Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,837)

Search Parameters:
Keywords = trapping mechanisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2410 KiB  
Article
Predictive Modeling and Simulation of CO2 Trapping Mechanisms: Insights into Efficiency and Long-Term Sequestration Strategies
by Oluchi Ejehu, Rouzbeh Moghanloo and Samuel Nashed
Energies 2025, 18(15), 4071; https://doi.org/10.3390/en18154071 (registering DOI) - 31 Jul 2025
Abstract
This study presents a comprehensive analysis of CO2 trapping mechanisms in subsurface reservoirs by integrating numerical reservoir simulations, geochemical modeling, and machine learning techniques to enhance the design and evaluation of carbon capture and storage (CCS) strategies. A two-dimensional reservoir model was [...] Read more.
This study presents a comprehensive analysis of CO2 trapping mechanisms in subsurface reservoirs by integrating numerical reservoir simulations, geochemical modeling, and machine learning techniques to enhance the design and evaluation of carbon capture and storage (CCS) strategies. A two-dimensional reservoir model was developed to simulate CO2 injection dynamics under realistic geomechanical and geochemical conditions, incorporating four primary trapping mechanisms: residual, solubility, mineralization, and structural trapping. To improve computational efficiency without compromising accuracy, advanced machine learning models, including random forest, gradient boosting, and decision trees, were deployed as smart proxy models for rapid prediction of trapping behavior across multiple scenarios. Simulation outcomes highlight the critical role of hysteresis, aquifer dynamics, and producer well placement in enhancing CO2 trapping efficiency and maintaining long-term storage stability. To support the credibility of the model, a qualitative validation framework was implemented by comparing simulation results with benchmarked field studies and peer-reviewed numerical models. These comparisons confirm that the modeled mechanisms and trends align with established CCS behavior in real-world systems. Overall, the study demonstrates the value of combining traditional reservoir engineering with data-driven approaches to optimize CCS performance, offering scalable, reliable, and secure solutions for long-term carbon sequestration. Full article
Show Figures

Figure 1

33 pages, 2684 KiB  
Review
Biocompatible Natural Polymer-Based Amorphous Solid Dispersion System Improving Drug Physicochemical Properties, Stability, and Efficacy
by Arif Budiman, Helen Ivana, Kelly Angeline Huang, Stella Aurelia Huang, Mazaya Salwa Nadhira, Agus Rusdin and Diah Lia Aulifa
Polymers 2025, 17(15), 2059; https://doi.org/10.3390/polym17152059 - 28 Jul 2025
Viewed by 275
Abstract
Poor aqueous solubility still disqualifies many promising drug candidates at late stages of development. Amorphous solid dispersion (ASD) technology solves this limitation by trapping the active pharmaceutical ingredient (API) in a high-energy, non-crystalline form, yet most marketed ASDs rely on synthetic carriers such [...] Read more.
Poor aqueous solubility still disqualifies many promising drug candidates at late stages of development. Amorphous solid dispersion (ASD) technology solves this limitation by trapping the active pharmaceutical ingredient (API) in a high-energy, non-crystalline form, yet most marketed ASDs rely on synthetic carriers such as polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC), which raise concerns about long-term biocompatibility, residual solvent load, and sustainability. This study summarizes the emergence of natural polymer-based ASDs (NP-ASDs), along with the bond mechanism reactions through which these natural polymers enhance drug performance. As a result, NP-ASDs exhibit improved physical stability and significantly enhance the dissolution rate of poorly soluble drugs. The structural features of natural polymers play a critical role in stabilizing the amorphous state and modulating drug release profiles. These findings support the growing potential of NP-ASDs as sustainable and biocompatible alternatives to synthetic carriers in pharmaceutical development. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 3786 KiB  
Article
Atomistic Mechanisms and Temperature-Dependent Criteria of Trap Mutation in Vacancy–Helium Clusters in Tungsten
by Xiang-Shan Kong, Fang-Fang Ran and Chi Song
Materials 2025, 18(15), 3518; https://doi.org/10.3390/ma18153518 - 27 Jul 2025
Viewed by 243
Abstract
Helium (He) accumulation in tungsten—widely used as a plasma-facing material in fusion reactors—can lead to clustering, trap mutation, and eventual formation of helium bubbles, critically impacting material performance. To clarify the atomic-scale mechanisms governing this process, we conducted systematic molecular statics and molecular [...] Read more.
Helium (He) accumulation in tungsten—widely used as a plasma-facing material in fusion reactors—can lead to clustering, trap mutation, and eventual formation of helium bubbles, critically impacting material performance. To clarify the atomic-scale mechanisms governing this process, we conducted systematic molecular statics and molecular dynamics simulations across a wide range of vacancy cluster sizes (n = 1–27) and temperatures (500–2000 K). We identified the onset of trap mutation through abrupt increases in tungsten atomic displacement. At 0 K, the critical helium-to-vacancy (He/V) ratio required to trigger mutation was found to scale inversely with cluster size, converging to ~5.6 for large clusters. At elevated temperatures, thermal activation lowered the mutation threshold and introduced a distinct He/V stability window. Below this window, clusters tend to dissociate; above it, trap mutation occurs with near certainty. This critical He/V ratio exhibits a linear dependence on temperature and can be described by a size- and temperature-dependent empirical relation. Our results provide a quantitative framework for predicting trap mutation behavior in tungsten, offering key input for multiscale models and informing the design of radiation-resistant materials for fusion applications. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

