Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (666)

Search Parameters:
Keywords = travelers account

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 681 KiB  
Article
Unlocking the Nexus: Personal Remittances and Economic Drivers Shaping Housing Prices Across EU Borders
by Maja Nikšić Radić, Siniša Bogdan and Marina Barkiđija Sotošek
World 2025, 6(3), 112; https://doi.org/10.3390/world6030112 (registering DOI) - 7 Aug 2025
Abstract
This study examines the impact of personal remittances on housing prices in European Union (EU) countries, while also accounting for a broader set of macroeconomic, demographic, and structural variables. Using annual data for 27 EU countries from 2007 to 2022, we employ a [...] Read more.
This study examines the impact of personal remittances on housing prices in European Union (EU) countries, while also accounting for a broader set of macroeconomic, demographic, and structural variables. Using annual data for 27 EU countries from 2007 to 2022, we employ a comprehensive panel econometric approach, including cross-sectional dependence tests, second-generation unit root tests, pooled mean group–autoregressive distributed lag (PMG-ARDL) estimation, and panel causality tests, to capture both short- and long-term dynamics. Our findings confirm that remittances significantly and positively influence long-term housing price levels, underscoring their relevance as a demand-side driver. Other key variables such as net migration, GDP, travel credit to GDP, economic freedom, and real effective exchange rates also contribute to housing price movements, while supply-side indicators, including production in construction and building permits, exert moderating effects. Moreover, real interest rates are shown to have a significant long-term negative effect on property prices. The analysis reveals key causal links from remittances, FDI, and net migration to housing prices, highlighting their structural and predictive roles. Bidirectional causality between economic freedom, housing output, and prices indicates reinforcing feedback effects. These findings position remittances as both a development tool and a key indicator of real estate dynamics. The study highlights complex interactions between international financial flows, demographic pressures, and domestic economic conditions and the need for policymakers to consider remittances and migrant investments in real estate strategies. These findings offer important implications for policymakers seeking to balance housing affordability, investment, and economic resilience in the EU context and key insights into the complexity of economic factors and real estate prices. Importantly, the analysis identifies several causal relationships, notably from remittances, FDI, and net migration toward housing prices, underscoring their predictive and structural importance. Bidirectional causality between economic freedom and house prices, as well as between housing output and pricing, reflects feedback mechanisms that further reinforce market dynamics. These results position remittances not only as a developmental instrument but also as a key signal for real estate market performance in recipient economies. Full article
Show Figures

Figure A1

15 pages, 915 KiB  
Article
Armenian Architectural Legacy in Henry F. B. Lynch’s Travel Writing
by Martin Harutyunyan and Gaiane Muradian
Arts 2025, 14(4), 86; https://doi.org/10.3390/arts14040086 - 4 Aug 2025
Viewed by 53
Abstract
The study of historical monuments within both architectural and literary frameworks reveals a dynamic interplay between scientific observation and artistic interpretation—a vital characteristic of travel writing/the travelogue. This approach, exemplified by British traveler and writer Henry Finnis Blosse Lynch (1862–1913), reflects how factual [...] Read more.
The study of historical monuments within both architectural and literary frameworks reveals a dynamic interplay between scientific observation and artistic interpretation—a vital characteristic of travel writing/the travelogue. This approach, exemplified by British traveler and writer Henry Finnis Blosse Lynch (1862–1913), reflects how factual detail and creative representation are seamlessly integrated in depictions of sites, landscapes, and cultural scenes. This case study highlights Lynch as a pioneering explorer who authored the first comprehensive volume on Armenian architecture and as a writer who vividly portrayed Armenian monuments through both verbal description and photographic imagery, becoming the first traveler to document such sites using photography. Additionally, this paper emphasizes the significance of Lynch’s detailed accounts of architectural monuments, churches, monasteries, cities, villages, populations, religious communities, and educational institutions in vivid language. The careful study of his work can contribute meaningfully to the investigation of the travelogue as a literary genre and to the preservation and protection of the architectural heritage of historical and contemporary Armenia, particularly in regions facing cultural or political threats. Full article
Show Figures

