Environmental Impact of Wastewater on Surface and Groundwater in Central Asia
Abstract
:1. Introduction
Focus | Method | Key Findings | Limitations | Reference |
---|---|---|---|---|
Removal of organic compounds in oilfield water | AOPs | High efficiency for certain compounds | High cost, energy intensive | [2] |
Safe water reuse | Comparative overview | Treatment alternatives summarized | Lacks experimental validation | [6] |
CEC occurrence and fate | Literature review | CECs are widespread in WWTPs | Data gaps in low-income countries | [11] |
Antibiotics in surface water/soil | Monitoring | Non-point pollution significant | Limited to regional context | [14] |
Health risks of wastewater irrigation | Meta-analysis | Risk varies by income level | Limited focus on removal techniques | [13] |
Wastewater methods in Almaty | Case study | Infrastructure outdated | No CEC-specific data | [10] |
Groundwater contamination | Field study | Link between hydrogeology and pollutants | No solution proposed | [8] |
Irrigation water quality | Hydrochemical survey | Water quality varies seasonally | Focus not on treatment | [7] |
Petrochemical waste | Chemical characterization | Identifies raw materials potential | Outdated; lacks modern context | [5] |
2. Scarcity of Water Resources in Central Asia
2.1. Groundwater Vulnerability
2.2. Surface Water
3. Pollutants Detected
Pollutant | 1973–93 1 (µg/L) | 2000–2024 Table S2 (µg/L) | Regulatory Limits for Wastewater 2 (µg/L) | EPA Drinking Water Guidelines 2 (µg/L) |
---|---|---|---|---|
Arsenic | No data | 1.4–1600 | 100 | 10 |
Cadmium | 0.04–0.9 (5.8) * | 0.05–6.1 | 10 | 5 |
Cobalt | 0.05–0.15 | 0.11–13 | 50 | -- |
Copper | 0.48–1.3 (443) * | 1.25–316 | 200 | 1300 |
Chromium | No data | 1.3–80 | 100 | 100 |
Iron | No data | 354–20,600 | 5000 | 300 |
Lead | 0.13–2.1(74) * | 0.23–31 | 5000 | 15 |
Lithium | No data | - | 2500 | -- |
Manganese | 4.2–30 | 6.7–2800 | 200 | 500 |
Mercury | 0.09–10 (65.1) * | 0.02–0.19 | ||
Nickel | No data | 0.61–78 | 200 | -- |
Selenium | No data | 3.4–35 | 20 | 50 |
Strontium | 90–530 | - | NA | -- |
Uranium | No data | 22.1–8300 | NA | 30 |
Zinc | 0.21–14 (646) * | 1.0–82.87 | 2000 | 5000 |
4. Gaps in Water Quality Assessment and Monitoring
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bimenova, A. Evaluation of water potential in Central Asia in the context of the term interests of Kazakhstan. Post Sov. Issues 2015, 1, 165–176. [Google Scholar]
- Costa, S.I.G.; Ferreira, F.L.; Weschenfelder, S.E.; Fuck, J.V.R.; da Cunha, M.d.F.R.; Marinho, B.A.; Mazur, L.P.; da Silva, A.; de Souza, S.M.A.G.U.; de Souza, A.A.U. Towards the removal of soluble organic compounds present in oilfield produced water by advanced oxidation processes: Critical review and future directions. Process Saf. Environ. Prot. 2023, 174, 608–626. [Google Scholar] [CrossRef]
- Nikulina, S. Petrochemical waste and by-products production-raw materials for organic synthesis. Chemistry 1989, 237. [Google Scholar]
- Kimstach, V.A.; Meybeck, M.; Baroudy, E. A Water Quality Assessment of the Former Soviet Union; E & FN Spon: London, UK; New York, NY, USA, 1998; p. 640. [Google Scholar]
