Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,088)

Search Parameters:
Keywords = traveling waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5650 KiB  
Article
The In-Plane Deformation and Free Vibration Analysis of a Rotating Ring Resonator of a Gyroscope with Evenly Distributed Mass Imperfections
by Dongsheng Zhang and Shuming Li
Sensors 2025, 25(15), 4764; https://doi.org/10.3390/s25154764 - 1 Aug 2025
Viewed by 217
Abstract
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic [...] Read more.
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic equations are formulated by using Hamilton’s principle in the ground-fixed coordinates. The coordinate transformation is applied to facilitate the solution of the steady deformation, and the displacements and tangential tension for the deformation are calculated by the perturbation method. Employing Galerkin’s method, the governing equation of the free vibration is casted in matrix differential operator form after the separation of the real and imaginary parts with the inextensional assumption. The natural frequencies are calculated through the eigenvalue analysis, and the numerical results are obtained. The effects of the point masses on the natural frequencies of the forward and backward traveling wave curves of different orders are discussed, especially on the measurement accuracy of gyroscopes for different cases. In the ground-fixed coordinates, the frequency splitting results in a crosspoint of the natural frequencies of the forward and backward traveling waves. The finite element method is applied to demonstrate the validity and accuracy of the model. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

22 pages, 1287 KiB  
Article
Comparative Analysis of the Gardner Equation in Plasma Physics Using Analytical and Neural Network Methods
by Zain Majeed, Adil Jhangeer, F. M. Mahomed, Hassan Almusawa and F. D. Zaman
Symmetry 2025, 17(8), 1218; https://doi.org/10.3390/sym17081218 - 1 Aug 2025
Viewed by 99
Abstract
In the present paper, a mathematical analysis of the Gardner equation with varying coefficients has been performed to give a more realistic model of physical phenomena, especially in regards to plasma physics. First, a Lie symmetry analysis was carried out, as a result [...] Read more.
In the present paper, a mathematical analysis of the Gardner equation with varying coefficients has been performed to give a more realistic model of physical phenomena, especially in regards to plasma physics. First, a Lie symmetry analysis was carried out, as a result of which a symmetry classification following the different representations of the variable coefficients was systematically derived. The reduced ordinary differential equation obtained is solved using the power-series method and solutions to the equation are represented graphically to give an idea of their dynamical behavior. Moreover, a fully connected neural network has been included as an efficient computation method to deal with the complexity of the reduced equation, by using traveling-wave transformation. The validity and correctness of the solutions provided by the neural networks have been rigorously tested and the solutions provided by the neural networks have been thoroughly compared with those generated by the Runge–Kutta method, which is a conventional and well-recognized numerical method. The impact of a variation in the loss function of different coefficients has also been discussed, and it has also been found that the dispersive coefficient affects the convergence rate of the loss contribution considerably compared to the other coefficients. The results of the current work can be used to improve knowledge on the nonlinear dynamics of waves in plasma physics. They also show how efficient it is to combine the approaches, which consists in the use of analytical and semi-analytical methods and methods based on neural networks, to solve nonlinear differential equations with variable coefficients of a complex nature. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

21 pages, 3942 KiB  
Article
Experimental Demonstration of Terahertz-Wave Signal Generation for 6G Communication Systems
by Yazan Alkhlefat, Amr M. Ragheb, Maged A. Esmail, Sevia M. Idrus, Farabi M. Iqbal and Saleh A. Alshebeili
Optics 2025, 6(3), 34; https://doi.org/10.3390/opt6030034 - 28 Jul 2025
Viewed by 495
Abstract
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while [...] Read more.
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while maintaining low latency and high efficiency. In this work, we present a novel photonic method for generating sub-THz vector signals within the THz band, employing a semiconductor optical amplifier (SOA) and phase modulator (PM) to create an optical frequency comb, combined with in-phase and quadrature (IQ) modulation techniques. We demonstrate, both through simulation and experimental setup, the generation and successful transmission of a 0.1 THz vector. The process involves driving the PM with a 12.5 GHz radio frequency signal to produce the optical comb; then, heterodyne beating in a uni-traveling carrier photodiode (UTC-PD) generates the 0.1 THz radio frequency signal. This signal is transmitted over distances of up to 30 km using single-mode fiber. The resulting 0.1 THz electrical vector signal, modulated with quadrature phase shift keying (QPSK), achieves a bit error ratio (BER) below the hard-decision forward error correction (HD-FEC) threshold of 3.8 × 103. To the best of our knowledge, this is the first experimental demonstration of a 0.1 THz photonic vector THz wave based on an SOA and a simple PM-driven optical frequency comb. Full article
(This article belongs to the Section Photonics and Optical Communications)
Show Figures