17 pages, 3396 KiB  
Article
Morphological Regulation of Bi5O7I for Enhanced Efficiency of Rhodamine B Degradation Under Visible-Light
by Xi Yang, Jiahuali Lu, Lei Zhou, Qin Wang, Fan Wu, Yuwei Pan, Ming Zhang and Guangyu Wu
Catalysts 2025, 15(8), 714; https://doi.org/10.3390/catal15080714 - 26 Jul 2025
Viewed by 268
Abstract
Photocatalysis is considered to be a very promising method for the degradation of organic matter, because its process of degrading organic matter is safe. However, some problems such as weak absorption of visible light and electronic-hole recombination easily are obviously drawbacks. In this [...] Read more.
Photocatalysis is considered to be a very promising method for the degradation of organic matter, because its process of degrading organic matter is safe. However, some problems such as weak absorption of visible light and electronic-hole recombination easily are obviously drawbacks. In this paper, three different morphologies of Bi5O7I (nanoball, nanosheet, and nanotube) were successfully prepared by solvothermal method, which was used for the degradation of Rhodamine B (RhB). Comparing the photocatalytic effect of three different morphologies and concluding that the optimal morphology was the Bi5O7I nanoball (97.8% RhB degradation within 100 min), which was analysed by the characterisation tests. Free radical trapping experiments were tested, which revealed that the main roles in the degradation process were singlet oxygen (1O2) and holes (h+). The degradation pathways of RhB were analyzed in detail. The photo/electrochemical parts of the three materials were analysed and explained the degradation mechanism of RhB degradation. This investigate provides a very valuable guide for the development of multiple morphologies of bismuth-based photocatalysts for removing organic dyes in aquatic environment. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