- Chernogaeva, G.M.; Lvov, A.P.; Georgievsky, V.Y. Water Use and the Influence of Anthropogenic Activity. In A Water Quality Assessment of the Former Soviet Union; Kimstach, V.A., Meybeck, M., Baroudy, E., Eds.; E & FN Spon: London, UK, 1998; pp. 69–94. [Google Scholar]
- Kalmakhanova, M.S.; Diaz de Tuesta, J.L.; Malakar, A.; Gomes, H.T.; Snow, D.D. Wastewater Treatment in Central Asia: Treatment Alternatives for Safe Water Reuse. Sustainability 2023, 15, 14949. [Google Scholar] [CrossRef]
- Satybaldiyev, B.; Ismailov, B.; Nurpeisov, N.; Kenges, K.; Snow, D.D.; Malakar, A.; Taukebayev, O.; Uralbekov, B. Downstream hydrochemistry and irrigation water quality of the Syr Darya, Aral Sea Basin, South Kazakhstan. Water Supply 2023, 23, 2119–2134. [Google Scholar] [CrossRef]
- Tleuova, Z.; Snow, D.D.; Mukhamedzhanov, M.; Ermenbay, A. Relation of Hydrogeology and Contaminant Sources to Drinking Water Quality in Southern Kazakhstan. Water 2023, 15, 4240. [Google Scholar] [CrossRef]
- Severinenko, M.A.; Solodukhin, V.P.; Djenbaev, B.M.; Lennik, S.G.; Zholboldiev, B.T.; Snow, D.D. Occurrence of Radionuclides and Hazardous Elements in the Transboundary River Basin Kyrgyzstan–Kazakhstan. Water 2023, 15, 1759. [Google Scholar] [CrossRef]
- Ospanov, K.; Kuldeyev, E.; Kenzhaliyev, B.; Korotunov, A. Wastewater treatment methods and sewage treatment facilities in Almaty, Kazakhstan. J. Ecol. Eng. 2022, 23, 240–251. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions—A review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef]
- Feng, W.; Deng, Y.; Yang, F.; Miao, Q.; Ngien, S.K. Systematic Review of Contaminants of Emerging Concern (CECs): Distribution, Risks, and Implications for Water Quality and Health. Water 2023, 15, 3922. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Natasha; Bibi, I.; Sarwar, T.; Shah, A.H.; Niazi, N.K. A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. Int. J. Environ. Res. Public Health 2018, 15, 895. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Lin, C.; Ong, E.J.L.; Wang, M.; Zhou, Z. Occurrence and distribution of trace levels of antibiotics in surface waters and soils driven by non-point source pollution and anthropogenic pressure. Chemosphere 2019, 216, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Kazakhstan. National Report on the State of the Environment and Use of Natural Resources of the Republic of Kazakhstan for 2011–2014. Astana, Kazakhstan. 2023. Available online: https://www.gcedclearinghouse.org/resources/national-report-state-environment-and-use-natural-resources-republic-kazakhstan-2011-2014?language=en (accessed on 31 December 2024).
- Bekturganov, Z.; Tussupova, K.; Berndtsson, R.; Sharapatova, N.; Aryngazin, K.; Zhanasova, M. Water related health problems in Central Asia—A review. Water 2016, 8, 219. [Google Scholar] [CrossRef]
- OECD. Overview of the Use and Management of Water Resources in Central Asia: A Discussion Document. Available online: https://issuu.com/oecd.publishing/docs/final_report_eng_issuu (accessed on 31 December 2024).
- Freeworldmaps.net. Central Asia Region with Major Water Resources. Available online: https://www.freeworldmaps.net/asia/central/centralasia-geography-map.jpg (accessed on 31 December 2024).