Figure 1

18 pages, 3371 KiB  
Article
Insight into the Propagation of Interface Acoustic Waves in Rotated YX-LiNbO3/SU-8/Si Structures
by Cinzia Caliendo, Massimiliano Benetti, Domenico Cannatà and Farouk Laidoudi
Micromachines 2025, 16(8), 861; https://doi.org/10.3390/mi16080861 - 26 Jul 2025
Viewed by 290
Abstract
The propagation of interface acoustic waves (IAWs) along rotated YX-LiNbO3/SU-8/ZX-Si structures is theoretically investigated to identify the Y-rotation angles that support the efficient propagation of low-loss modes guided along the structure’s interface. A three-dimensional finite element analysis was performed to simulate [...] Read more.
The propagation of interface acoustic waves (IAWs) along rotated YX-LiNbO3/SU-8/ZX-Si structures is theoretically investigated to identify the Y-rotation angles that support the efficient propagation of low-loss modes guided along the structure’s interface. A three-dimensional finite element analysis was performed to simulate IAW propagation in the layered structure and to optimize design parameters, specifically the thicknesses of the platinum (Pt) interdigital transducers (IDTs) and the SU-8 adhesive layer. The simulations revealed the existence of two types of IAWs travelling at different velocities under specific Y-rotated cuts of the LiNbO3 half-space. These IAWs are faster than the surface acoustic wave (SAW) and slower than the leaky SAW (LSAW) propagating on the surface of the bare LiNbO3 half-space. The mechanical displacement fields of both IAWs exhibit a rapid decay to zero within a few wavelengths from the LiNbO3 surface. The piezoelectric coupling coefficients of the IAWs were found to be as high as approximately 7% and 31%, depending on the Y-rotation angle. The theoretical results were experimentally validated by measuring the velocities of the SAW and LSAW on a bare 90° YX-LiNbO3 substrate, and the velocities of the IAWs in a 90° YX-LiNbO3/SU-8/Si structure featuring 330 nm thick Pt IDTs, a 200 µm wavelength, and a 15 µm thick SU-8 layer. The experimental data showed good agreement with the theoretical predictions. These combined theoretical and experimental findings establish design principles for exciting two interface waves with elliptical and quasi-shear polarization, offering enhanced flexibility for fluidic manipulation and the integration of sensing functionalities. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices, Second Edition)
Show Figures

Figure 1

25 pages, 2486 KiB  
Article
Influence of Intense Internal Waves Traveling Along an Acoustic Path on Source Holographic Reconstruction in Shallow Water
by Sergey Pereselkov, Venedikt Kuz’kin, Matthias Ehrhardt, Sergey Tkachenko, Alexey Pereselkov and Nikolay Ladykin
J. Mar. Sci. Eng. 2025, 13(8), 1409; https://doi.org/10.3390/jmse13081409 - 24 Jul 2025
Viewed by 310
Abstract
This paper studies how intense internal waves (IIWs) affect the holographic reconstruction of the sound field generated by a moving source in a shallow-water environment. It is assumed that the IIWs propagate along the acoustic path between the source and the receiver. The [...] Read more.
This paper studies how intense internal waves (IIWs) affect the holographic reconstruction of the sound field generated by a moving source in a shallow-water environment. It is assumed that the IIWs propagate along the acoustic path between the source and the receiver. The presence of IIWs introduces inhomogeneities into the waveguide and causes significant mode coupling, which perturbs the received sound field. This paper proposes the use of holographic signal processing (HSP) to eliminate perturbations in the received signal caused by mode coupling due to IIWs. Within the HSP framework, we examine the interferogram (the received sound intensity distribution in the frequency–time domain) and the hologram (the two-dimensional Fourier transform of the interferogram) of a moving source in the presence of space–time inhomogeneities caused by IIWs. A key finding is that under the influence of IIWs, the hologram is divided into two regions that correspond to the unperturbed and perturbed components of the sound field. This hologram structure enables the extraction and reconstruction of the interferogram corresponding to the unperturbed field as it would appear in a shallow-water waveguide without IIWs. Numerical simulations of HSP application under the realistic conditions of the SWARM’95 experiment were carried out for stationary and moving sources. The results demonstrate the high efficiency of holographic reconstruction of the unperturbed sound field. Unlike matched field processing (MFP), HSP does not require prior knowledge of the propagation environment. These research results advance signal processing methods in underwater acoustics by introducing efficient HSP methods for environments with spatiotemporal inhomogeneities. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

