Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = transverse slots

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6052 KiB  
Article
W-Band Transverse Slotted Frequency Scanning Antenna for 6G Wireless Communication and Space Applications
by Hurrem Ozpinar, Sinan Aksimsek and Nurhan Türker Tokan
Aerospace 2025, 12(6), 493; https://doi.org/10.3390/aerospace12060493 - 30 May 2025
Viewed by 502
Abstract
Terahertz (THz) antennas are among the critical components required for enabling the transition to sixth-generation (6G) wireless networks. Although research on THz antennas for 6G communication systems has garnered significant attention, a standardized antenna design has yet to be established. This study introduces [...] Read more.
Terahertz (THz) antennas are among the critical components required for enabling the transition to sixth-generation (6G) wireless networks. Although research on THz antennas for 6G communication systems has garnered significant attention, a standardized antenna design has yet to be established. This study introduces the modeling of a full-metal transverse slotted waveguide antenna (TSWA) for 6G and beyond. The proposed antenna operates across the upper regions of the V-band and the entire W-band. Designed and simulated using widely adopted full-wave analysis tools, the antenna achieves a peak gain of 17 dBi and a total efficiency exceeding 90% within the band. Additionally, it exhibits pattern-reconfigurable capabilities, enabling main lobe beam steering between 5° and 68° with low side lobe levels. Simulations are conducted to assess the power handling capability (PHC) of the antenna, including both the peak (PPHC) and average (APHC) values. The results indicate that the antenna can handle 17 W of APHC within the W-band and 3.4 W across the 60–160 GHz range. Furthermore, corona discharge and multipaction analyses are performed to evaluate the antenna’s power handling performance under extreme operating conditions. These features make the proposed TSWA a strong candidate for high-performance space applications, 6G communication systems, and beyond. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

19 pages, 4538 KiB  
Article
Design and Test of the Outside-Filling Chinese Chive Adjustable-Capacity Precision Seed-Metering Device
by Guoqiang Dun, Yuhan Wei, Xinxin Ji, Shang Gao, Yingyi Pei, Yang He and Chao Ma
Agronomy 2025, 15(3), 622; https://doi.org/10.3390/agronomy15030622 - 28 Feb 2025
Cited by 1 | Viewed by 581
Abstract
In order to innovate the planting mode and improve the quality of Chinese chive, we designed an outside-filling Chinese chive adjustable-capacity precision seed-metering device with an adjustable number of sown seeds. The diameter, number of shaped holes, and seed slot parameters of the [...] Read more.
In order to innovate the planting mode and improve the quality of Chinese chive, we designed an outside-filling Chinese chive adjustable-capacity precision seed-metering device with an adjustable number of sown seeds. The diameter, number of shaped holes, and seed slot parameters of the seeding plate were designed based on the physical characteristics and agronomic planting requirements of the Haoji Chinese chive. A simulation of the seed-metering device’s seeding process was carried out using EDEM software. To carry out the quadratic general rotary combination design experiment, use seed slot diameter and seed slot depth as test factors, longitudinal concentration and transverse concentration as evaluation indexes, and carry out the bench validation test and comparison test under the optimal parameter combination. In the simulation test, the factors affecting the longitudinal concentration in order of priority were seed slot depth and seed slot diameter, and the factors affecting the transverse concentration in order of priority were seed slot diameter and seed slot depth. The optimal parameters were seed slot diameter of 3.075 mm, seed slot depth of 3.323 mm, longitudinal concentration of 0.563, and transverse concentration of 0.634. In the bench test, the relative error of longitudinal concentration was 3.20%, the relative error of transverse concentration was 2.47%, and the number of seeds sown per hole was linearly correlated with the length of the seed slot. The results of the bench test and simulation test are close to each other, which proves that the outside-filling Chinese chive adjustable-capacity precision seed-metering device has a better sowing effect, and the number of sowing grains can be adjusted. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