Figure 1

29 pages, 3508 KiB  
Article
Assessment of the Energy Efficiency of Individual Means of Transport in the Process of Optimizing Transport Environments in Urban Areas in Line with the Smart City Idea
by Grzegorz Augustyn, Jerzy Mikulik, Wojciech Lewicki and Mariusz Niekurzak
Energies 2025, 18(15), 4079; https://doi.org/10.3390/en18154079 - 1 Aug 2025
Viewed by 203
Abstract
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a [...] Read more.
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a case study—an assessment of the possibilities of changing mobility habits based on the idea of sustainable urban transport, taking into account the criterion of energy consumption of individual means of transport. The analyses are based on a comparison of selected means of transport occurring in the urban environment according to several key parameters for the optimization and efficiency of transport processes, i.e., cost, time, travel comfort, and impact on the natural environment, while simultaneously linking them to the criterion of energy consumption of individual means of transport. The analyzed parameters currently constitute the most important group of challenges in the area of shaping and planning optimal and sustainable urban transport. The presented research was used to indicate the connections between various areas of optimization of the transport process and the energy efficiency of individual modes of transport. Analyses have shown that the least time-consuming process of urban mobility is associated with the highest level of CO2 emissions and, at the same time, the highest level of energy efficiency. However, combining public transport with other means of transport can meet most of the transport expectations of city residents, also in terms of energy optimization. The research results presented in the article can contribute to the creation of a strategy for the development of the transport network based on the postulates of increasing the optimization and efficiency of individual means of transport in urban areas. At the same time, recognizing the criterion of energy intensity of means of transport as leading in the development of sustainable urban mobility. Thus, confirming the important role of existing transport systems in the process of shaping and planning sustainable urban mobility in accordance with the idea of Smart City. Full article
Show Figures

Figure 1

17 pages, 1584 KiB  
Article
What Determines Carbon Emissions of Multimodal Travel? Insights from Interpretable Machine Learning on Mobility Trajectory Data
by Guo Wang, Shu Wang, Wenxiang Li and Hongtai Yang
Sustainability 2025, 17(15), 6983; https://doi.org/10.3390/su17156983 - 31 Jul 2025
Viewed by 212
Abstract
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data [...] Read more.
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data and interpretable analytical frameworks. This study proposes a novel integration of high-frequency, real-world mobility trajectory data with interpretable machine learning to systematically identify the key drivers of carbon emissions at the individual trip level. Firstly, multimodal travel chains are reconstructed using continuous GPS trajectory data collected in Beijing. Secondly, a model based on Calculate Emissions from Road Transport (COPERT) is developed to quantify trip-level CO2 emissions. Thirdly, four interpretable machine learning models based on gradient boosting—XGBoost, GBDT, LightGBM, and CatBoost—are trained using transportation and built environment features to model the relationship between CO2 emissions and a set of explanatory variables; finally, Shapley Additive exPlanations (SHAP) and partial dependence plots (PDPs) are used to interpret the model outputs, revealing key determinants and their non-linear interaction effects. The results show that transportation-related features account for 75.1% of the explained variance in emissions, with bus usage being the most influential single factor (contributing 22.6%). Built environment features explain the remaining 24.9%. The PDP analysis reveals that substantial emission reductions occur only when the shares of bus, metro, and cycling surpass threshold levels of approximately 40%, 40%, and 30%, respectively. Additionally, travel carbon emissions are minimized when trip origins and destinations are located within a 10 to 11 km radius of the central business district (CBD). This study advances the field by establishing a scalable, interpretable, and behaviorally grounded framework to assess carbon emissions from multimodal travel, providing actionable insights for low-carbon transport planning and policy design. Full article
(This article belongs to the Special Issue Sustainable Transportation Systems and Travel Behaviors)
Show Figures

