Investigating Antibiotic Susceptibility of Pathogenic Micro-Organisms in Groundwater from Boreholes and Shallow Wells in T/A Makhwira, Chikwawa
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Enumeration of Bacteria Counts
2.3. Isolation of Pathogenic Micro-Organisms
2.4. Antibiotic Susceptibility Testing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Statistical Office 2018 Malawi Population and Housing Census Main Report. 2018. Available online: https://dataspace.princeton.edu/handle/88435/dsp0105741v60z (accessed on 21 July 2023).
- Mapoma, H.W.T.; Xie, X. Basement and alluvial aquifers of Malawi: An overview of groundwater quality and policies. Afr. J. Environ. Sci. Technol. 2014, 8, 190–202. [Google Scholar] [CrossRef]
- Li, P.; Karunanidhi, D.; Subramani, T.; Srinivasamoorthy, K. Sources and Consequences of Groundwater Contamination. Arch. Environ. Contam. Toxicol. 2021, 80, 1–10. [Google Scholar] [CrossRef]
- Olalemi, A.O.; Ige, O.M.; James, G.A.; Obasoro, F.I.; Okoko, F.O.; Ogunleye, C.O. Detection of enteric bacteria in two groundwater sources and associated microbial health risks. J. Water Health 2021, 19, 322–335. [Google Scholar] [CrossRef]
- Pandey, P.K.; Kass, P.H.; Soupir, M.L.; Biswas, S.; Singh, V.P. Contamination of water resources by pathogenic bacteria. AMB Express 2014, 4, 51. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Moreau-Guigon, E.; Labadie, P.; Alliot, F.; Teil, M.J.; Blanchard, M.; Chevreuil, M. Occurrence of antibiotics in rural catchments. Chemosphere 2017, 168, 483–490. [Google Scholar] [CrossRef]
- Zainab, S.M.; Junaid, M.; Xu, N.; Malik, R.N. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020, 187, 116455. [Google Scholar] [CrossRef] [PubMed]
- WHO Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 2 May 2024).
- Murugaiyan, J.; Kumar, P.A.; Rao, G.S.; Iskandar, K.; Hawser, S.; Hays, J.P.; Mohsen, Y.; Adukkadukkam, S.; Awuah, W.A.; Jose, R.A.M.; et al. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics 2022, 11, 200. [Google Scholar] [CrossRef]
- Finley, R.L.; Collignon, P.; Larsson, D.G.J.; McEwen, S.A.; Li, X.-Z.; Gaze, W.H.; Reid-Smith, R.; Timinouni, M.; Graham, D.W.; Topp, E. The Scourge of Antibiotic Resistance: The Important Role of the Environment. Clin. Infect. Dis. 2013, 57, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Gelband, H.; Miller-Petrie, M.; Pant, S.; Gandra, S.; Levinson, J.; Barter, D.; White, A.; Laxminarayan, R.; Ganguly, N.; Sigaúque, B.; et al. The state of the world’s antibiotics 2015. Wound Heal. S. Afr. 2015, 8, 83–90. [Google Scholar]
- United Nations The 2030 Agenda and the Sustainable Development Goals: An opportunity for Latin America and the Caribbean. 2018. Available online: https://www.cepal.org/sites/default/files/events/files/2030_agenda_and_the_sdgs_an_opportunity_for_latin_america_and_the_caribbean.pdf (accessed on 22 July 2023).
