Gravitational Waves: Echoes of the Biggest Bangs Since the Big Bang and/or BSM Physics?
Abstract
1. Prediction of Gravitational Waves
2. Detection of Gravitational Waves
3. Looking for BSM Physics
4. Mergers of Neutron Stars—Kilonovae
5. Do We Owe Our Existence to GWs?
6. Supermassive Black Holes
7. Atom Interferometers
8. Discovery of GWs by PTAs
9. Distinguishing Interpretations of PTA GW Signals
10. Quo Vadis PTAs?
Funding
Data Availability Statement
Conflicts of Interest
1 | |
2 | Apologies for not referring to the many papers on this subject, a large sampling of which are cited in [66]. |
References
- Cervantes-Cota, J.L.; Galindo-Uribarri, S.; Smoot, G.F. A Brief History of Gravitational Waves. Universe 2016, 2, 22. [Google Scholar] [CrossRef]
- Rothman, T. The Secret History of Gravitational Waves. Am. Sci. 2018, 106, 96–104. [Google Scholar] [CrossRef]
- Heaviside, O. A gravitational and electromagnetic analogy. Electrician 1893, 31, 281–282. [Google Scholar]
- Poincaré, H. Sur la Dynamique de l’Electron. Compte Rendus 1905, 140, 1504. [Google Scholar] [CrossRef]
- Einstein, A. Näherungsweise Integration der Feldgleichungen der Gravitation; Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften: Berlin, Germany, 1916; pp. 688–696. [Google Scholar]
- Einstein, A. Über Gravitationswellen; Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften: Berlin, Germany, 1918; pp. 154–167. [Google Scholar]
- Einstein, A.; Rosen, N. On Gravitational waves. J. Franklin Inst. 1937, 223, 43–54. [Google Scholar] [CrossRef]
- Pirani, F.A. On the physical significance of the Riemann tensor. Acta Phys. Pol. 1956, 15, 389–405. [Google Scholar]
- Hulse, R.A.; Taylor, J.H. Discovery of a pulsar in a binary system. Astrophys. J. Lett. 1975, 195, L51–L53. [Google Scholar] [CrossRef]
- Weisberg, J.M.; Huang, Y. Relativistic Measurements from Timing the Binary Pulsar PSR B1913+16. Astrophys. J. 2016, 829, 55. [Google Scholar] [CrossRef]
- Kramer, M.; Stairs, I.H.; Manchester, R.N.; Wex, N.; Deller, A.T.; Coles, W.A.; Ali, M.; Burgay, M.A.R.T.A.; Camilo, F.; Cognard, I.; et al. Strong-Field Gravity Tests with the Double Pulsar. Phys. Rev. X 2021, 11, 041050. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Woosley, S.E.; Heger, A. The Pair-Instability Mass Gap for Black Holes. Astrophys. J. Lett. 2021, 912, L31. [Google Scholar] [CrossRef]
- Maggiore, M.; Van Den Broeck, C.; Bartolo, N.; Belgacem, E.; Bertacca, D.; Bizouard, M.A.; Branchesi, M.; Clesse, S.; Foffa, S.; García-Bellido, J.; et al. Science Case for the Einstein Telescope. J. Cosmol. Astropart. Phys. 2020, 3, 050. [Google Scholar] [CrossRef]
- Barausse, E.; Berti, E.; Hertog, T.; Hughes, S.A.; Jetzer, P.; Pani, P.; Sotiriou, T.P.; Tamanini, N.; Witek, H.; Yagi, K.; et al. Prospects for Fundamental Physics with LISA. Gen. Rel. Grav. 2020, 52, 81. [Google Scholar] [CrossRef]
- Colpi, M.; Danzmann, K.; Hewitson, M.; Holley-Bockelmann, K.; Jetzer, P.; Nelemans, G.; Petiteau, A.; Shoemaker, D.; Sopuerta, C.; Stebbins, R.; et al. LISA Definition Study Report. arXiv 2024, arXiv:2402.07571. [Google Scholar]
- Badurina, L.; Bentine, E.; Blas, D.; Bongs, K.; Bortoletto, D.; Bowcock, T.; Bridges, K.; Bowden, W.; Buchmueller, O.; Burrage, C.; et al. AION: An Atom Interferometer Observatory and Network. J. Cosmol. Astropart. Phys. 2020, 5, 011. [Google Scholar] [CrossRef]
- El-Neaj, Y.A.; Alpigiani, C.; Amairi-Pyka, S.; Araújo, H.; Balaž, A.; Bassi, A.; Bathe-Peters, L.; Battelier, B.; Belić, A.; Bentine, E.; et al. AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space. EPJ Quant. Technol. 2020, 7, 6. [Google Scholar] [CrossRef]