Figure 1

20 pages, 5843 KiB  
Article
Accurate and Robust Train Localization: Fusing Degeneracy-Aware LiDAR-Inertial Odometry and Visual Landmark Correction
by Lin Yue, Peng Wang, Jinchao Mu, Chen Cai, Dingyi Wang and Hao Ren
Sensors 2025, 25(15), 4637; https://doi.org/10.3390/s25154637 - 26 Jul 2025
Viewed by 384
Abstract
To overcome the limitations of current train positioning systems, including low positioning accuracy and heavy reliance on track transponders or GNSS signals, this paper proposes a novel LiDAR-inertial and visual landmark fusion framework. Firstly, an IMU preintegration factor considering the Earth’s rotation and [...] Read more.
To overcome the limitations of current train positioning systems, including low positioning accuracy and heavy reliance on track transponders or GNSS signals, this paper proposes a novel LiDAR-inertial and visual landmark fusion framework. Firstly, an IMU preintegration factor considering the Earth’s rotation and a LiDAR-inertial odometry factor accounting for degenerate states are constructed to adapt to railway train operating environments. Subsequently, a lightweight network based on YOLO improvement is used for recognizing reflective kilometer posts, while PaddleOCR extracts numerical codes. High-precision vertex coordinates of kilometer posts are obtained by jointly using LiDAR point cloud and an image detection box. Next, a kilometer post factor is constructed, and multi-source information is optimized within a factor graph framework. Finally, onboard experiments conducted on real railway vehicles demonstrate high-precision landmark detection at 35 FPS with 94.8% average precision. The proposed method delivers robust positioning within 5 m RMSE accuracy for high-speed, long-distance train travel, establishing a novel framework for intelligent railway development. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

24 pages, 74760 KiB  
Article
The Application of Mobile Devices for Measuring Accelerations in Rail Vehicles: Methodology and Field Research Outcomes in Tramway Transport
by Michał Urbaniak, Jakub Myrcik, Martyna Juda and Jan Mandrysz
Sensors 2025, 25(15), 4635; https://doi.org/10.3390/s25154635 - 26 Jul 2025
Viewed by 423
Abstract
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems [...] Read more.
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems require high-precision accelerometers and proprietary software—investments often beyond the reach of municipally funded tram operators. To this end, as part of the research project “Accelerometer Measurements in Rail Passenger Transport Vehicles”, pilot measurement campaigns were conducted in Poland on tram lines in Gdańsk, Toruń, Bydgoszcz, and Olsztyn. Off-the-shelf smartphones equipped with MEMS accelerometers and GPS modules, running the Physics Toolbox Sensor Suite Pro app, were used. Although the research employs widely known methods, this paper addresses part of the gap in affordable real-time monitoring by demonstrating that, in the future, equipment equipped solely with consumer-grade MEMS accelerometers can deliver sufficiently accurate data in applications where high precision is not critical. This paper presents an analysis of a subset of results from the Gdańsk tram network. Lateral (x) and vertical (z) accelerations were recorded at three fixed points inside two tram models (Pesa 128NG Jazz Duo and Düwag N8C), while longitudinal accelerations were deliberately omitted at this stage due to their strong dependence on driver behavior. Raw data were exported as CSV files, processed and analyzed in R version 4.2.2, and then mapped spatially using ArcGIS cartograms. Vehicle speed was calculated both via the haversine formula—accounting for Earth’s curvature—and via a Cartesian approximation. Over the ~7 km route, both methods yielded virtually identical results, validating the simpler approach for short distances. Acceleration histograms approximated Gaussian distributions, with most values between 0.05 and 0.15 m/s2, and extreme values approaching 1 m/s2. The results demonstrate that low-cost mobile devices, after future calibration against certified accelerometers, can provide sufficiently rich data for ride-comfort assessment and show promise for cost-effective condition monitoring of both track and rolling stock. Future work will focus on optimizing the app’s data collection pipeline, refining standard-based analysis algorithms, and validating smartphone measurements against benchmark sensors. Full article
(This article belongs to the Collection Sensors and Actuators for Intelligent Vehicles)
Show Figures