14 pages, 4268 KiB  
Article
Experimental Investigation into the Mechanisms of Liquid-Phase Damage in Shale Oil Reservoirs: A Case Study from the Leijia Area
by Tuan Gu, Chenglong Ma, Yugang Li, Feng Zhao, Xiaoxiang Wang and Jinze Xu
Energies 2025, 18(15), 3990; https://doi.org/10.3390/en18153990 - 25 Jul 2025
Viewed by 194
Abstract
The fourth member of the Shahejie Formation in the Leijia area of the western depression of the Liaohe Oilfield represents a typical shale oil reservoir. However, post-hydraulic fracturing operations in this region are often hindered by significant discrepancies in well productivity, low fracturing [...] Read more.
The fourth member of the Shahejie Formation in the Leijia area of the western depression of the Liaohe Oilfield represents a typical shale oil reservoir. However, post-hydraulic fracturing operations in this region are often hindered by significant discrepancies in well productivity, low fracturing fluid flowback efficiency, and an unclear understanding of reservoir damage mechanisms during fracturing. These challenges have become major bottlenecks restricting the efficient exploration and development of shale oil in this block. In this study, a series of laboratory-simulated experiments were conducted to investigate the primary mechanisms of formation damage induced by fracturing fluids in shale oil reservoirs. An experimental methodology for evaluating reservoir damage caused by fracturing fluids was developed accordingly. Results indicate that guar gum-based fracturing fluids exhibit good compatibility with formation-sensitive minerals, resulting in relatively minor damage. In contrast, capillary trapping of the aqueous phase leads to moderate damage, while polymer adsorption and retention cause low to moderate impairment. The damage associated with fracturing fluid invasion into fractures is found to be moderately high. Overall, the dominant damage mechanisms of guar gum fracturing fluids in the Shahejie Member 4 shale oil reservoir are identified as aqueous phase trapping and polymer adsorption. Based on the identified damage mechanisms, corresponding optimization strategies for fracturing fluid formulations are proposed. The findings of this research provide critical insights for improving shale oil development strategies in the Leijia area. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

15 pages, 1211 KiB  
Review
Epigenetic Regulation of Neutrophils in ARDS
by Jordan E. Williams, Zannatul Mauya, Virginia Walkup, Shaquria Adderley, Colin Evans and Kiesha Wilson
Cells 2025, 14(15), 1151; https://doi.org/10.3390/cells14151151 - 25 Jul 2025
Viewed by 240
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory pulmonary condition that remains at alarming rates of fatality, with neutrophils playing a vital role in its pathogenesis. Beyond their classical antimicrobial functions, neutrophils contribute to pulmonary injury via the release of reactive oxygen species, [...] Read more.
Acute respiratory distress syndrome (ARDS) is an inflammatory pulmonary condition that remains at alarming rates of fatality, with neutrophils playing a vital role in its pathogenesis. Beyond their classical antimicrobial functions, neutrophils contribute to pulmonary injury via the release of reactive oxygen species, proteolytic enzymes, and neutrophil extracellular traps (NETs). To identify targets for treatment, it was found that epigenetic mechanisms, including histone modifications, hypomethylation, hypermethylation, and non-coding RNAs, regulate neutrophil phenotypic plasticity, survival, and inflammatory potential. It has been identified that neutrophils in ARDS patients exhibit abnormal methylation patterns and are associated with altered gene expression and prolonged neutrophil activation, thereby contributing to sustained inflammation. Histone citrullination, particularly via PAD4, facilitates NETosis, while histone acetylation status modulates chromatin accessibility and inflammatory gene expression. MicroRNAs have also been shown to regulate neutrophil activity, with miR-223 and miR-146a potentially being biomarkers and therapeutic targets. Neutrophil heterogeneity, as evidenced by distinct subsets such as low-density neutrophils (LDNs), varies across ARDS etiologies, including COVID-19. Single-cell RNA sequencing analyses, including the use of trajectory analysis, have revealed transcriptionally distinct neutrophil clusters with differential activation states. These studies support the use of epigenetic inhibitors, including PAD4, HDAC, and DNMT modulators, in therapeutic intervention. While the field has been enlightened with new findings, challenges in translational application remain an issue due to species differences, lack of stratification tools, and heterogeneity in ARDS presentation. This review describes how targeting neutrophil epigenetic regulators could help regulate hyperinflammation, making epigenetic modulation a promising area for precision therapeutics in ARDS. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