- Chidya, R.C.G.; Matamula, S.; Nakoma, O.; Chawinga, C.B.J. Evaluation of groundwater quality in rural-areas of northern Malawi: Case of Zombwe Extension Planning Area in Mzimba. Phys. Chem. Earth Parts ABC 2016, 93, 55–62. [Google Scholar] [CrossRef]
- Holm, R.H.; Kunkel, G.; Nyirenda, L. A thought leadership piece: Where are the rural groundwater quality data for the assessment of health risks in northern Malawi? Groundw. Sustain. Dev. 2018, 7, 157–163. [Google Scholar] [CrossRef]
- Missi, C.; Atekwana, E.A. Physical, chemical and isotopic characteristics of groundwater and surface water in the Lake Chilwa Basin, Malawi. J. Afr. Earth Sci. 2020, 162, 103737. [Google Scholar] [CrossRef]
- Monjerezi, M.; Ngongondo, C. Quality of Groundwater Resources in Chikhwawa, Lower Shire Valley, Malawi. Water Qual. Expo. Health 2012, 4, 39–53. [Google Scholar] [CrossRef]
- Rasool, A.; Farooqi, A.; Xiao, T.; Ali, W.; Noor, S.; Abiola, O.; Ali, S.; Nasim, W. A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation. Environ. Geochem. Health 2018, 40, 1265–1281. [Google Scholar] [CrossRef]
- Wanda, E.M.M.; Gulula, L.C.; Phiri, A. Hydrochemical assessment of groundwater used for irrigation in Rumphi and Karonga districts, Northern Malawi. Phys. Chem. Earth Parts ABC 2013, 66, 51–59. [Google Scholar] [CrossRef]
- Kapembo, M.L.; Laffite, A.; Bokolo, M.K.; Mbanga, A.L.; Maya-Vangua, M.M.; Otamonga, J.-P.; Mulaji, C.K.; Mpiana, P.T.; Wildi, W.; Poté, J. Evaluation of Water Quality from Suburban Shallow Wells Under Tropical Conditions According to the Seasonal Variation, Bumbu, Kinshasa, Democratic Republic of the Congo. Expo. Health 2016, 8, 487–496. [Google Scholar] [CrossRef]
- MBS Guidelines for Borehole and Shallow Well Water Quality Specifications (MS 733:2005). [Internet]. 2005. Available online: http://www.arso-oran.org/wp-content/uploads/2014/09/Catalogue-of-Malawi-Standards-2011.pdf (accessed on 15 January 2024).
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO Press: Geneva, Switzerland, 2011; Available online: https://iris.who.int/handle/10665/44584 (accessed on 15 January 2024).
- Mkwate, R.C.; Chidya, R.C.G.; Wanda, E.M.M. Assessment of drinking water quality and rural household water treatment in Balaka District, Malawi. Phys. Chem. Earth Parts ABC 2017, 100, 353–362. [Google Scholar] [CrossRef]
- Vunain, E.; Nkhuzenje, C.; Mwatseteza, J.; Sajidu, S. Groundwater quality assessment from Phalombe Plain, Malawi. ChemSearch J. 2019, 10, 1–10. [Google Scholar]
- Jailos, P.; Chimtali, P.J.; Vunain, E. Assessment of Groundwater Quality in Areas Surrounding Thundulu Phosphate Mine, Phalombe District, Malawi. Tanzan. J. Sci. 2021, 47, 1310–1321. [Google Scholar] [CrossRef]
- Kamanula, J.F.; Zambasa, O.J.; Masamba, W.R.L. Quality of drinking water and cholera prevalence in Ndirande Township, City of Blantyre, Malawi. Phys. Chem. Earth Parts ABC 2014, 72–75, 61–67. [Google Scholar] [CrossRef]