- Badurina, L.; Buchmueller, O.; Ellis, J.; Lewicki, M.; McCabe, C.; Vaskonen, V. Prospective sensitivities of atom interferometers to gravitational waves and ultralight dark matter. Phil. Trans. A. Math. Phys. Eng. Sci. 2021, 380, 20210060. [Google Scholar] [CrossRef]
- Abbott, R.; Abe, H.; Acernese, F.; Ackley, K.; Adhikari, N.; Adhikari, R.X.; Adkins, V.K.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. Tests of General Relativity with GWTC-3. arXiv 2021, arXiv:2112.06861. [Google Scholar]
- Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V. Comments on Graviton Propagation in Light of GW150914. Mod. Phys. Lett. A 2016, 31, 1675001. [Google Scholar] [CrossRef]
- Ellis, J.; Vaskonen, V. Probes of gravitational waves with atom interferometers. Phys. Rev. D 2020, 101, 124013. [Google Scholar] [CrossRef]
- Fairhurst, S.; Mills, C.; Colpi, M.; Schneider, R.; Sesana, A.; Trinca, A.; Valiante, R. Identifying heavy stellar black holes at cosmological distances with next generation gravitational-wave observatories. arXiv 2023, arXiv:2310.18158. [Google Scholar] [CrossRef]
- Banks, H.; Grabowska, D.M.; McCullough, M. Gravitational wave backgrounds from colliding exotic compact objects. Phys. Rev. D 2023, 108, 035017. [Google Scholar] [CrossRef]
- Croon, D.; McDermott, S.D.; Sakstein, J. New physics and the black hole mass gap. Phys. Rev. D 2020, 102, 115024. [Google Scholar] [CrossRef]
- Carr, B.; Clesse, S.; Garcia-Bellido, J.; Hawkins, M.; Kuhnel, F. Observational evidence for primordial black holes: A positivist perspective. Phys. Rept. 2024, 1054, 1–68. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Ellis, J.; Hektor, A.; Hütsi, G.; Kannike, K.; Marzola, L.; Raidal, M.; Vaskonen, V. Search for Dark Matter Effects on Gravitational Signals from Neutron Star Mergers. Phys. Lett. B 2018, 781, 607–610. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Nussey, S.; Whitehead, S. Endocrinology: An Integrated Approach; BIOS Scientific Publishers: Oxford, UK, 2001; Chapter 3, The thyroid gland. [Google Scholar]
- NRC. Diet and Health: Implications for Reducing Chronic Disease Risk; National Academies Press: Washington, DC, USA, 1989; 14, Trace Elements.
- McCall, A.S.; Cummings, C.F.; Bhave, G.; Vanacore, R.; Page-McCaw, A.; Hudson, B.G. Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 2014, 157, 1380–1392. [Google Scholar] [CrossRef]
- Hotokezaka, K.; Tanaka, M.; Kato, D.; Gaigalas, G. Tellurium emission line in kilonova AT 2017gfo. Mon. Not. R. Astron. Soc. Lett. 2023, 526, L155–L159. [Google Scholar] [CrossRef]
- Levan, A.; Gompertz, B.P.; Salafia, O.S.; Bulla, M.; Burns, E.; Hotokezaka, K.; Izzo, L.; Lamb, G.P.; Malesani, D.B.; Oates, S.R.; et al. Heavy element production in a compact object merger observed by JWST. Nature 2023, 626, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.; Fields, B.D.; Surman, R. Do we Owe our Existence to Gravitational Waves? arXiv 2024, arXiv:2402.03593. [Google Scholar] [CrossRef]
- Ghez, A.M.; Salim, S.; Weinberg, N.N.; Lu, J.R.; Do, T.; Dunn, J.K.; Matthews, K.; Morris, M.R.; Yelda, S.; Becklin, E.E.; et al. Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits. Astrophys. J. 2008, 689, 1044–1062. [Google Scholar] [CrossRef]
- Gillessen, S.; Eisenhauer, F.; Trippe, S.; Alexander, T.; Genzel, R.; Martins, F.; Ott, T. Monitoring stellar orbits around the Massive Black Hole in the Galactic Center. Astrophys. J. 2009, 692, 1075–1109. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar] [CrossRef]
- Akiyama, K. et al. [Event Horizon Telescope Collaboration] First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
- Ruan, W.H.; Guo, Z.K.; Cai, R.G.; Zhang, Y.Z. Taiji program: Gravitational-wave sources. Int. J. Mod. Phys. A 2020, 35, 2050075. [Google Scholar] [CrossRef]