Figure 1

20 pages, 4310 KiB  
Article
Training Rarámuri Criollo Cattle to Virtual Fencing in a Chaparral Rangeland
by Sara E. Campa Madrid, Andres R. Perea, Micah Funk, Maximiliano J. Spetter, Mehmet Bakir, Jeremy Walker, Rick E. Estell, Brandon Smythe, Sergio Soto-Navarro, Sheri A. Spiegal, Brandon T. Bestelmeyer and Santiago A. Utsumi
Animals 2025, 15(15), 2178; https://doi.org/10.3390/ani15152178 - 24 Jul 2025
Viewed by 618
Abstract
Virtual fencing (VF) offers a promising alternative to conventional or electrified fences for managing livestock grazing distribution. This study evaluated the behavioral responses of 25 Rarámuri Criollo cows fitted with Nofence® collars in Pine Valley, CA, USA. The VF system was deployed [...] Read more.
Virtual fencing (VF) offers a promising alternative to conventional or electrified fences for managing livestock grazing distribution. This study evaluated the behavioral responses of 25 Rarámuri Criollo cows fitted with Nofence® collars in Pine Valley, CA, USA. The VF system was deployed in chaparral rangeland pastures. The study included a 14-day training phase followed by an 18-day testing phase. The collar-recorded variables, including audio warnings and electric pulses, animal movement, and daily typical behavior patterns of cows classified into a High or Low virtual fence response group, were compared using repeated-measure analyses with mixed models. During training, High-response cows (i.e., resistant responders) received more audio warnings and electric pulses, while Low-response cows (i.e., active responders) had fewer audio warnings and electric pulses, explored smaller areas, and exhibited lower mobility. Despite these differences, both groups showed a time-dependent decrease in the pulse-to-warning ratio, indicating increased reliance on audio cues and reduced need for electrical stimulation to achieve similar containment rates. In the testing phase, both groups maintained high containment with minimal reinforcement. The study found that Rarámuri Criollo cows can effectively adapt to virtual fencing technology, achieving over 99% containment rate while displaying typical diurnal patterns for grazing, resting, or traveling behavior. These findings support the technical feasibility of using virtual fencing in chaparral rangelands and underscore the importance of accounting for individual behavioral variability in behavior-based containment systems. Full article
Show Figures

Figure 1

21 pages, 872 KiB  
Article
Willingness to Pay for Station Access Transport: A Mixed Logit Model with Heterogeneous Travel Time Valuation
by Varameth Vichiensan, Vasinee Wasuntarasook, Sathita Malaitham, Atsushi Fukuda and Wiroj Rujopakarn
Sustainability 2025, 17(15), 6715; https://doi.org/10.3390/su17156715 - 23 Jul 2025
Viewed by 447
Abstract
This study estimates a willingness-to-pay (WTP) space mixed logit model to evaluate user valuations of travel time, safety, and comfort attributes associated with common access modes in Bangkok, including walking, motorcycle taxis, and localized minibuses. The model accounts for preference heterogeneity by specifying [...] Read more.
This study estimates a willingness-to-pay (WTP) space mixed logit model to evaluate user valuations of travel time, safety, and comfort attributes associated with common access modes in Bangkok, including walking, motorcycle taxis, and localized minibuses. The model accounts for preference heterogeneity by specifying random parameters for travel time. Results indicate that users—exhibiting substantial variation in preferences—place higher value on reducing motorcycle taxi travel time, particularly in time-constrained contexts such as peak-hour commuting, whereas walking is more acceptable in less pressured settings. Safety and comfort attributes—such as helmet availability, smooth pavement, and seating—significantly influence access mode choice. Notably, the WTP for helmet availability is estimated at THB 8.04 per trip, equivalent to approximately 40% of the typical fare for station access, underscoring the importance of safety provision. Women exhibit stronger preferences for motorized access modes, reflecting heightened sensitivity to environmental and social conditions. This study represents one of the first applications of WTP-space modeling for valuing informal station access transport in Southeast Asia, offering context-specific and segment-level estimates. These findings support targeted interventions—including differentiated pricing, safety regulations, and service quality enhancements—to strengthen first-/last-mile connectivity. The results provide policy-relevant evidence to advance equitable and sustainable transport, particularly in rapidly urbanizing contexts aligned with SDG 11.2. Full article
(This article belongs to the Special Issue Sustainable Transport and Land Use for a Sustainable Future)
Show Figures

