of this approach increases the operational safety of existing structures and the long-term stability of starter and tailings dikes built on weak clay foundation soils. Particular emphasis is placed on the biotic component and the dual role of subsurface microorganisms. These bacteria negatively impact the strength and load-bearing capacity of water- and water–gas-saturated clay soils in the foundation of the structures under consideration. The diverse biocenosis in groundwater simultaneously facilitates self-purification from petroleum hydrocarbons to undetectable levels. This aspect holds fundamental importance, as groundwater discharges into river systems. Full article
Show Figures

Figure 1

23 pages, 3738 KiB  
Article
Evaluation of the Use of Limestones for the Removal of Arsenic from Groundwater
by Ma. Aurora Armienta-Hernández, A. Salvador Sosa-Islas, J. Iván Morales-Arredondo, Maribel Manzo-Garrido, D. Ernesto Solórzano, Alejandra Aguayo, Olivia Cruz and Omar Neri
Water 2025, 17(11), 1687; https://doi.org/10.3390/w17111687 - 3 Jun 2025
Viewed by 691
Abstract
Arsenic contamination in aquifers poses a significant global health risk due to its toxicity and widespread presence in groundwater used for drinking. Although several approaches for arsenic removal exist, many are either expensive or logistically difficult. This study assesses the efficacy of native [...] Read more.
Arsenic contamination in aquifers poses a significant global health risk due to its toxicity and widespread presence in groundwater used for drinking. Although several approaches for arsenic removal exist, many are either expensive or logistically difficult. This study assesses the efficacy of native limestones from two arsenic-contaminated regions in Mexico as a sustainable treatment alternative. Tested in batch and column experiments using synthetic solutions, as well as natural and arsenic-enriched groundwater, the limestones were characterized mineralogically (XRD) and chemically (XRF). Surface area, particle size, average pore volume in rocks, and competing anions (i.e., bicarbonate and sulfate) in groundwaters played important roles in removal performance. The results show that smaller particle sizes improve arsenic retention. Up to 87.6% of the arsenic was removed from groundwater containing 1.29 mg/L of arsenic when treated with rock particles smaller than 0.062 mm. Natural groundwater, however, in general, exhibited lower efficiency than synthetic solutions due to anion interference. Although site-specific evaluations are essential, these results indicate that limestone may be a cost-effective and locally accessible solution for addressing arsenic (As) contamination in regions with abundant limestone outcrops. Full article
(This article belongs to the Special Issue Assessment of Groundwater Quality and Pollution Remediation)
Show Figures

Graphical abstract

11 pages, 2944 KiB  
Brief Report
Helping Small-Scale and Socially Disadvantaged Growers in Improving Microbial Quality of Irrigation Water in Kentucky
by Avinash M. Tope, John Thomas and Tyler London
Agriculture 2025, 15(11), 1121; https://doi.org/10.3390/agriculture15111121 - 23 May 2025
Viewed by 597
Abstract
Water plays a critical role in the growth and management of fresh produce, being a vital resource and a potential vector for pathogens. To address these concerns, guidelines for the microbiological quality of treated wastewater, recreational, irrigation, and drinking water have been established [...] Read more.
Water plays a critical role in the growth and management of fresh produce, being a vital resource and a potential vector for pathogens. To address these concerns, guidelines for the microbiological quality of treated wastewater, recreational, irrigation, and drinking water have been established worldwide. With multiple outbreaks linked to Escherichia coli (E. coli) contamination, monitoring and improving water quality standards have become essential, especially for small-scale and limited-resource farmers. The Food Safety and Modernization Act (FSMA, 2014) in the United States was introduced to regulate microbiological safety of produce, focusing on irrigation water. Approximately 77% of farmers in Kentucky are small farmers, of which, 4.2% supply directly to consumers through various avenues, accounting for approximately USD 24 million a year. This study examined the microbial quality of irrigation water used in Kentucky, focusing on the presence and number of coliform bacteria and E. coli. The report covers findings from a year-long program providing free microbial water quality testing to producers (n = 90), analyzing groundwater and surface water samples (n = 296). Results indicate surface water showing a significantly higher risk of exceeding FSMA thresholds. The findings emphasize the need for continued outreach, education, and accessible testing resources to support compliance with evolving Produce Safety Rule regulations, especially among small-scale producers. Full article
Show Figures

Figure 1

30 pages, 14799 KiB  
Article
Fluoride Removal and Recovery from Groundwater Using an Integrated Reverse Osmosis–Membrane Crystallization Process
by Wuhib Zeine Ousman, Esayas Alemayehu and Patricia Luis
Clean Technol. 2025, 7(2), 40; https://doi.org/10.3390/cleantechnol7020040 - 20 May 2025
Cited by 1 | Viewed by 2093
Abstract
Elevated fluoride levels in drinking water pose a significant health risk for communities relying on groundwater in the Ethiopian Central Rift Valley. This study aims at characterizing real groundwater samples from the Ethiopian Central Rift Valley and evaluating the performance of an integrated [...] Read more.
Elevated fluoride levels in drinking water pose a significant health risk for communities relying on groundwater in the Ethiopian Central Rift Valley. This study aims at characterizing real groundwater samples from the Ethiopian Central Rift Valley and evaluating the performance of an integrated membrane process based on reverse osmosis (RO) and membrane crystallization (MCr) for fluoride removal and its recovery as mixed fluoride salts. Groundwater analysis revealed fluoride concentrations of 20.8 mgL−1 at the Meki-01 site and 22.7 mgL−1 at the Meki-02 site, both exceeding the WHO guideline of 1.5 mgL−1. In addition, total dissolved solids exceeded 1000 mgL−1 at both sites, classifying the water as brackish. A commercial RO membrane demonstrated excellent fluoride and ion rejection, with fluoride removal rates exceeding 99%. The total dissolved solids (TDS) removal efficiency reached 89%. The mean water permeability of the membrane was 4.52 Lm−2h−1bar−1. The retentate produced in the RO unit reached a concentration of 70 mgL−1, which was then treated using osmotic membrane distillation–crystallization (OMD-Cr) and/or vacuum membrane crystallization (VM-Cr). This process facilitated the recovery of mixed salts while achieving an almost zero-liquid discharge. The study confirms the successful removal of fluoride and its recovery as mixed salt, along with the recovery of water in an environmentally friendly and manageable way. Full article
Show Figures