22 pages, 9048 KiB  
Article
Chirped Soliton Perturbation and Benjamin–Feir Instability of Chen–Lee–Liu Equation with Full Nonlinearity
by Khalil S. Al-Ghafri and Anjan Biswas
Mathematics 2025, 13(14), 2261; https://doi.org/10.3390/math13142261 - 12 Jul 2025
Viewed by 219
Abstract
The objective of the present study is to detect chirped optical solitons of the perturbed Chen–Lee–Liu equation with full nonlinearity. By virtue of the traveling wave hypothesis, the discussed model is reduced to a simple form known as an elliptic equation. The latter [...] Read more.
The objective of the present study is to detect chirped optical solitons of the perturbed Chen–Lee–Liu equation with full nonlinearity. By virtue of the traveling wave hypothesis, the discussed model is reduced to a simple form known as an elliptic equation. The latter equation, which is a second-order ordinary differential equation, is handled by the undetermined coefficient method of two forms expressed in terms of the hyperbolic secant and tangent functions. Additionally, the auxiliary equation method is applied to derive several miscellaneous solutions. Various types of chirped solitons are revealed such as W-shaped, bright, dark, gray, kink and anti-kink waves. Taking into consideration the existence conditions, the dynamical behaviors of optical solitons and their corresponding chirp are illustrated. The modulation instability of the perturbed CLL equation is examined by means of the linear stability analysis. It is found that all solutions are stable against small perturbations. These entirely new results, compared to previous works, can be employed to understand pulse propagation in optical fiber mediums and dynamic characteristics of waves in plasma. Full article
Show Figures

Figure 1

15 pages, 772 KiB  
Article
A Prospective Cohort Study of Primary Dengue Virus Infection in Medellín, Colombia
by Andrea Trujillo, Liesbeth Van Wesenbeeck, Lina Salazar, Liliana López, Lotke Tambuyzer, Annemie Buelens, Kim De Clerck, Oliver Lenz, Leen Vijgen, Marnix Van Loock, Guillermo Herrera-Taracena, Iván Darío Vélez and Freya Rasschaert
Vaccines 2025, 13(7), 748; https://doi.org/10.3390/vaccines13070748 - 12 Jul 2025
Viewed by 499
Abstract
Background: The evaluation of antiviral or vaccination strategies for the prevention of dengue infections in a traveler population would require extensive and complex studies. This prospective study aimed to identify a cohort of dengue naïve participants living in Medellín, a dengue endemic area, [...] Read more.
Background: The evaluation of antiviral or vaccination strategies for the prevention of dengue infections in a traveler population would require extensive and complex studies. This prospective study aimed to identify a cohort of dengue naïve participants living in Medellín, a dengue endemic area, as a proxy for travelers and to determine the incidence of primary dengue virus (DENV) infection (symptomatic and asymptomatic) in this cohort. In Colombia, epidemic dengue waves occur every 3–4 years, with infected Aedes mosquitoes present in ~80% of the territory, including Medellín. Methods: Participants > 16 years of age, living in Medellín, were screened for anti-DENV immunoglobulin G (IgG). DENV seronegative participants were enrolled in this study. A serological anti-DENV survey was performed, with semiannual sample collections for up to 2 years. Acute DENV infections were evaluated by monitoring fever and testing for DENV nonstructural protein 1 and/or RNA. Results: Of the 4885 screened participants, 3008 participants (62%) were DENV seronegative and enrolled. Among them, 2263 (75%) completed this study, and 2644 (88%) had at least one serosurvey visit after baseline. Of those, 52 (2%) had laboratory-confirmed DENV seroconversion, and 19 (<1%) had febrile illness, but none had laboratory-confirmed DENV infection. Conclusions: This study identified a cohort of predominantly students, seronegative at study start, living in Medellín and serving as a proxy for a prospective DENV infection traveler population. Laboratory-confirmed primary DENV infection was found in 2% of participants, with <1% reporting febrile illnesses, meeting the WHO criteria for probable clinical dengue cases. Full article
(This article belongs to the Special Issue Immune Response to Dengue Viral Infection)
Show Figures