Figure 1

10 pages, 2087 KiB  
Proceeding Paper
Terrain-Based Parameter Optimization for Zero Velocity Update Inertial Navigation Solutions
by Taylor Knuth and Paul Groves
Eng. Proc. 2025, 88(1), 67; https://doi.org/10.3390/engproc2025088067 - 18 Jul 2025
Viewed by 345
Abstract
This paper demonstrates the benefits of adapting Zero Velocity Update (ZVU) algorithms in foot-mounted pedestrian inertial navigation by finely tuning the algorithm to account for the type of terrain over which the pedestrian travels. Conventional ZVU algorithms for foot-mounted inertial navigation are designed [...] Read more.
This paper demonstrates the benefits of adapting Zero Velocity Update (ZVU) algorithms in foot-mounted pedestrian inertial navigation by finely tuning the algorithm to account for the type of terrain over which the pedestrian travels. Conventional ZVU algorithms for foot-mounted inertial navigation are designed for indoor use and do not account for differences from various terrains. Different terrains affect the natural pedestrian gait and how zero velocity intervals (ZVIs) are identified. By tuning the algorithm to account for accelerometer and gyroscope magnitude and walking cycle duration across four terrains (concrete, grass, pebbles and sand), the accuracy is improved up to 31.04%, dependent on the terrain, and is viable for outdoor use. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

16 pages, 995 KiB  
Article
An Upper Partial Moment Framework for Pathfinding Problem Under Travel Time Uncertainty
by Xu Zhang and Mei Chen
Systems 2025, 13(7), 600; https://doi.org/10.3390/systems13070600 - 17 Jul 2025
Viewed by 189
Abstract
Route planning under uncertain traffic conditions requires accounting for not only expected travel times but also the risk of late arrivals. This study proposes a mean-upper partial moment (MUPM) framework for pathfinding that explicitly considers travel time unreliability. The framework incorporates a benchmark [...] Read more.
Route planning under uncertain traffic conditions requires accounting for not only expected travel times but also the risk of late arrivals. This study proposes a mean-upper partial moment (MUPM) framework for pathfinding that explicitly considers travel time unreliability. The framework incorporates a benchmark travel time to measure the upper partial moment (UPM), capturing both the probability and severity of delays. By adjusting a risk parameter (θ), the model reflects different traveler risk preferences and unifies several existing reliability measures, including on-time arrival probability, late arrival penalty, and semi-variance. A bi-objective model is formulated to simultaneously minimize mean travel time and UPM. Theoretical analysis shows that the MUPM framework is consistent with the expected utility theory (EUT) and stochastic dominance theory (SDT), providing a behavioral foundation for the model. To efficiently solve the model, an SDT-based label-correcting algorithm is adapted, with a pre-screening step to reduce unnecessary pairwise path comparisons. Numerical experiments using GPS probe vehicle data from Louisville, Kentucky, USA, demonstrate that varying θ values lead to different non-dominated paths. Lower θ values emphasize frequent small delays but may overlook excessive delays, while higher θ values effectively capture the tail risk, aligning with the behavior of risk-averse travelers. The MUPM framework provides a flexible, behaviorally grounded, and computationally scalable approach to pathfinding under uncertainty. It holds strong potential for applications in traveler information systems, transportation planning, and network resilience analysis. Full article
(This article belongs to the Special Issue Data-Driven Urban Mobility Modeling)
Show Figures