- Zhupankhan, A.; Tussupova, K.; Berndtsson, R. Could Changing Power Relationships Lead to Better Water Sharing in Central Asia? Water 2017, 9, 139. [Google Scholar] [CrossRef]
- Meyer, B.; Lundy, L.; Watt, J.; Abdullaev, I.; Capilla Roma, J.E. Risk Management as a Basis for Integrated Water Cycle Management in Kazakhstan. J. Environ. Geogr. 2016, 9, 33–42. [Google Scholar] [CrossRef]
- Yapiyev, V.; Wade, A.J.; Shahgedanova, M.; Saidaliyeva, Z.; Madibekov, A.; Severskiy, I. The hydrochemistry and water quality of glacierized catchments in Central Asia: A review of the current status and anticipated change. J. Hydrol. Reg. Stud. 2021, 38, 100960. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, P.; Gojenko, B.; Yu, J.; Wei, L.; Luo, D.; Xiao, T. A review of water pollution arising from agriculture and mining activities in Central Asia: Facts, causes and effects. Environ. Pollut. 2021, 291, 118209. [Google Scholar] [CrossRef]
- Crosa, G.; Froebrich, J.; Nikolayenko, V.; Stefani, F.; Galli, P.; Calamari, D. Spatial and seasonal variations in the water quality of the Amu Darya River (Central Asia). Water Res. 2006, 40, 2237–2245. [Google Scholar] [CrossRef]
- Murthy, S.L.; Mendikulova, F. Water, Conflict, and Cooperation in Central Asia: The Role of International Law and Diplomacy. Vt. J. Environ. Law 2017, 18, 400–454. [Google Scholar]
- Sagin, J.; Adenova, D.; Tolepbayeva, A.; Poryadin, V. Underground water resources in Kazakhstan. Int. J. Environ. Stud. 2017, 74, 386–398. [Google Scholar] [CrossRef]
- Morris, B.L.; George Darling, W.; Gooddy, D.C.; Litvak, R.G.; Neumann, I.; Nemaltseva, E.J.; Poddubnaia, I. Assessing the extent of induced leakage to an urban aquifer using environmental tracers: An example from Bishkek, capital of Kyrgyzstan, Central Asia. Hydrogeol. J. 2006, 14, 225–243. [Google Scholar] [CrossRef]
- Nurtazin, S.; Pueppke, S.; Ospan, T.; Mukhitdinov, A.; Elebessov, T. Quality of Drinking Water in the Balkhash District of Kazakhstan’s Almaty Region. Water 2020, 12, 392. [Google Scholar] [CrossRef]
- Rakhmatullaev, S.; Huneau, F.; Kazbekov, J.; Celle-Jeanton, H.; Motelica-Heino, M.; Coustumer, P.; Jumanov, J. Groundwater resources of Uzbekistan: An environmental and operational overview. Open Geosci. 2012, 4, 67–80. [Google Scholar] [CrossRef]
- Partnerships, G.W. Gender Aspects of Integrated Water Management; Global Water Partnership: Tashkent, Uzbekistan, 2004; p. 142. [Google Scholar]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Irfeey, A.M.M.; Najim, M.M.; Alotaibi, B.A.; Traore, A. Groundwater Pollution Impact on Food Security. Sustainability 2023, 15, 4202. [Google Scholar] [CrossRef]
- Gleeson, T.; Cuthbert, M.; Ferguson, G.; Perrone, D. Global groundwater sustainability, resources, and systems in the Anthropocene. Annu. Rev. Earth Planet. Sci. 2020, 48, 431–463. [Google Scholar] [CrossRef]
- Frenken, K. Irrigation in Central Asia in Figures: AQUASTAT Survey-2012; FAO Water Reports; Food and Agriculture Organization of the United Nations (FAO): Roma, Italy, 2013; p. 88. [Google Scholar]
- Zhang, P.; Wang, J.; Huang, L.; He, M.; Yang, H.; Song, G.; Zhao, J.; Li, X. Microplastic transport during desertification in drylands: Abundance and characterization of soil microplastics in the Amu Darya-Aral Sea basin, Central Asia. J. Environ. Manag. 2023, 348, 119353. [Google Scholar] [CrossRef]
- Zhan, S.; Wu, J.; Jin, M. Hydrochemical characteristics, trace element sources, and health risk assessment of surface waters in the Amu Darya Basin of Uzbekistan, arid Central Asia. Environ. Sci. Pollut. Res. 2022, 29, 5269–5281. [Google Scholar] [CrossRef]