Figure 1

10 pages, 300 KiB  
Article
Delayed Choice for Entangled Photons
by Rolando Velázquez, Linda López-Díaz, Leonardo López-Hernández, Eduardo Hernández, L. M. Arévalo-Aguilar and V. Velázquez
Photonics 2025, 12(7), 696; https://doi.org/10.3390/photonics12070696 - 10 Jul 2025
Viewed by 285
Abstract
The wave–particle duality is the quintessence of quantum mechanics. This duality gives rise to distinct behaviors depending on the experimental setup, with the system exhibiting either wave-like or particle-like properties, depending on whether the focus is on interference (wave) or trajectory (particle). In [...] Read more.
The wave–particle duality is the quintessence of quantum mechanics. This duality gives rise to distinct behaviors depending on the experimental setup, with the system exhibiting either wave-like or particle-like properties, depending on whether the focus is on interference (wave) or trajectory (particle). In the interaction with a beam splitter, photons with particle behavior can transform into a wave behavior and vice versa. In Wheeler’s delayed-choice gedanken experiment, this interaction is delayed so that the wave that initially travels through the interferometer can become a particle, avoiding the interaction. We show that this contradiction can be resolved using polarized entangled photon pairs. An analysis of Shannon’s entropy supports this proposal. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

28 pages, 1358 KiB  
Article
Mathematical Theory of Social Conformity II: Geometric Pinning, Curvature–Induced Quenching, and Curvature–Targeted Control in Anisotropic Logistic Diffusion
by Dimitri Volchenkov
Dynamics 2025, 5(3), 27; https://doi.org/10.3390/dynamics5030027 - 7 Jul 2025
Viewed by 644
Abstract
We advance a mathematical framework for collective conviction by deriving a continuum theory from the network-based model introduced by us recently. The resulting equation governs the evolution of belief through a degenerate anisotropic logistic–diffusion process, where diffusion slows as conviction saturates. In one [...] Read more.
We advance a mathematical framework for collective conviction by deriving a continuum theory from the network-based model introduced by us recently. The resulting equation governs the evolution of belief through a degenerate anisotropic logistic–diffusion process, where diffusion slows as conviction saturates. In one spatial dimension, we prove global well-posedness, demonstrate spectral front pinning that arrests the spread of influence at finite depth, and construct explicit traveling-wave solutions. In two dimensions, we uncover a geometric mechanism of curvature–induced quenching, where belief propagation halts along regions of low effective mobility and curvature. Building on this insight, we formulate a variational principle for optimal control under resource constraints. The derived feedback law prescribes how to spatially allocate repression effort to maximize inhibition of front motion, concentrating resources along high-curvature, low-mobility arcs. Numerical simulations validate the theory, illustrating how localized suppression dramatically reduces transverse spread without affecting fast axes. These results bridge analytical modeling with societal phenomena such as protest diffusion, misinformation spread, and institutional resistance, offering a principled foundation for selective intervention policies in structured populations. Full article
Show Figures

Figure 1

26 pages, 9399 KiB  
Article
An Investigation of Pre-Seismic Ionospheric TEC and Acoustic–Gravity Wave Coupling Phenomena Using BDS GEO Measurements: A Case Study of the 2023 Jishishan Ms6.2 Earthquake
by Xiao Gao, Lina Shu, Zongfang Ma, Penggang Tian, Lin Pan, Hailong Zhang and Shuai Yang
Remote Sens. 2025, 17(13), 2296; https://doi.org/10.3390/rs17132296 - 4 Jul 2025
Viewed by 435
Abstract
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency [...] Read more.
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency perturbations (0.56–3.33 mHz) showed localized disturbances (amplitude ≤ 4 TECU, range < 300 km), potentially associated with near-field acoustic waves from crustal stress adjustments; (2) mid-frequency signals (0.28–0.56 mHz) exhibited anisotropic propagation (>1200 km) with azimuth-dependent N-shaped waveforms, consistent with the characteristics of acoustic–gravity waves (AGWs); and (3) low-frequency components (0.18–0.28 mHz) demonstrated phase reversal and power-law amplitude attenuation, suggesting possible lithosphere–atmosphere–ionosphere (LAI) coupling oscillations. The stark contrast between near-field residuals and far-field weak fluctuations highlighted the dominance of large-scale atmospheric gravity waves over localized acoustic disturbances. Geometry-based velocity inversion revealed incoherent high-frequency dynamics (5–30 min) versus anisotropic mid/low-frequency traveling ionospheric disturbance (TID) propagation (30–90 min) at 175–270 m/s, aligning with theoretical AGW behavior. During concurrent G1-class geomagnetic storm activity, spatial attenuation gradients and velocity anisotropy appear primarily consistent with seismogenic sources, providing insights for precursor discrimination and contributing to understanding multi-scale coupling in seismo-ionospheric systems. Full article
Show Figures