37 pages, 4312 KiB  
Review
Neutrophils and NETs in Pathophysiology and Treatment of Inflammatory Bowel Disease
by Marina Ortega-Zapero, Raquel Gomez-Bris, Ines Pascual-Laguna, Angela Saez and Jose M. Gonzalez-Granado
Int. J. Mol. Sci. 2025, 26(15), 7098; https://doi.org/10.3390/ijms26157098 - 23 Jul 2025
Viewed by 392
Abstract
Inflammatory Bowel Disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease (CD), results from dysregulated immune responses that drive chronic intestinal inflammation. Neutrophils, as key effectors of the innate immune system, contribute to IBD through multiple mechanisms, including the release of reactive [...] Read more.
Inflammatory Bowel Disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease (CD), results from dysregulated immune responses that drive chronic intestinal inflammation. Neutrophils, as key effectors of the innate immune system, contribute to IBD through multiple mechanisms, including the release of reactive oxygen species (ROS), pro-inflammatory cytokines, and neutrophil extracellular traps (NETs). NETs are web-like structures composed of DNA, histones, and associated proteins including proteolytic enzymes and antimicrobial peptides. NET formation is increased in IBD and has a context-dependent role; under controlled conditions, NETs support antimicrobial defense and tissue repair, whereas excessive or dysregulated NETosis contributes to epithelial injury, barrier disruption, microbial imbalance, and thrombotic risk. This review examines the roles of neutrophils and NETs in IBD. We summarize recent single-cell and spatial-omics studies that reveal extensive neutrophil heterogeneity in the inflamed gut. We then address the dual role of neutrophils in promoting tissue damage—through cytokine release, immune cell recruitment, ROS production, and NET formation—and in supporting microbial clearance and mucosal healing. We also analyze the molecular mechanisms regulating NETosis, as well as the pathways involved in NET degradation and clearance. Focus is given to the ways in which NETs disrupt the epithelial barrier, remodel the extracellular matrix, contribute to thrombosis, and influence the gut microbiota. Finally, we discuss emerging therapeutic strategies aimed at restoring NET homeostasis—such as PAD4 inhibitors, NADPH oxidase and ROS pathway modulators, and DNase I—while emphasizing the need to preserve antimicrobial host defenses. Understanding neutrophil heterogeneity and NET-related functions may facilitate the development of new therapies and biomarkers for IBD, requiring improved detection tools and integrated multi-omics and clinical data. Full article
Show Figures

Figure 1

30 pages, 9107 KiB  
Article
Numerical Far-Field Investigation into Guided Waves Interaction at Weak Interfaces in Hybrid Composites
by Saurabh Gupta, Mahmood Haq, Konstantin Cvetkovic and Oleksii Karpenko
J. Compos. Sci. 2025, 9(8), 387; https://doi.org/10.3390/jcs9080387 - 22 Jul 2025
Viewed by 196
Abstract
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the [...] Read more.
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the performance of their constituents in demanding applications. Despite these advantages, inspecting such thin, layered structures remains a significant challenge, particularly when they are difficult or impossible to access. As with any new invention, they always come with challenges. This study examines the effectiveness of the fundamental anti-symmetric Lamb wave mode (A0) in detecting weak interfacial defects within Carall laminates, a type of hybrid fiber metal laminate (FML). Delamination detectability is analyzed in terms of strong wave dispersion observed downstream of the delaminated sublayer, within a region characterized by acoustic distortion. A three-dimensional finite element (FE) model is developed to simulate mode trapping and full-wavefield local displacement. The approach is validated by reproducing experimental results reported in prior studies, including the author’s own work. Results demonstrate that the A0 mode is sensitive to delamination; however, its lateral resolution depends on local position, ply orientation, and dispersion characteristics. Accurately resolving the depth and extent of delamination remains challenging due to the redistribution of peak amplitude in the frequency domain, likely caused by interference effects in the acoustically sensitive delaminated zone. Additionally, angular scattering analysis reveals a complex wave behavior, with most of the energy concentrated along the centerline, despite transmission losses at the metal-composite interfaces in the Carall laminate. The wave interaction with the leading and trailing edges of the delaminations is strongly influenced by the complex wave interference phenomenon and acoustic mismatched regions, leading to an increase in dispersion at the sublayers. Analytical dispersion calculations clarify how wave behavior influences the detectability and resolution of delaminations, though this resolution is constrained, being most effective for weak interfaces located closer to the surface. This study offers critical insights into how the fundamental anti-symmetric Lamb wave mode (A0) interacts with delaminations in highly attenuative, multilayered environments. It also highlights the challenges in resolving the spatial extent of damage in the long-wavelength limit. The findings support the practical application of A0 Lamb waves for structural health assessment of hybrid composites, enabling defect detection at inaccessible depths. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