- Poshtegal, M.K.; Mirbagheri, S.A. Simulation and Modelling of Heavy Metals and Water Quality Parameters in the River. Sci. Rep. 2023, 13, 3020. [Google Scholar] [CrossRef]
- Kalmakhanova, M.; Massalimova, B.K.; Díaz de Tuesta, J.L.; Gomes, H.; Nurlibaeva, A. Novelty pillared clays for the removal of 4-nitrophenol by catalytic wet peroxide oxidation. News Natl. Acad. Sci. Repub. Kazakhstan Ser. Geol. Tech. Sci. 2018, 3, 12–19. [Google Scholar]
- Ullrich, S.M.; Ilyushchenko, M.A.; Tanton, T.W.; Uskov, G.A. Mercury contamination in the vicinity of a derelict chlor-alkali plant: Part II: Contamination of the aquatic and terrestrial food chain and potential risks to the local population. Sci. Total Environ. 2007, 381, 290–306. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, A.; Duttagupta, S.; Mukherjee, A. Emerging organic contaminants in global community drinking water sources and supply: A review of occurrence, processes and remediation. J. Environ. Chem. Eng. 2022, 10, 107560. [Google Scholar] [CrossRef]
- Malakar, A.; Snow, D.D.; Ray, C. Irrigation Water Quality—A Contemporary Perspective. Water 2019, 11, 1482. [Google Scholar] [CrossRef]
- Van Winckel, T.; Cools, J.; Vlaeminck, S.E.; Joos, P.; Van Meenen, E.; Borregán-Ochando, E.; Van Den Steen, K.; Geerts, R.; Vandermoere, F.; Blust, R. Towards harmonization of water quality management: A comparison of chemical drinking water and surface water quality standards around the globe. J. Environ. Manag. 2021, 298, 113447. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.S.; Kolok, A.S.; Snow, D.D.; Satybaldiyev, B.; Uralbekov, B.; Nystrom, G.S.; Thornton Hampton, L.M.; Bartelt-Hunt, S.L.; Sellin Jeffries, M.K. Predicted aquatic and human health risks associated with the presence of metals in the Syr Darya and Shardara Reservoir, Kazakhstan. Sci. Total Environ. 2023, 859, 159827. [Google Scholar] [CrossRef]
- Amirgaliev, N.A.; Askarova, M.; Opp, C.; Medeu, A.; Kulbekova, R.; Medeu, A.R. Water Quality Problems Analysis and Assessment of the Ecological Security Level of the Transboundary Ural-Caspian Basin of the Republic of Kazakhstan. Appl. Sci. 2022, 12, 2059. [Google Scholar] [CrossRef]
- Salikova, N.S.; Rodrigo-Ilarri, J.; Alimova, K.K.; Rodrigo-Clavero, M.-E. Analysis of the Water Quality of the Ishim River within the Akmola Region (Kazakhstan) Using Hydrochemical Indicators. Water 2021, 13, 1243. [Google Scholar] [CrossRef]
- Alvarado, J.C.; Balsiger, B.; Röllin, S.; Jakob, A.; Burger, M. Radioactive and chemical contamination of the water resources in the former uranium mining and milling sites of Mailuu Suu (Kyrgyzstan). J. Environ. Radioact. 2014, 138, 1–10. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Abuduwaili, J.; Li, Y.; Abdyzhapar uulu, S. Spatiotemporal Distributions of Fluoride and Arsenic in Rivers with the Role of Mining Industry and Related Human Health Risk Assessments in Kyrgyzstan. Expo. Health 2022, 14, 49–62. [Google Scholar] [CrossRef]
- Ma, L.; Abuduwaili, J.; Li, Y.; Abdyzhapar uulu, S.; Mu, S. Hydrochemical characteristics and water quality assessment for the upper reaches of Syr Darya River in Aral Sea Basin, Central Asia. Water 2019, 11, 1893. [Google Scholar] [CrossRef]
- Rzymski, P.; Klimaszyk, P.; Niedzielski, P.; Marszelewski, W.; Borowiak, D.; Nowiński, K.; Baikenzheyeva, A.; Kurmanbayev, R.; Aladin, N. Pollution with trace elements and rare-earth metals in the lower course of Syr Darya River and Small Aral Sea, Kazakhstan. Chemosphere 2019, 234, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Uralbekov, B.M.; Smodis, B.; Burkitbayev, M. Uranium in natural waters sampled within former uranium mining sites in Kazakhstan and Kyrgyzstan. J. Radioanal. Nucl. Chem. 2011, 289, 805–810. [Google Scholar] [CrossRef]