- Luo, J.; Chen, L.S.; Duan, H.Z.; Gong, Y.G.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne gravitational wave detector. Class. Quant. Grav. 2016, 33, 035010. [Google Scholar] [CrossRef]
- Rees, M. Quasars. Observatory 1978, 98, 210–223. [Google Scholar]
- Woods, T.E.; Agarwal, B.; Bromm, V.; Bunker, A.; Chen, K.J.; Chon, S.; Ferrara, A.; Glover, S.C.; Haemmerlé, L.; Haiman, Z.; et al. Titans of the Early Universe: The Prato Statement on the Origin of the First Supermassive Black Holes. Publ. Astron. Soc. Austral. 2019, 36, e027. [Google Scholar] [CrossRef]
- Chilingarian, I.V.; Katkov, I.Y.; Zolotukhin, I.Y.; Grishin, K.A.; Beletsky, Y.; Boutsia, K.; Osip, D.J. A Population of Bona Fide Intermediate Mass Black Holes Identified as Low Luminosity Active Galactic Nuclei. Astrophys. J. 2018, 863, 1. [Google Scholar] [CrossRef]
- Dimopoulos, S.; Graham, P.W.; Hogan, J.M.; Kasevich, M.A.; Rajendran, S. An Atomic Gravitational Wave Interferometric Sensor (AGIS). Phys. Rev. D 2008, 78, 122002. [Google Scholar] [CrossRef]
- Buchmueller, O.; Ellis, J.; Schneider, U. Large-Scale Atom Interferometry for Fundamental Physics. arXiv 2023, arXiv:2306.17726. [Google Scholar] [CrossRef]
- Abe, M.; Adamson, P.; Borcean, M.; Bortoletto, D.; Bridges, K.; Carman, S.P.; Chattopadhyay, S.; Coleman, J.; Curfman, N.M.; DeRose, K.; et al. Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100). Quantum Sci. Technol. 2021, 6, 044003. [Google Scholar] [CrossRef]
- Canuel, B.; Bertoldi, A.; Amand, L.; di Borgo, E.P.; Chantrait, T.; Danquigny, C.; Dovale Álvarez, M.; Fang, B.; Freise, A.; Geiger, R.; et al. Exploring gravity with the MIGA large scale atom interferometer. Sci. Rep. 2018, 8, 14064. [Google Scholar] [CrossRef]
- Schlippert, D.; Meiners, C.; Rengelink, R.; Schubert, C.; Tell, D.; Wodey, É.; Zipfel, K.; Ertmer, W.; Rasel, E. Matter-wave interferometry for inertial sensing and tests of fundamental physics. In Proceedings of the CPT and Lorentz Symmetry: Proceedings of the Eighth Meeting on CPT and Lorentz Symmetry, Bloomington, IN, USA, 12–16 May 2019; World Scientific: Singapore, 2020; pp. 37–40. [Google Scholar]
- Zhan, M.S.; Wang, J.; Ni, W.T.; Gao, D.F.; Wang, G.; He, L.X.; Li, R.B.; Zhou, L.; Chen, X.; Zhong, J.Q.; et al. ZAIGA: Zhaoshan Long-baseline Atom Interferometer Gravitation Antenna. Int. J. Mod. Phys. 2019, D28, 1940005. [Google Scholar] [CrossRef]
- Geraci, A.A.; Derevianko, A. Sensitivity of atom interferometry to ultralight scalar field dark matter. Phys. Rev. Lett. 2016, 117, 261301. [Google Scholar] [CrossRef]
- Arvanitaki, A.; Graham, P.W.; Hogan, J.M.; Rajendran, S.; Van Tilburg, K. Search for light scalar dark matter with atomic gravitational wave detectors. Phys. Rev. D 2018, 97, 075020. [Google Scholar] [CrossRef]
- Brito, R.; Cardoso, V.; Pani, P. Superradiance; Springer: Berlin/Heidelberg, Germany, 2020; Volume 10. [Google Scholar]
- Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Arzoumanian, Z.; Baker, P.T.; Bécsy, B.; Blecha, L.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys. J. Lett. 2023, 951, L8. [Google Scholar] [CrossRef]
- Antoniadis, J.; Arumugam, P.; Arumugam, S.; Babak, S.; Bagchi, M.; Nielsen, A.S.B.; Bassa, C.G.; Bathula, A.; Berthereau, A.; Bonetti, M.; et al. The second data release from the European Pulsar Timing Array—III. Search for gravitational wave signals. Astron. Astrophys. 2023, 678, A50. [Google Scholar] [CrossRef]
- Reardon, D.J.; Zic, A.; Shannon, R.M.; Hobbs, G.B.; Bailes, M.; Di Marco, V.; Kapur, A.; Rogers, A.F.; Thrane, E.; Askew, J.; et al. Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophys. J. Lett. 2023, 951, L6. [Google Scholar] [CrossRef]