24 pages, 73556 KiB  
Article
Neural Network-Guided Smart Trap for Selective Monitoring of Nocturnal Pest Insects in Agriculture
by Joel Hinojosa-Dávalos, Miguel Ángel Robles-García, Melesio Gutiérrez-Lomelí, Ariadna Berenice Flores Jiménez and Cuauhtémoc Acosta Lúa
Agriculture 2025, 15(14), 1562; https://doi.org/10.3390/agriculture15141562 - 21 Jul 2025
Viewed by 270
Abstract
Insect pests remain a major threat to agricultural productivity, particularly in open-field cropping systems where conventional monitoring methods are labor-intensive and lack scalability. This study presents the design, implementation, and field evaluation of a neural network-guided smart trap specifically developed to monitor and [...] Read more.
Insect pests remain a major threat to agricultural productivity, particularly in open-field cropping systems where conventional monitoring methods are labor-intensive and lack scalability. This study presents the design, implementation, and field evaluation of a neural network-guided smart trap specifically developed to monitor and selectively capture nocturnal insect pests under real agricultural conditions. The proposed trap integrates light and rain sensors, servo-controlled mechanical gates, and a single-layer perceptron neural network deployed on an ATmega-2560 microcontroller by Microchip Technology Inc. (Chandler, AZ, USA). The perceptron processes normalized sensor inputs to autonomously decide, in real time, whether to open or close the gate, thereby enhancing the selectivity of insect capture. The system features a removable tray containing a food-based attractant and yellow and green LEDs designed to lure target species such as moths and flies from the orders Lepidoptera and Diptera. Field trials were conducted between June and August 2023 in La Barca, Jalisco, Mexico, under diverse environmental conditions. Captured insects were analyzed and classified using the iNaturalist platform, with the successful identification of key pest species including Tetanolita floridiana, Synchlora spp., Estigmene acrea, Sphingomorpha chlorea, Gymnoscelis rufifasciata, and Musca domestica, while minimizing the capture of non-target organisms such as Carpophilus spp., Hexagenia limbata, and Chrysoperla spp. Statistical analysis using the Kruskal–Wallis test confirmed significant differences in capture rates across environmental conditions. The results highlight the potential of this low-cost device to improve pest monitoring accuracy, and lay the groundwork for the future integration of more advanced AI-based classification and species recognition systems targeting nocturnal Lepidoptera and other pest insects. Full article
(This article belongs to the Special Issue Design and Development of Smart Crop Protection Equipment)
Show Figures

Figure 1

21 pages, 4597 KiB  
Article
Preparation of Non-Covalent BPTCD/g-C3N4 Heterojunction Photocatalysts and Photodegradation of Organic Dyes Under Solar Irradiation
by Xing Wei, Gaopeng Jia, Ru Chen and Yalong Zhang
Nanomaterials 2025, 15(14), 1131; https://doi.org/10.3390/nano15141131 - 21 Jul 2025
Viewed by 267
Abstract
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is [...] Read more.
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is an all-organic photocatalyst with significantly improved photocatalytic performance compared with g-C3N4. BPTCD/g-C3N4-60% was able to effectively degrade MO solution (10 mg/L) to 99.9% and 82.8% in 60 min under full spectrum and visible light. The TOC measurement results indicate that MO can ultimately be decomposed into H2O and CO2 through photocatalytic action. The photodegradation of methyl orange by BPTCD/g-C3N4 composite materials under sunlight is mainly attributed to the successful construction of the heterojunction structure and its excellent π-π stacking effect. Superoxide radicals (O2) were found to be the main active species, while OH and h+ played a secondary role. The synthesised BPTCD/g-C3N4 also showed excellent stability in the activity of photodegradation of MO in wastewater, with the performance remaining above 90% after three cycles. The mechanism of the photocatalytic removal of MO dyes was also investigated by the trap agent experiments. Additionally, BPTCD/g-C3N4-60% demonstrated exceptional photodegradation performance in the degradation of methylene blue (MB). BPTCD/g-C3N4 heterojunctions have great potential to degrade organic pollutants in wastewater under solar irradiation conditions. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