Figure 1

26 pages, 27036 KiB  
Article
Managed Aquifer Recharge (MAR) in Semiarid Regions: Water Quality Evaluation and Dynamics from the Akrotiri MAR System, Cyprus
by Maria Achilleos, Ourania Tzoraki and Evangelos Akylas
Hydrology 2025, 12(5), 123; https://doi.org/10.3390/hydrology12050123 - 19 May 2025
Viewed by 964
Abstract
Managed Aquifer Recharge (MAR) is increasingly being adopted across Europe to enhance water security in semiarid regions, with over 230 operational sites. The Akrotiri MAR system in Limassol, Cyprus, comprises 17 recharge ponds operating since 2016 to counteract saltwater intrusion. This study evaluates [...] Read more.
Managed Aquifer Recharge (MAR) is increasingly being adopted across Europe to enhance water security in semiarid regions, with over 230 operational sites. The Akrotiri MAR system in Limassol, Cyprus, comprises 17 recharge ponds operating since 2016 to counteract saltwater intrusion. This study evaluates MAR effectiveness by analyzing spatial and temporal variations in water quality from 2016 to 2020. Parameters analyzed include nutrients, metals, pesticides, pharmaceuticals, fecal indicators, physicochemical characteristics, recharge and pumping volumes, and groundwater levels. The results show that soil aquifer treatment (SAT) generally improves groundwater quality but certain boreholes exhibited elevated nitrate (range 12.70–31 mg/L), electrical conductivity (range 936–10,420 μs/cm), and chloride concentrations (range 117–1631 mg/L), attributed to recharge water quality, seawater intrusion, and nearby agricultural activities. Tertiary treated wastewater used for recharge occasionally exceeds permissible limits, particularly in E. coli (up to 2420/100 mL), chloride (up to 385 mg/L), and nitrogen (up to 41 mg/L). Supplementing recharge with dam-supplied freshwater improves groundwater quality and raises water levels. These findings underline the importance of continuous monitoring and effective management, adopting sustainable farming practices, and the strict control of recharge water quality. The study offers valuable insights for optimizing MAR systems and supports integrating MAR into circular water management frameworks to mitigate pollution and seawater intrusion, enhancing long-term aquifer sustainability. Full article
Show Figures

Graphical abstract

13 pages, 1174 KiB  
Article
Climate Change Effects on Dates Productivity in Saudi Arabia: Implications for Food Security
by Abda Emam
Sustainability 2025, 17(10), 4574; https://doi.org/10.3390/su17104574 - 16 May 2025
Viewed by 655
Abstract
This study aimed to assess the impact of climatic alteration on food security in Saudi Arabia. Date productivity, temperature, and precipitation represent the data which were collected from various sources linked to the study subject and cover the period from 1980 to 2023. [...] Read more.
This study aimed to assess the impact of climatic alteration on food security in Saudi Arabia. Date productivity, temperature, and precipitation represent the data which were collected from various sources linked to the study subject and cover the period from 1980 to 2023. The Engle–Granger two-step procedure, the VECM, and forecast analysis were applied to test the long-term relationship, short-term integration, and forecasting, respectively. Moreover, qualitative analysis was used to reveal the influence of climatic change on food security. The results discovered long-term co-integration between date productivity and temperature. Additionally, the results revealed that there has been long-running co-integration between date productivity and the precipitation series. Temperature and precipitation negatively and significantly impacted date productivity during the study period. With reference to forecast results, the graph was validated using various forecast indicators: the Alpha, Gamma, Beta, and Mean Square Error equivalents were 1.0, 0.0, 0.0, and 5.47, respectively. Moreover, the growth rates of date productivity were equal to 0.82 and 0.08 for the periods from 1980 to 2022 and 2023 to 2034 (forecast), respectively, indicating that there is a decrease in the growth rate of date productivity (0.08) during the forecast period. From these results, the conclusion is that climatic change (temperature and precipitation) negatively impacts date productivity. In addition, the growth rate during the forecast period decreased, indicating that climatic change is affecting food security currently and will continue to do so in the future. This study recommended specific policy interventions and innovations in agricultural practices, including developing and implementing a national framework focused on climate-smart agriculture, balancing productivity, adaptation, and mitigation. This could be aligned with Vision 2030 and the Saudi Green Initiative. Additionally, this could include investing in research and development by increasing public–private partnerships to support agricultural R&D in arid regions, with a focus on heat- and drought-resistant crop varieties and water-efficient farming systems. Regarding agricultural innovations, these could include the use of renewable energy, particularly solar energy, the expansion of rainwater harvesting infrastructure, recycling treated wastewater for agriculture, and reducing reliance on groundwater sources. Full article
(This article belongs to the Special Issue Sustainability of Agriculture: The Impact of Climate Change on Crops)
Show Figures

Figure 1

Back to TopTop