- Xu, H.; Chen, S.; Guo, Y.; Jiang, J.; Wang, B.; Xu, J.; Xue, Z.; Caballero, R.N.; Yuan, J.; Xu, Y.; et al. Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I. Res. Astron. Astrophys. 2023, 23, 075024. [Google Scholar] [CrossRef]
- Antoniadis, J.; Arzoumanian, Z.; Babak, S.; Bailes, M.; Bak Nielsen, A.S.; Baker, P.; Bassa, C.; Bécsy, B.; Berthereau, A.; Bonetti, M.; et al. The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background. Mon. Not. Roy. Astron. Soc. 2022, 510, 4873–4887. [Google Scholar] [CrossRef]
- Hellings, R.W.; Downs, G.S. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. Lett. 1983, 265, L39–L42. [Google Scholar] [CrossRef]
- Phinney, E.S. A Practical theorem on gravitational wave backgrounds. arXiv 2001, arXiv:0108028. [Google Scholar]
- Afzal, A.; Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Arzoumanian, Z.; Baker, P.T.; Bécsy, B.; Blanco-Pillado, J.J.; Blecha, L.; Boddy, K.K.; et al. The NANOGrav 15 yr Data Set: Search for Signals from New Physics. Astrophys. J. Lett. 2023, 951, L11. [Google Scholar] [CrossRef]
- Ellis, J.; Fairbairn, M.; Hütsi, G.; Raidal, J.; Urrutia, J.; Vaskonen, V.; Veermäe, H. Gravitational waves from supermassive black hole binaries in light of the NANOGrav 15-year data. Phys. Rev. D 2024, 109, L021302. [Google Scholar] [CrossRef]
- Kelley, L.Z.; Blecha, L.; Hernquist, L. Massive Black Hole Binary Mergers in Dynamical Galactic Environments. Mon. Not. Roy. Astron. Soc. 2017, 464, 3131–3157. [Google Scholar] [CrossRef]
- Antoniadis, J.; Arumugam, P.; Arumugam, S.; Babak, S.; Bagchi, M.; Nielsen, A.S.B.; Bassa, C.G.; Bathula, A.; Berthereau, A.; Bonetti, M.; et al. The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe. arXiv 2023, arXiv:2306.16227. [Google Scholar]
- Ellis, J.; Fairbairn, M.; Franciolini, G.; Hütsi, G.; Iovino, A.; Lewicki, M.; Raidal, M.; Urrutia, J.; Vaskonen, V.; Veermäe, H. What is the source of the PTA GW signal? Phys. Rev. D 2024, 109, 023522. [Google Scholar] [CrossRef]
- Basilakos, S.; Nanopoulos, D.V.; Papanikolaou, T.; Saridakis, E.N.; Tzerefos, C. Gravitational wave signatures of no-scale supergravity in NANOGrav and beyond. Phys. Lett. B 2024, 850, 138507. [Google Scholar] [CrossRef]
- Basilakos, S.; Nanopoulos, D.V.; Papanikolaou, T.; Saridakis, E.N.; Tzerefos, C. Induced gravitational waves from flipped SU(5) superstring theory at nHz. Phys. Lett. B 2024, 849, 138446. [Google Scholar] [CrossRef]
- Ellis, J.; Lewicki, M.; Lin, C.; Vaskonen, V. Cosmic superstrings revisited in light of NANOGrav 15-year data. Phys. Rev. D 2023, 108, 103511. [Google Scholar] [CrossRef]
- Ellis, J.; Fairbairn, M.; Hütsi, G.; Raidal, M.; Urrutia, J.; Vaskonen, V.; Veermäe, H. Prospects for future binary black hole gravitational wave studies in light of PTA measurements. Astron. Astrophys. 2023, 676, A38. [Google Scholar] [CrossRef]
- Ellis, J.; Fairbairn, M.; Urrutia, J.; Vaskonen, V. Probing supermassive black hole seed scenarios with gravitational wave measurements. arXiv 2023, arXiv:2312.02983. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellis, J. Gravitational Waves: Echoes of the Biggest Bangs Since the Big Bang and/or BSM Physics? Universe 2025, 11, 213. https://doi.org/10.3390/universe11070213
Ellis J. Gravitational Waves: Echoes of the Biggest Bangs Since the Big Bang and/or BSM Physics? Universe. 2025; 11(7):213. https://doi.org/10.3390/universe11070213
Chicago/Turabian StyleEllis, John. 2025. "Gravitational Waves: Echoes of the Biggest Bangs Since the Big Bang and/or BSM Physics?" Universe 11, no. 7: 213. https://doi.org/10.3390/universe11070213
APA StyleEllis, J. (2025). Gravitational Waves: Echoes of the Biggest Bangs Since the Big Bang and/or BSM Physics? Universe, 11(7), 213. https://doi.org/10.3390/universe11070213