17 pages, 2234 KiB  
Article
Impact of Live Ligilactobacillus salivarius CCFM1332 and Its Postbiotics on Porphyromonas gingivalis Colonization, Alveolar Bone Resorption and Inflammation in a Rat Model of Periodontitis
by Qing Hong, Yu Ren, Xin Tang, Bingyong Mao, Qiuxiang Zhang, Jianxin Zhao, Shumao Cui and Zhenmin Liu
Microorganisms 2025, 13(7), 1701; https://doi.org/10.3390/microorganisms13071701 - 20 Jul 2025
Viewed by 358
Abstract
Periodontitis is a chronic inflammatory disease caused by periodontopathic bacteria such as Porphyromonas gingivalis (P. gingivalis), which leads to alveolar bone destruction and systemic inflammation. Emerging evidence suggests that probiotics may mitigate periodontal pathology. To systematically evaluate the alleviative effects and [...] Read more.
Periodontitis is a chronic inflammatory disease caused by periodontopathic bacteria such as Porphyromonas gingivalis (P. gingivalis), which leads to alveolar bone destruction and systemic inflammation. Emerging evidence suggests that probiotics may mitigate periodontal pathology. To systematically evaluate the alleviative effects and mechanisms of different forms of probiotics, including live bacteria and postbiotics, on periodontitis, we first screened and identified Ligilactobacillus salivarius CCFM1332 (L. salivarius CCFM1332) through in vitro antibacterial and anti-biofilm activity assays. Subsequently, we investigated its therapeutic potential in a rat model of experimental periodontitis. The results demonstrated that both live L. salivarius CCFM1332 (PL) and its postbiotics (PP) significantly reduced the gingival index (GI) and probing depth (PD) in rats, while suppressing oral colonization of P. gingivalis. Serum pro-inflammatory cytokine levels were differentially modulated: the PL group exhibited reductions in interleukin-17A (IL-17A), interleukin-6 (IL-6), and interleukin-1β (IL-1β) by 39.31% (p < 0.01), 17.26% (p < 0.05), and 14.74% (p < 0.05), respectively, whereas the PP group showed decreases of 34.79% (p < 0.05), 29.85% (p < 0.01), and 19.74% (p < 0.05). Micro-computed tomography (Micro-CT) analysis demonstrated that compared to the periodontitis model group (PM), the PL group significantly reduced alveolar bone loss (ABL) by 30.1% (p < 0.05) and increased bone volume fraction (BV/TV) by 49.5% (p < 0.01). In contrast, while the PP group similarly decreased ABL by 32.7% (p < 0.05), it resulted in a 40.4% improvement in BV/TV (p > 0.05). Histological assessments via hematoxylin and eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining confirmed that both the PL group and the PP group alleviated structural damage to alveolar bone-supporting tissues and reduced osteoclast-positive cell counts. This study suggests that live L. salivarius CCFM1332 and its postbiotics reduce alveolar bone resorption and attachment loss in rats through antibacterial and anti-inflammatory pathways, thereby alleviating periodontal inflammation in rats. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