- Gwimbi, P.; George, M.; Ramphalile, M. Bacterial contamination of drinking water sources in rural villages of Mohale Basin, Lesotho: Exposures through neighbourhood sanitation and hygiene practices. Environ. Health Prev. Med. 2019, 24, 33. [Google Scholar] [CrossRef] [PubMed]
- Kanyerere, T.; Levy, J.; Xu, Y.; Saka, J. Assessment of microbial contamination of groundwater in upper Limphasa River catchment, located in a rural area of northern Malawi. Water SA 2012, 38, 581–596. [Google Scholar] [CrossRef]
- Mahmud, Z.H.; Islam, M.S.; Imran, K.M.; Hakim, S.A.I.; Worth, M.; Ahmed, A.; Hossan, S.; Haider, M.; Islam, M.R.; Hossain, F.; et al. Occurrence of Escherichia coli and faecal coliforms in drinking water at source and household point-of-use in Rohingya camps, Bangladesh. Gut Pathog. 2019, 11, 52. [Google Scholar] [CrossRef]
- Dey, U.; Sarkar, S.; Duttagupta, S.; Bhattacharya, A.; Das, K.; Saha, S.; Mukherjee, A. Influence of Hydrology and Sanitation on Groundwater Coliform Contamination in Some Parts of Western Bengal Basin: Implication to Safe Drinking Water. Front. Water 2022, 4, 875624. [Google Scholar] [CrossRef]
- Di Bella, S.; Capone, A.; Bordi, E.; Johnson, E.; Musso, M.; Topino, S.; Noto, P.; Petrosillo, N. Salmonella enterica ssp. arizonae infection in a 43-year-old Italian man with hypoglobulinemia: A case report and review of the literature. J. Med. Case Rep. 2011, 5, 323. [Google Scholar] [CrossRef]
- Mahajan, R.K.; Khan, S.A.; Chandel, D.S.; Kumar, N.; Hans, C.; Chaudhry, R. Fatal Case of Salmonella enterica subsp. arizonae Gastroenteritis in an Infant with Microcephaly. J. Clin. Microbiol. 2003, 41, 5830–5832. [Google Scholar] [CrossRef]
- Shima, N.; Nakamura, J.; Saito, K.; Kamata, Y.; Nagatani, K.; Nagashima, T.; Iwamoto, M.; Akine, D.; Saito, T.; Sato, K.; et al. Salmonella enterica Subspecies arizonae Detected from Bilateral Pleural Fluid in a Patient with Systemic Lupus Erythematosus and Malignant Lymphoma. Intern. Med. 2020, 59, 1223–1226. [Google Scholar] [CrossRef]
- Mahagamage, M.G.Y.L.; Pathirage, M.V.S.C.; Manage, P.M. Contamination Status of Salmonella spp., Shigella spp. and Campylobacter spp. in Surface and Groundwater of the Kelani River Basin, Sri Lanka. Water 2020, 12, 2187. [Google Scholar] [CrossRef]
- Muhsin, E.; Nimr, H.; Al-Jubori, S. Estimation of the Role of Mrk Genes in Klebsiella pneumoniae Isolated from River Water and Clinical Isolates. Egypt. J. Aquat. Biol. Fish. 2023, 26, 1319–1328. [Google Scholar] [CrossRef]
- Ajobiewe, H.F.; Ajobiewe, J.O.; Mbagwu, T.T.; Ale, T.; Taimako, G.A. Assessment of Bacteriological Quality of Borehole Water, Sachet Water and Well Water in Bingham University Community. Am. J. Med. Med. Sci. 2019, 9, 96–103. [Google Scholar]
- Fakayode, B.; Ogunjobi, A. Quality assessment and prevalence of antibiotic resistant bacteria in government approved mini-water schemes in Southwest, Nigeria. Int. Biodeterior. Biodegrad. 2018, 133, 151–158. [Google Scholar] [CrossRef]
- Henriot, C.P.; Martak, D.; Cuenot, Q.; Loup, C.; Masclaux, H.; Gillet, F.; Bertrand, X.; Hocquet, D.; Bornette, G. Occurrence and ecological determinants of the contamination of floodplain wetlands with Klebsiella pneumoniae and pathogenic or antibiotic-resistant Escherichia coli. FEMS Microbiol. Ecol. 2019, 95, fiz097. [Google Scholar] [CrossRef] [PubMed]