- Ivanova, K.; Stojanovska, Z.; Badulin, V.; Kunovska, B.; Yovcheva, M. Radiological impact of surface water and sediment near uranium mining sites. J. Radiol. Prot. 2015, 35, 819. [Google Scholar] [CrossRef] [PubMed]
- Burkitbayev, M.; Uralbekov, B.; Nazarkulova, S.; Matveyeva, I.; Leon Vintro, L. Uranium series radionuclides in surface waters from the Shu river (Kazakhstan). J. Environ. Monit. 2012, 14, 1190–1195. [Google Scholar] [CrossRef]
- Hofmann, J.; Watson, V.; Scharaw, B. Groundwater quality under stress: Contaminants in the Kharaa River basin (Mongolia). Environ. Earth Sci. 2015, 73, 629–648. [Google Scholar] [CrossRef]
- Różkowski, J.; Rzętała, M. Uzbekistan’s Aquatic Environment and Water Management as an Area of Interest for Hydrology and Thematic Tourism. J. Environ. Manag. Tour. 2021, 12, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Zhulidov, A.V.; Emetz, V.M. Heavy Metals, Natural Variability and Anthropogenic Impacts. In A Water Quality Assessment of the Former Soviet Union; Kimstach, V.A., Meybeck, M., Baroudy, E., Eds.; E & FN Spon: London, UK; New York, NY, USA, 1998; pp. 179–240. [Google Scholar]
- Ogata, R.; Matsuda, K.; Avzal, T.J.; Abe, K. Improvement of water utility management in Tajikistan: Reduction in water wastage using a metered tariff system. AQUA Water Infrastruct. Ecosyst. Soc. 2023, 72, 221–229. [Google Scholar] [CrossRef]
- Papa, E.; Castiglioni, S.; Gramatica, P.; Nikolayenko, V.; Kayumov, O.; Calamari, D. Screening the leaching tendency of pesticides applied in the Amu Darya Basin (Uzbekistan). Water Res. 2004, 38, 3485–3494. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Govarthanan, M.; Iqbal, J.; Alfadul, S.M. Emerging contaminants of high concern for the environment: Current trends and future research. Environ. Res. 2022, 207, 112609. [Google Scholar] [CrossRef]
- Rogowska, J.; Cieszynska-Semenowicz, M.; Ratajczyk, W.; Wolska, L. Micropollutants in treated wastewater. Ambio 2020, 49, 487–503. [Google Scholar] [CrossRef]
- Martín-Pozo, L.; de Alarcón-Gómez, B.; Rodríguez-Gómez, R.; García-Córcoles, M.T.; Çipa, M.; Zafra-Gómez, A. Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta 2019, 192, 508–533. [Google Scholar] [CrossRef] [PubMed]
- Karthe, D.; Abdullaev, I.; Boldgiv, B.; Borchardt, D.; Chalov, S.; Jarsjö, J.; Li, L.; Nittrouer, J.A. Water in Central Asia: An integrated assessment for science-based management. Environ. Earth Sci. 2017, 76, 690. [Google Scholar] [CrossRef]
- Batbayar, G.; Pfeiffer, M.; von Tümpling, W.; Kappas, M.; Karthe, D. Chemical water quality gradients in the Mongolian sub-catchments of the Selenga River basin. Environ. Monit. Assess. 2017, 189, 420. [Google Scholar] [CrossRef]
- Malsy, M.; Flörke, M.; Borchardt, D. What drives the water quality changes in the Selenga Basin: Climate change or socio-economic development? Reg. Environ. Change 2017, 17, 1977–1989. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Batbayar, G.; Hofmann, J.; Siegfried, K.; Karthe, D.; Hahn-Tomer, S. Investigating arsenic (As) occurrence and sources in ground, surface, waste and drinking water in northern Mongolia. Environ. Earth Sci. 2015, 73, 649–662. [Google Scholar] [CrossRef]
- Skripnik, G. In Taraz, They Have Been Solving the Problem of Sewage Treatment for More Than 30 Years. 2023. Available online: https://primeminister.kz/en/news/new-waste-water-treatment-facilities-construction-in-taraz-to-start-as-soon-as-possible-alikhan-smailov-25036 (accessed on 31 December 2024).