Figure 1

26 pages, 2523 KiB  
Article
Optimization of a Cooperative Truck–Drone Delivery System in Rural China: A Sustainable Logistics Approach for Diverse Terrain Conditions
by Debao Dai, Hanqi Cai and Shihao Wang
Sustainability 2025, 17(14), 6390; https://doi.org/10.3390/su17146390 - 11 Jul 2025
Viewed by 495
Abstract
Driven by the rapid expansion of e-commerce in China, there is a growing demand for high-efficiency, sustainability-oriented logistics solutions in rural regions, particularly for the time-sensitive distribution of perishable agricultural commodities. Traditional logistics systems face considerable challenges in these geographically complex regions due [...] Read more.
Driven by the rapid expansion of e-commerce in China, there is a growing demand for high-efficiency, sustainability-oriented logistics solutions in rural regions, particularly for the time-sensitive distribution of perishable agricultural commodities. Traditional logistics systems face considerable challenges in these geographically complex regions due to limited infrastructure and extended travel distances. To address these issues, this study proposes an intelligent cooperative delivery system that integrates automated drones with conventional trucks, aiming to enhance both operational efficiency and environmental sustainability. A mixed-integer linear programming (MILP) model is developed to account for the diverse terrain characteristics of rural China, including forest, lake, and mountain regions. To optimize distribution strategies, the model incorporates an improved Fuzzy C-Means (FCM) algorithm combined with a hybrid genetic simulated annealing algorithm. The performance of three transportation modes, namely truck-only, drone-only, and truck–drone integrated delivery, was evaluated and compared. Sustainability-related externalities, such as carbon emission costs and delivery delay penalties, are quantitatively integrated into the total transportation cost objective function. Simulation results indicate that the cooperative delivery model is especially effective in lake regions, significantly reducing overall costs while improving environmental performance and service quality. This research offers practical insights into the development of sustainable intelligent transportation systems tailored to the unique challenges of rural logistics. Full article
Show Figures

Figure 1

21 pages, 5921 KiB  
Article
Coverage Path Planning Based on Region Segmentation and Path Orientation Optimization
by Tao Yang, Xintong Du, Bo Zhang, Xu Wang, Zhenpeng Zhang and Chundu Wu
Agriculture 2025, 15(14), 1479; https://doi.org/10.3390/agriculture15141479 - 10 Jul 2025
Viewed by 318
Abstract
To address the operational demands of irregular farmland with fixed obstacles, this study proposes a full-coverage path planning framework that integrates UAV-based 3D perception and angle-adaptive optimization. First, digital orthophoto maps (DOMs) and digital elevation models (DEMs) were reconstructed from low-altitude aerial imagery. [...] Read more.
To address the operational demands of irregular farmland with fixed obstacles, this study proposes a full-coverage path planning framework that integrates UAV-based 3D perception and angle-adaptive optimization. First, digital orthophoto maps (DOMs) and digital elevation models (DEMs) were reconstructed from low-altitude aerial imagery. The feasible working region was constructed by shrinking field boundaries inward and dilating obstacle boundaries outward. This ensured sufficient safety margins for machinery operation. Next, segmentation angles were scanned from 0° to 180° to minimize the number and irregularity of sub-regions; then a two-level simulation search was performed over 0° to 360° to optimize the working direction for each sub-region. For each sub-region, the optimal working direction was selected based on four criteria: the number of turns, travel distance, coverage redundancy, and planning time. Between sub-regions, a closed-loop interconnection path was generated using eight-directional A* search combined with polyline simplification, arc fitting, Chaikin subdivision, and B-spline smoothing. Simulation results showed that a 78° segmentation yielded four regular sub-regions, achieving 99.97% coverage while reducing the number of turns, travel distance, and planning time by up to 70.42%, 23.17%, and 85.6%. This framework accounts for field heterogeneity and turning radius constraints, effectively mitigating path redundancy in conventional fixed-angle methods. This framework enables general deployment in agricultural field operations and facilitates extensions toward collaborative and energy-optimized task planning. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 3953 KiB  
Article
Real-Time Collision Warning System for Over-Height Ships at Bridges Based on Spatial Transformation
by Siyang Gu and Jian Zhang
Buildings 2025, 15(13), 2367; https://doi.org/10.3390/buildings15132367 - 5 Jul 2025
Viewed by 256
Abstract
Rapid identification of vessel height within the navigable space beneath bridges is crucial for ensuring bridge safety. To prevent bridge collisions caused by vessels exceeding their height limits, this article introduces a real-time warning framework for excessive vessel height based on video spatial [...] Read more.
Rapid identification of vessel height within the navigable space beneath bridges is crucial for ensuring bridge safety. To prevent bridge collisions caused by vessels exceeding their height limits, this article introduces a real-time warning framework for excessive vessel height based on video spatial transformation. The specific contributions include the following: (1) A spatial transformation-based method for locating vessel coordinates in the channel using buoys as control points, employing laser scanning to obtain their world coordinates from a broad channel range, and mapping the pixel coordinates of the buoys from side channel images to the world coordinates of the channel space, thus achieving pixel-level positioning of the vessel’s waterline intersection in the channel. (2) For video images, a key point recognition network for vessels based on attention mechanisms is developed to obtain pixel coordinates of the vessel’s waterline and top, and to capture the posture and position of multiple vessels in real time. (3) Analyzing the posture of vessels traveling in various directions within the channel, the method accounts for the pixel distance of spatial transformation control points and vessel height to determine vessel positioning coordinates, solve for the vessel’s height above water, and combine with real-time waterline height to enable over-height vessel collision warnings for downstream channel bridges. The method has been deployed in actual navigational scenarios beneath bridges, with the average error in vessel height estimation controlled within 10 cm and an error rate below 0.8%. The proposed approach enables real-time automatic estimation of vessel height in terms of computational speed, making it more suitable for practical engineering applications that demand both real-time performance and system stability. The system exhibits outstanding performance in terms of accuracy, stability, and engineering applicability, providing essential technical support for intelligent bridge safety management. Full article
Show Figures