- Chishimba, K.; Libonda, L.; Bumbangi, F.N.; Maron, M.; Mulenga, E.; Hang’ombe, B.; Mutoya, N.; u Muz, K. A Cross-Sectional Study on the Detection of Extended Spectrum Beta-Lactamase (ESBL) E. coli Producers in Groundwater in Lusaka District. Arch. Epidemiol. Public Health Res. 2023, 2, 192–197. [Google Scholar]
- Ateba, C.N.; Tabi, N.M.; Fri, J.; Bissong, M.E.A.; Bezuidenhout, C.C. Occurrence of Antibiotic-Resistant Bacteria and Genes in Two Drinking Water Treatment and Distribution Systems in the North-West Province of South Africa. Antibiotics 2020, 9, 745. [Google Scholar] [CrossRef]
- Li, X.; Watanabe, N.; Xiao, C.; Harter, T.; McCowan, B.; Liu, Y.; Atwill, E.R. Antibiotic-resistant E. coli in surface water and groundwater in dairy operations in Northern California. Environ. Monit. Assess. 2014, 186, 1253–1260. [Google Scholar] [CrossRef]
- Wahome, C.N.; Okemo, P.O.; Nyamache, A.K. Microbial quality and antibiotic resistant bacterial pathogens isolated from groundwater used by residents of Ongata Rongai, Kajiado North County, Kenya. Int. J. Biol. Chem. Sci. 2014, 8, 134–143. [Google Scholar] [CrossRef]
- Sharma, A.; Thakur, A.; Thakur, N.; Kumar, V.; Chauhan, A.; Bhardwaj, N. Changing Trend in the Antibiotic Resistance Pattern of Klebsiella Pneumonia Isolated From Endotracheal Aspirate Samples of ICU Patients of a Tertiary Care Hospital in North India. Cureus 2023, 15, e36317. [Google Scholar] [CrossRef]
- Chang, D.; Sharma, L.; Dela Cruz, C.S.; Zhang, D. Clinical Epidemiology, Risk Factors, and Control Strategies of Klebsiella pneumoniae Infection. Front. Microbiol. 2021, 12, 750662. [Google Scholar] [CrossRef]
- Ghartimagar, S.; Khatri, P.; Neupane, S.; Joshi, D.R.; Joshi, T.P. Evaluation of Ground Water Quality of Kathmandu Valley and Antibiotic Susceptibility test against Klebsiella pneumoniae. Tribhuvan Univ. J. Microbiol. 2020, 7, 83–90. [Google Scholar] [CrossRef]
- Franz, E.; Veenman, C.; van Hoek, A.H.A.M.; Husman, A.d.R.; Blaak, H. Pathogenic Escherichia coli producing Extended-Spectrum β-Lactamases isolated from surface water and wastewater. Sci. Rep. 2015, 5, 14372. [Google Scholar] [CrossRef]
- Teklu, D.S.; Negeri, A.A.; Legese, M.H.; Bedada, T.L.; Woldemariam, H.K.; Tullu, K.D. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob. Resist. Infect. Control 2019, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Tekele, S.G.; Teklu, D.S.; Tullu, K.D.; Birru, S.K.; Legese, M.H. Extended-spectrum Beta-lactamase and AmpC beta-lactamases producing gram negative bacilli isolated from clinical specimens at International Clinical Laboratories, Addis Ababa, Ethiopia. PLoS ONE 2020, 15, e0241984. [Google Scholar] [CrossRef]
Antimicrobial Susceptibility to Selected Antibiotics | |||||||
---|---|---|---|---|---|---|---|
Sample ID | Bacteria Isolate | AMP | SXT | AMC | DXT | CIP | CN |
BH1 | E. coli | S | S | S | S | S | S |
BH2 | E. coli | I | S | I | I | S | S |