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef]
- Silva, G.M.e.; Campos, D.F.; Brasil, J.A.T.; Tremblay, M.; Mendiondo, E.M.; Ghiglieno, F. Advances in Technological Research for Online and in Situ Water Quality Monitoring—A Review. Sustainability 2022, 14, 5059. [Google Scholar] [CrossRef]
- Singh, A.; Chaurasia, D.; Khan, N.; Singh, E.; Chaturvedi Bhargava, P. Efficient mitigation of emerging antibiotics residues from water matrix: Integrated approaches and sustainable technologies. Environ. Pollut. 2023, 328, 121552. [Google Scholar] [CrossRef]
- Jiang, T.; Wu, W.; Ma, M.; Hu, Y.; Li, R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. Sci. Total Environ. 2024, 951, 175664. [Google Scholar] [CrossRef]
- Satayeva, A.; Kerim, T.; Kamal, A.; Issayev, J.; Inglezakis, V.; Kim, J.; Arkhangelsky, E. Determination of aspirin in municipal wastewaters of Nur-Sultan City, Kazakhstan. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP: Bristol, UK, 2022; p. 012067. [Google Scholar]
- Snow, D.D.; Chakraborty, P.; Uralbekov, B.; Satybaldiev, B.; Sallach, J.B.; Thornton Hampton, L.M.; Jeffries, M.; Kolok, A.S.; Bartelt-Hunt, S.B. Legacy and current pesticide residues in Syr Darya, Kazakhstan: Contamination status, seasonal variation and preliminary ecological risk assessment. Water Res. 2020, 184, 116141. [Google Scholar] [CrossRef]
- Shen, B.; Wu, J.; Zhan, S.; Jin, M. Residues of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in waters of the Ili-Balkhash Basin, arid Central Asia: Concentrations and risk assessment. Chemosphere 2021, 273, 129705. [Google Scholar] [CrossRef] [PubMed]
- Amirgaliyev, N.; Opp, C.; Askarova, M.; Ismukhanova, L.; Madibekov, A.; Zhadi, A. Long-Term Dynamics of Persistent Organic Pollutants in Water Bodies of the Aral Sea–Syrdarya Basin. Appl. Sci. 2023, 13, 11453. [Google Scholar] [CrossRef]
- Jin, M.; Wu, J.; Zhang, H.; Zhao, Z.; Alam, M.; Guo, R. Study on the Aral Sea crisis from the risk assessment of polycyclic aromatic hydrocarbons and organochlorine pesticides in surface water of Amu Darya river basin in Uzbekistan. Front. Earth Sci. 2023, 11, 1295485. [Google Scholar] [CrossRef]
- Russell, A.; Ghalaieny, M.; Gazdiyeva, B.; Zhumabayeva, S.; Kurmanbayeva, A.; Akhmetov, K.K.; Mukanov, Y.; McCann, M.; Ali, M.; Tucker, A.; et al. A Spatial Survey of Environmental Indicators for Kazakhstan: An Examination of Current Conditions and Future Needs. Int. J. Environ. Res. 2018, 12, 735–748. [Google Scholar] [CrossRef]
- Past PFOA and PFOS Health Effects Science Documents. Available online: https://www.epa.gov/sdwa/past-pfoa-and-pfos-health-effects-science-documents (accessed on 31 December 2024).
- Re-Evaluation of the Risks to Public Health Related to the Presence of Bisphenol A (BPA) in Foodstuffs. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/6857 (accessed on 31 December 2024).
- Di (2-Ethylhexyl)phthalate (DEHP). Available online: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=0014 (accessed on 31 December 2024).
- Quinoline. Available online: https://www.epa.gov/sites/default/files/2016-09/documents/quinoline.pdf (accessed on 31 December 2024).