16 pages, 1980 KiB  
Review
Analyzing the Blueprint: Exploring the Molecular Profile of Metastasis and Therapeutic Resistance
by Guadalupe Avalos-Navarro, Martha Patricia Gallegos-Arreola, Emmanuel Reyes-Uribe, Luis Felipe Jave Suárez, Gildardo Rivera-Sánchez, Héctor Rangel-Villalobos, Ana Luisa Madriz-Elisondo, Itzae Adonai Gutiérrez Hurtado, Juan José Varela-Hernández and Ramiro Ramírez-Patiño
Int. J. Mol. Sci. 2025, 26(14), 6954; https://doi.org/10.3390/ijms26146954 - 20 Jul 2025
Viewed by 337
Abstract
Metastases are the leading cause of cancer-related deaths. The spread of neoplasms involves multiple mechanisms, with metastatic tumors exhibiting molecular behaviors distinct from their primary counterparts. The key hallmarks of metastatic lesions include chromosomal instability, copy number alterations (CNAs), and a reduced degree [...] Read more.
Metastases are the leading cause of cancer-related deaths. The spread of neoplasms involves multiple mechanisms, with metastatic tumors exhibiting molecular behaviors distinct from their primary counterparts. The key hallmarks of metastatic lesions include chromosomal instability, copy number alterations (CNAs), and a reduced degree of subclonality. Furthermore, metabolic adaptations such as enhanced glycogen synthesis and storage, as well as increased fatty acid oxidation (FAO), play a critical role in sustaining energy supply in metastases and contributing to chemoresistance. FAO promotes the infiltration of macrophages into the tumor, where they polarize to the M2 phenotype, which is associated with immune suppression and tissue remodeling. Additionally, the tumor microbiome and the action of cytotoxic drugs trigger neutrophil extravasation through inflammatory pathways. Chemoresistant neutrophils in the tumor microenvironment can suppress effector lymphocyte activation and facilitate the formation of neutrophil extracellular traps (NETs), which are linked to drug resistance. This article examines the genomic features of metastatic tumors, along with the metabolic and immunological dynamics within the metastatic tumor microenvironment, and their contribution to drug resistance. It also discusses the molecular mechanisms underlying resistance to chemotherapeutic agents commonly used in the treatment of metastatic cancer. Full article
(This article belongs to the Special Issue Breast Cancer: From Pathophysiology to Novel Therapies)
Show Figures

Figure 1

45 pages, 11380 KiB  
Article
Application of Multi-Strategy Controlled Rime Algorithm in Path Planning for Delivery Robots
by Haokai Lv, Qian Qian, Jiawen Pan, Miao Song, Yong Feng and Yingna Li
Biomimetics 2025, 10(7), 476; https://doi.org/10.3390/biomimetics10070476 - 19 Jul 2025
Viewed by 399
Abstract
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME [...] Read more.
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME optimization algorithm. Through in-depth analysis, we identified several major drawbacks in the standard RIME algorithm for path planning: insufficient global exploration capability in the initial stages, a lack of diversity in the hard RIME search mechanism, and oscillatory phenomena in soft RIME step size adjustment. These issues often lead to undesirable phenomena in path planning, such as local optima traps, path redundancy, or unsmooth trajectories. To address these limitations, this study proposes the Multi-Strategy Controlled Rime Algorithm (MSRIME), whose innovation primarily manifests in three aspects: first, it constructs a multi-strategy collaborative optimization framework, utilizing an infinite folding Fuch chaotic map for intelligent population initialization to significantly enhance the diversity of solutions; second, it designs a cooperative mechanism between a controlled elite strategy and an adaptive search strategy that, through a dynamic control factor, autonomously adjusts the strategy activation probability and adaptation rate, expanding the search space while ensuring algorithmic convergence efficiency; and finally, it introduces a cosine annealing strategy to improve the step size adjustment mechanism, reducing parameter sensitivity and effectively preventing path distortions caused by abrupt step size changes. During the algorithm validation phase, comparative tests were conducted between two groups of algorithms, demonstrating their significant advantages in optimization capability, convergence speed, and stability. Further experimental analysis confirmed that the algorithm’s multi-strategy framework effectively suppresses the impact of coordinate and dimensional differences on path quality during iteration, making it more suitable for delivery robot path planning scenarios. Ultimately, path planning experimental results across various Building Coverage Rate (BCR) maps and diverse application scenarios show that MSRIME exhibits superior performance in key indicators such as path length, running time, and smoothness, providing novel technical insights and practical solutions for the interdisciplinary research between intelligent logistics and computer science. Full article
Show Figures