BH7 | E. coli | I | S | S | S | S | S |
BH8 | E. coli | I | S | S | S | S | S |
BH9 | E. coli | S | S | S | S | S | S |
SW1 | E. coli | I | S | S | S | S | S |
SW2 | E. coli | I | S | I | S | S | S |
SW3 | E. coli | S | S | S | I | S | S |
SW4 | E. coli | S | S | S | S | R | S |
SW6 | E. coli | S | S | S | S | S | S |
SW7 | E. coli | R | R | S | I | S | S |
SW3 | ESBL E. coli | R | R | R | R | R | R |
BH11 | K. pneumoniae | R | S | S | I | S | S |
BH2 | K. pneumoniae | R | S | S | I | S | S |
SW1 | K. pneumoniae | R | S | R | I | S | S |
SW6 | K. pneumoniae | R | R | S | R | I | S |
SW3 | ESBL K. pneumoniae | R | R | R | I | R | S |
SW7 | ESBL K. pneumoniae | R | R | I | R | R | R |
SW7 | Salmonella | I | S | I | I | I | S |
Resistance Pattern | Types of ANTIBIOTICS | Name of Isolate |
---|---|---|
1 | AMP, SXT, DXT | SW6_K. pneumoniae |
2 | AMP, SXT, AMC, CIP | SW3_ESBL K. pneumoniae |
3 | AMP, SXT, DXT, CIP, CN | SW7_ESBL K. pneumoniae |
4 | AMP, SXT, AMC, DXT, CIP, CN | SW3_ESBL E. coli |
Water Source | |||
---|---|---|---|
Antibiotic | Borehole 1, N = 7 | Shallow Well 1, N = 12 | p-Value 2 |
Ampicillin | 0.8 | ||
Intermediate Resistance | 3 (43%) | 3 (25%) | |
Resistant | 2 (29%) | 6 (50%) | |
Sensitive | 2 (29%) | 3 (25%) | |
Sulfamethoxazole-Trimethoprim | 0.11 | ||
Resistant | 0 (0%) | 5 (42%) | |
Sensitive | 7 (100%) | 7 (58%) | |
Amoxicillin-Clavulanic acid | 0.3 | ||
Intermediate Resistance | 1 (14%) | 3 (25%) | |
Resistant | 0 (0%) | 3 (25%) | |
Sensitive | 6 (86%) | 6 (50%) | |
Doxycycline | 0.4 | ||
Intermediate Resistance | 3 (43%) | 5 (42%) | |
Resistant | 0 (0%) | 3 (25%) | |
Sensitive | 4 (57%) | 4 (33%) | |
Ciprofloxacin | 0.11 | ||
Intermediate Resistance | 0 (0%) | 2 (17%) | |
Resistant | 0 (0%) | 4 (33%) | |
Sensitive | 7 (100%) | 6 (50%) | |
Gentamicin | 0.5 | ||
Resistant | 0 (0%) | 2 (17%) | |
Sensitive | 7 (100%) | 10 (83%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banda, B.V.; Mapoma, H.W.T.; Thole, B. Investigating Antibiotic Susceptibility of Pathogenic Micro-Organisms in Groundwater from Boreholes and Shallow Wells in T/A Makhwira, Chikwawa. Microbiol. Res. 2025, 16, 137. https://doi.org/10.3390/microbiolres16070137
Banda BV, Mapoma HWT, Thole B. Investigating Antibiotic Susceptibility of Pathogenic Micro-Organisms in Groundwater from Boreholes and Shallow Wells in T/A Makhwira, Chikwawa. Microbiology Research. 2025; 16(7):137. https://doi.org/10.3390/microbiolres16070137
Chicago/Turabian StyleBanda, Baleke Vinjeru, Harold Wilson Tumwitike Mapoma, and Bernard Thole. 2025. "Investigating Antibiotic Susceptibility of Pathogenic Micro-Organisms in Groundwater from Boreholes and Shallow Wells in T/A Makhwira, Chikwawa" Microbiology Research 16, no. 7: 137. https://doi.org/10.3390/microbiolres16070137
APA StyleBanda, B. V., Mapoma, H. W. T., & Thole, B. (2025). Investigating Antibiotic Susceptibility of Pathogenic Micro-Organisms in Groundwater from Boreholes and Shallow Wells in T/A Makhwira, Chikwawa. Microbiology Research, 16(7), 137. https://doi.org/10.3390/microbiolres16070137