Figure 1

20 pages, 5499 KiB  
Article
Characterization of Acoustic Source Signal Response in Oxidized Autocombusted Coal Temperature Inversion Experiments
by Jun Guo, Wenjing Gao, Yin Liu, Guobin Cai and Kaixuan Wang
Fire 2025, 8(7), 264; https://doi.org/10.3390/fire8070264 - 3 Jul 2025
Viewed by 563
Abstract
The measurement error of sound travel time, one of the most critical parameters in acoustic temperature measurement, is significantly affected by the type of sound source signal. In order to select more appropriate sound source signals, a sound source signal preference study of [...] Read more.
The measurement error of sound travel time, one of the most critical parameters in acoustic temperature measurement, is significantly affected by the type of sound source signal. In order to select more appropriate sound source signals, a sound source signal preference study of loose coal acoustic temperature measurement was performed and is described herein. The results showed that the absolute error of the swept signal and the pseudo-random signal both increased with increased acoustic wave propagation distance. The relative error of the swept signal showed a relatively stable upward trend; in comparison, the pseudo-random signal showed a general decrease with a large fluctuation in the middle section, and both the relative and absolute errors for the pseudo-random signal were larger than those of the swept signal. Therefore, the swept signal is expected to perform better than the pseudo-random signal in the loose coal medium. Based on the experimental results, the linear sweep signal was selected as the sound source signal for the loose coal temperature inversion experiments: the average error between the inverted temperature value and the actual value was 4.86%, the maximum temperature difference was 2.926 °C, and the average temperature difference was 1.5949 °C. Full article
(This article belongs to the Special Issue Coal Fires and Their Impact on the Environment)
Show Figures

Figure 1

13 pages, 2490 KiB  
Article
Soliton Dynamics of the Nonlinear Kodama Equation with M-Truncated Derivative via Two Innovative Schemes: The Generalized Arnous Method and the Kudryashov Method
by Khizar Farooq, Ali. H. Tedjani, Zhao Li and Ejaz Hussain
Fractal Fract. 2025, 9(7), 436; https://doi.org/10.3390/fractalfract9070436 - 2 Jul 2025
Cited by 1 | Viewed by 297
Abstract
The primary aim of this research article is to investigate the soliton dynamics of the M-truncated derivative nonlinear Kodama equation, which is useful for optical solitons on nonlinear media, shallow water waves over complex media, nonlocal internal waves, and fractional viscoelastic wave propagation. [...] Read more.
The primary aim of this research article is to investigate the soliton dynamics of the M-truncated derivative nonlinear Kodama equation, which is useful for optical solitons on nonlinear media, shallow water waves over complex media, nonlocal internal waves, and fractional viscoelastic wave propagation. We utilized two recently developed analytical techniques, the generalized Arnous method and the generalized Kudryashov method. First, the nonlinear Kodama equation is transformed into a nonlinear ordinary differential equation using the homogeneous balance principle and a traveling wave transformation. Next, various types of soliton solutions are constructed through the application of these effective methods. Finally, to visualize the behavior of the obtained solutions, three-dimensional, two-dimensional, and contour plots are generated using Maple (2023) mathematical software. Full article
Show Figures