Figure 1

27 pages, 4412 KiB  
Review
Coupling Agents in Acoustofluidics: Mechanisms, Materials, and Applications
by Shenhao Deng, Yiting Yang, Menghui Huang, Cheyu Wang, Enze Guo, Jingui Qian and Joshua E.-Y. Lee
Micromachines 2025, 16(7), 823; https://doi.org/10.3390/mi16070823 - 19 Jul 2025
Viewed by 357
Abstract
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of [...] Read more.
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of acoustic microfluidics, this review aims to serve as an all-in-one reference on the role of acoustic coupling agents and relevant considerations pertinent to acoustofluidic devices for anyone working in or seeking to enter the field of disposable acoustofluidic devices. To this end, this review seeks to summarize and categorize key aspects of acoustic couplants in the implementation of acoustofluidic devices by examining their underlying physical mechanisms, material classifications, and core applications of coupling agents in acoustofluidics. Gel-based coupling agents are particularly favored for their long-term stability, high coupling efficiency, and ease of preparation, making them integral to acoustic flow control applications. In practice, coupling agents facilitate microparticle trapping, droplet manipulation, and biosample sorting through acoustic impedance matching and wave mode conversion (e.g., Rayleigh-to-Lamb waves). Their thickness and acoustic properties (sound velocity, attenuation coefficient) further modulate sound field distribution to optimize acoustic radiation forces and thermal effects. However, challenges remain regarding stability (evaporation, thermal degradation) and chip compatibility. Further aspects of research into gel-based agents requiring attention include multilayer coupled designs, dynamic thickness control, and enhancing biocompatibility to advance acoustofluidic technologies in point-of-care diagnostics and high-throughput analysis. Full article
(This article belongs to the Special Issue Recent Development of Micro/Nanofluidic Devices, 2nd Edition)
Show Figures

Figure 1

19 pages, 1728 KiB  
Article
Synergistic Mechanisms of Ecological Compensation and Targeted Poverty Alleviation in Functional Zones: Theoretical Expansion and Practical Implications
by Mingjie Yang, Xiaodong Zhang, Rui Guo, Yaolong Li and Fanglei Zhong
Sustainability 2025, 17(14), 6583; https://doi.org/10.3390/su17146583 - 18 Jul 2025
Viewed by 307
Abstract
Against the backdrop of ecological civilization construction and regional coordinated development strategies, functional zone (MFOZ) planning guides national spatial development through differentiated policies. However, a prominent conflict exists between the ecological protection responsibilities and regional development rights in restricted and prohibited development zones, [...] Read more.
Against the backdrop of ecological civilization construction and regional coordinated development strategies, functional zone (MFOZ) planning guides national spatial development through differentiated policies. However, a prominent conflict exists between the ecological protection responsibilities and regional development rights in restricted and prohibited development zones, leading to a vicious cycle of “ecological protection → restricted development → poverty exacerbation”. This paper focuses on the synergistic mechanisms between ecological compensation and targeted poverty alleviation. Based on the capability approach and sustainable development goals (SDGs), it analyzes the dialectical relationship between the two in terms of goal coupling, institutional design, and practical pathways. The study finds that ecological compensation can break the “ecological poverty trap” through the internalization of externalities and the enhancement of livelihood capabilities. Nevertheless, challenges remain, including low compensation standards, unbalanced benefit distribution, and insufficient legalization. Through case studies of the compensation reform in the water source area of Southern Shaanxi, China, and the Common Agricultural Policy (CAP) of the European Union, this paper proposes the construction of a long-term mechanism integrating differentiated compensation standards, market-based fund integration, legal guarantees, and capability enhancement. The research emphasizes the need for institutional innovation to balance ecological protection and livelihood improvement, promoting a transition from “blood transfusion” compensation to “hematopoietic” development, thereby offering a Chinese solution for global sustainable development. Full article
Show Figures

Figure 1

Back to TopTop