Figure 1

13 pages, 208 KiB  
Article
Against Erasure: Balam Rodrigo’s Central American Book of the Dead
by Jeannine Marie Pitas
Humanities 2025, 14(7), 139; https://doi.org/10.3390/h14070139 - 3 Jul 2025
Viewed by 537
Abstract
“Know that in place of a heart I carry a tongue,” writes the unnamed poetic speaker of Mexican poet Balam Rodrigo’s Central American Book of the Dead. This documentary poetic text alternates between the voices of Central American immigrants journeying north and [...] Read more.
“Know that in place of a heart I carry a tongue,” writes the unnamed poetic speaker of Mexican poet Balam Rodrigo’s Central American Book of the Dead. This documentary poetic text alternates between the voices of Central American immigrants journeying north and a subtle yet bold revision of Fray Bartolomé de las Casas’s A Brief Account of the Destruction of the Indies, with some words from the Friar’s 1552 text replaced by other words that reflect the realities of twenty-first century immigrants traveling north. Interspersed with de la Casas’s texts are persona poems in which we are invited to listen to the ghosts of immigrants who have suffered tragic deaths. This essay explores the ways that, crossing borders between time and space while drawing strength from his Christian faith, Rodrigo resists the erasure of Indigenous peoples, honors their journeys, and invites readers into solidarity. Full article
(This article belongs to the Special Issue Hybridity and Border Crossings in Contemporary North American Poetry)
20 pages, 433 KiB  
Review
Mental Health Impacts of the COVID-19 Pandemic on College Students: A Literature Review with Emphasis on Vulnerable and Minority Populations
by Anna-Koralia Sakaretsanou, Maria Bakola, Taxiarchoula Chatzeli, Georgios Charalambous and Eleni Jelastopulu
Healthcare 2025, 13(13), 1572; https://doi.org/10.3390/healthcare13131572 - 30 Jun 2025
Viewed by 512
Abstract
The COVID-19 pandemic significantly disrupted higher education worldwide, imposing strict isolation measures, transitioning learning online, and exacerbating existing social and economic inequalities. This literature review examines the pandemic’s impact on the mental health of college students, with a focus on those belonging to [...] Read more.
The COVID-19 pandemic significantly disrupted higher education worldwide, imposing strict isolation measures, transitioning learning online, and exacerbating existing social and economic inequalities. This literature review examines the pandemic’s impact on the mental health of college students, with a focus on those belonging to minority groups, including racial, ethnic, migrant, gender, sexuality-based, and low-income populations. While elevated levels of anxiety, depression, and loneliness were observed across all students, findings indicate that LGBTQ+ and low-income students faced the highest levels of psychological distress, due to compounded stressors such as family rejection, unsafe home environments, and financial insecurity. Racial and ethnic minority students reported increased experiences of discrimination and reduced access to culturally competent mental healthcare. International and migrant students were disproportionately affected by travel restrictions, legal uncertainties, and social disconnection. These disparities underscore the need for higher education institutions to implement targeted, inclusive mental health policies that account for the unique needs of at-risk student populations during health crises. Full article
Show Figures

Figure 1

Back to TopTop