Figure 1

33 pages, 1215 KiB  
Article
On the Extended Simple Equations Method (SEsM) for Obtaining Numerous Exact Solutions to Fractional Partial Differential Equations: A Generalized Algorithm and Several Applications
by Elena V. Nikolova
Algorithms 2025, 18(7), 402; https://doi.org/10.3390/a18070402 - 30 Jun 2025
Viewed by 230
Abstract
In this article, we present the extended simple equations method (SEsM) for finding exact solutions to systems of fractional nonlinear partial differential equations (FNPDEs). The expansions made to the original SEsM algorithm are implemented in several directions: (1) In constructing analytical solutions: exact [...] Read more.
In this article, we present the extended simple equations method (SEsM) for finding exact solutions to systems of fractional nonlinear partial differential equations (FNPDEs). The expansions made to the original SEsM algorithm are implemented in several directions: (1) In constructing analytical solutions: exact solutions to FNPDE systems are presented by simple or complex composite functions, including combinations of solutions to two or more different simple equations with distinct independent variables (corresponding to different wave velocities); (2) in selecting appropriate fractional derivatives and appropriate wave transformations: the choice of the type of fractional derivatives for each system of FNPDEs depends on the physical nature of the modeled real process. Based on this choice, the range of applicable wave transformations that are used to reduce FNPDEs to nonlinear ODEs has been expanded. It includes not only various forms of fractional traveling wave transformations but also standard traveling wave transformations. Based on these methodological enhancements, a generalized SEsM algorithm has been developed to derive exact solutions of systems of FNPDEs. This algorithm provides multiple options at each step, enabling the user to select the most appropriate variant depending on the expected wave dynamics in the modeled physical context. Two specific variants of the generalized SEsM algorithm have been applied to obtain exact solutions to two time-fractional shallow-water-like systems. For generating these exact solutions, it is assumed that each system variable in the studied models exhibits multi-wave behavior, which is expressed as a superposition of two waves propagating at different velocities. As a result, numerous novel multi-wave solutions are derived, involving combinations of hyperbolic-like, elliptic-like, and trigonometric-like functions. The obtained analytical solutions can provide valuable qualitative insights into complex wave dynamics in generalized spatio-temporal dynamical systems, with relevance to areas such as ocean current modeling, multiphase fluid dynamics and geophysical fluid modeling. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

24 pages, 2752 KiB  
Review
Challenges in the Design and Development of Slow-Wave Structure for THz Traveling-Wave Tube: A Tutorial Review
by Patibandla Anilkumar, Shaomeng Wang and Yubin Gong
Electronics 2025, 14(13), 2624; https://doi.org/10.3390/electronics14132624 - 29 Jun 2025
Viewed by 496
Abstract
As solid-state devices continue to advance, vacuum electron devices maintain critical importance due to their superior high-frequency power handling, long-term reliability, and operational efficiency. Among these, traveling-wave tubes (TWTs) excel in high-power microwave (HPM) applications, offering exceptional bandwidth and gain. However, developing THz-range [...] Read more.
As solid-state devices continue to advance, vacuum electron devices maintain critical importance due to their superior high-frequency power handling, long-term reliability, and operational efficiency. Among these, traveling-wave tubes (TWTs) excel in high-power microwave (HPM) applications, offering exceptional bandwidth and gain. However, developing THz-range TWT slow-wave structures (SWSs) presents significant design challenges. This work systematically outlines the SWS design methodology while addressing key obstacles and their solutions. As a demonstration, a staggered double vane (SDV) SWS operating at 1 THz (980–1080 GHz) achieves 650 mW output power, 23.35 dB gain, 0.14% electronic efficiency, and compact 21 mm length. Comparative analysis with deformed quasi-sine waveguide (D-QSWG) SWS confirms the SDV design’s superior performance for THz applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

12 pages, 1540 KiB  
Review
Gravitational Waves: Echoes of the Biggest Bangs Since the Big Bang and/or BSM Physics?
by John Ellis
Universe 2025, 11(7), 213; https://doi.org/10.3390/universe11070213 - 26 Jun 2025
Viewed by 588
Abstract
“If one could ever prove the existence of gravitational waves, the processes responsible for their generation would probably be much more curious and interesting than even the waves themselves.” (Gustav Mie, 1868–1957). The discovery of gravitational waves has opened new windows on [...] Read more.
“If one could ever prove the existence of gravitational waves, the processes responsible for their generation would probably be much more curious and interesting than even the waves themselves.” (Gustav Mie, 1868–1957). The discovery of gravitational waves has opened new windows on astrophysics, cosmology and physics beyond the Standard Model (BSM). Measurements by the LIGO, Virgo and KAGRA Collaborations of stellar–mass binaries and neutron star mergers have shown that gravitational waves travel at close to the velocity of light and constrain BSM possibilities, such as a graviton mass and Lorentz violation in gravitational wave propagation. Follow-up measurements of neutron star mergers have provided evidence for the production of heavy elements, possibly including some essential for human life. The gravitational waves in the nanoHz range observed by Pulsar Timing Arrays (PTAs) may have been emitted by supermassive black hole binaries, but might also have originated from BSM cosmological scenarios such as cosmic strings, or phase transitions in the early Universe. The answer to the question in the title may be provided by gravitational-wave detectors at higher frequencies, such as LISA and atom interferometers. KCL-PH-TH/2024-05. Full article
Show Figures

Figure 1

Back to TopTop