- USEPA. 2018 Edition of the Drinking Water Standards and Health Advisories; USEPA: Washington, DC, USA, 2018; p. 20. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper; FAO: Roma, Italy, 1985; Volume 21, p. 186. [Google Scholar]
- Hofmann, J.; Venohr, M.; Behrendt, H.; Opitz, D. Integrated water resources management in central Asia: Nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia. Water Sci. Technol. 2010, 62, 353–363. [Google Scholar] [CrossRef]
- Satybaldiyev, B.; Ismailov, B.; Nurpeisov, N.; Kenges, K.; Snow, D.D.; Malakar, A.; Uralbekov, B. Evaluation of dissolved and acid-leachable trace element concentrations in relation to practical water quality standards in the Syr Darya, Aral Sea Basin, South Kazakhstan. Chemosphere 2023, 313, 137465. [Google Scholar] [CrossRef]
Country | Evaluation of Regional Stock | Approved Usable Stock | Actual Abstraction | Use for Drinking Water Supply | ||||
---|---|---|---|---|---|---|---|---|
2000 | 2018 | 2000 | 2018 | 2000 | 2018 | 2000 | 2018 | |
Kazakhstan | 1846 × 103 | 8410 × 103 | 1270 × 103 | 1052 × 103 | 963 × 103 | 859 × 103 | 200 × 103 | 367.6 × 103 |
Kyrgyzstan | 1595 × 103 | 14,212 × 103 | 632 × 103 | 622 × 103 | 548 × 103 | 545 × 103 | 304 × 103 | 340 × 103 |
Tajikistan | 18,700 × 103 | na | 6020 × 103 | 2965 × 103 | 2294 × 103 | 2300 × 103 | 485 × 103 | 461 × 103 ** |
Turkmenistan | 3360 × 103 | 69,000 × 103 | 1220 × 103 | 1270 × 103 | 457 × 103 | 1200 × 103 | 210 × 103 | 558 × 103 |
Uzbekistan | 18,455 × 103 | na | 7796 × 103 | 6336 × 103 | 7749 × 103 | 5577 × 103 | 3369 × 103 | 1825 × 103 |
Total | 43,956 × 103 | 91,622 × 103 * | 16,938 × 103 | 12,245 × 103 | 12,011 × 103 | 10,481 × 103 | 4568 × 103 | 3552 × 103 |
Average Long-Term Runoff | Transfers to Other Basins | Inside Countries | Available Runoff | Decrease in External Inflow | Catchment Area, Thousand km2 | ||
---|---|---|---|---|---|---|---|
Total | External Inflow | ||||||
Kazakhstan’s water resources, excluding Aral-Syrdarya basin: | |||||||
Balkhash-Ili | 27.8 | 11.4 | 7 | 3.3 | −5 | 68.4 (131) | |
Irtysh | 33.5 | 9.8 | 7.9 | 5.6 | −3.5 | 210 (1592) | |
Yesil | 2.6 | 1.1 | 113 (156) | ||||
Nura-Sarysu | 1.3 | 0.9 | 0.9 | ||||
Tobol-Turgai | 2 | 0.6 | 130 (395) | ||||
Chu-Talas | 4.2 | 3.1 | 2.8 | 78 (115) | |||
Ural-Caspi | 11.2 | 7.9 | 4.6 | −3.6 | 73 (231) | ||
Total | 82.6 | 32.2 | 14.9 | 0.9 | 18.6 | −12.1 | |
Kyrgyzstan’s water resources: | |||||||
Chu-Talas | 6.74 | - | 3.1 | 3.6 | 37.3 (115.2) | ||
Ili | 0.36 | - | 0.36 | ||||
Sary-Jaz | 6.15 | - | 3 | 1.6 | 1.55 | 28.5 | |
Issyk-Kul | 4.65 | 4.65 | 22 | ||||
Total | 17.9 | 3.1 | 10.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalmakhanova, M.S.; Kurtebayeva, A.A.; Tleuova, Z.T.; Satybaldiev, B.; Orynbayev, S.A.; Malakar, A.; Gomes, H.T.; Snow, D.D. Environmental Impact of Wastewater on Surface and Groundwater in Central Asia. Sustainability 2025, 17, 5370. https://doi.org/10.3390/su17125370
Kalmakhanova MS, Kurtebayeva AA, Tleuova ZT, Satybaldiev B, Orynbayev SA, Malakar A, Gomes HT, Snow DD. Environmental Impact of Wastewater on Surface and Groundwater in Central Asia. Sustainability. 2025; 17(12):5370. https://doi.org/10.3390/su17125370
Chicago/Turabian StyleKalmakhanova, Marzhan S., Assel A. Kurtebayeva, Zhanna T. Tleuova, Bagdat Satybaldiev, Seitzhan A. Orynbayev, Arindam Malakar, Helder T. Gomes, and Daniel D. Snow. 2025. "Environmental Impact of Wastewater on Surface and Groundwater in Central Asia" Sustainability 17, no. 12: 5370. https://doi.org/10.3390/su17125370
APA StyleKalmakhanova, M. S., Kurtebayeva, A. A., Tleuova, Z. T., Satybaldiev, B., Orynbayev, S. A., Malakar, A., Gomes, H. T., & Snow, D. D. (2025). Environmental Impact of Wastewater on Surface and Groundwater in Central Asia. Sustainability, 17(12), 5370. https://doi.org/10.3390/su17125370