19 pages, 2276 KiB  
Article
A Broadband Mode Converter Antenna for Terahertz Communications
by Biswash Paudel, Xue Jun Li and Boon-Chong Seet
Electronics 2025, 14(3), 551; https://doi.org/10.3390/electronics14030551 - 29 Jan 2025
Viewed by 951
Abstract
The rise of artificial intelligence (AI) necessitates ultra-fast computing, with on-chip terahertz (THz) communication emerging as a key enabler. It offers high bandwidth, low power consumption, dense interconnects, support for multi-core architectures, and 3D circuit integration. However, transitioning between different waveguides remains a [...] Read more.
The rise of artificial intelligence (AI) necessitates ultra-fast computing, with on-chip terahertz (THz) communication emerging as a key enabler. It offers high bandwidth, low power consumption, dense interconnects, support for multi-core architectures, and 3D circuit integration. However, transitioning between different waveguides remains a major challenge in THz systems. In this paper, we propose a THz band mode converter that converts from a rectangular waveguide (RWG) (WR-0.43) in TE10 mode to a substrate-integrated waveguide (SIW) in TE20 mode. The converter comprises a tapered waveguide, a widened waveguide, a zigzag antenna, and an aperture coupling slot. The zigzag antenna effectively captures the electromagnetic (EM) energy from the RWG, which is then coupled to the aperture slot. This coupling generates a quasi-slotline mode for the electric field (E-field) along the longitudinal side of the aperture, exhibiting odd symmetry akin to the SIW’s TE20 mode. Consequently, the TE20 mode is excited in the symmetrical plane of the SIW and propagates transversely. Our work details the mode transition principle through simulations of the EM field distribution and model optimization. A back-to-back RWG TE10-to-TE10 mode converter is designed, demonstrating an insertion loss of approximately 5 dB over the wide frequency range band of 2.15–2.36 THz, showing a return loss of 10 dB. An on-chip antenna is proposed which is fed by a single higher-order mode of the SIW, achieving a maximum gain of 4.49 dB. Furthermore, a balun based on the proposed converter is designed, confirming the presence of the TE20 mode in the SIW. The proposed mode converter demonstrates its feasibility for integration into a THz-band high-speed circuit due to its efficient mode conversion and compact planar design. Full article
(This article belongs to the Special Issue Broadband Antennas and Antenna Arrays)
Show Figures

Figure 1

16 pages, 5222 KiB  
Article
High-Performance CP Magneto-Electric Dipole Antenna Fed by Printed Ridge Gap Waveguide at Millimeter-Wave
by Zahra Mousavirazi, Mohamed Mamdouh M. Ali, Peyman PourMohammadi, Peng Fei and Tayeb A. Denidni
Sensors 2024, 24(24), 8183; https://doi.org/10.3390/s24248183 - 21 Dec 2024
Cited by 2 | Viewed by 1401
Abstract
This paper presents a high-performance circularly polarized (CP) magneto-electric (ME) dipole antenna optimized for wideband millimeter-wave (mm-wave) frequencies, specifically targeting advancements in 5G and 6G technologies. The CP antenna is excited through a transverse slot in a printed ridge gap waveguide (PRGW), which [...] Read more.
This paper presents a high-performance circularly polarized (CP) magneto-electric (ME) dipole antenna optimized for wideband millimeter-wave (mm-wave) frequencies, specifically targeting advancements in 5G and 6G technologies. The CP antenna is excited through a transverse slot in a printed ridge gap waveguide (PRGW), which operates in a quasi-transverse electromagnetic (Q-TEM) mode. Fabricated on Rogers RT 3003 substrate, selected for its low-loss and cost-effective properties at high frequencies, the design significantly enhances both impedance and axial ratio (AR) bandwidths. The antenna achieves an impressive impedance bandwidth of 31% (25.24–34.50 GHz) and an AR bandwidth of 24.9% (26.40–33.91 GHz), with a peak gain of up to 8.4 dBic, demonstrating a high cross-polarization level. The experimental results validate the high-performance characteristics of the antenna, making it a robust candidate for next-generation wireless communication systems requiring CP capabilities. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 13601 KiB  
Article
A Multi-Aperture Technique for Longitudinal Miniaturization of UWB 3 dB Dual-Layer SIW Coupler
by Ahmad Bilal, Abdul Hadee, Yash H. Shah, Sohom Bhattacharjee and Choon Sik Cho
Sensors 2024, 24(11), 3376; https://doi.org/10.3390/s24113376 - 24 May 2024
Cited by 1 | Viewed by 1137
Abstract
Microwave couplers are used in large numbers in beamforming networks, and their miniaturization can lead to a significant size reduction in the overall phased array. While the miniaturization of 3 dB couplers in the transverse direction (width) has been given considerable attention in [...] Read more.
Microwave couplers are used in large numbers in beamforming networks, and their miniaturization can lead to a significant size reduction in the overall phased array. While the miniaturization of 3 dB couplers in the transverse direction (width) has been given considerable attention in the literature, there is minimal to no information on reducing coupler length. This is because of the trade-off between aperture length, bandwidth and coupling strength. The Bethe–Hole theory requires adding multiple apertures in the longitudinal direction for wide bandwidth, thus increasing the device length. Another factor is the aperture size, which determines the coupling strength and puts additional strain on the compactness of a 3 dB coupler. Contrariwise, this paper proposes to merge two weak (and hence compact) coupling mechanisms to design a wideband 3 dB coupler. This is achieved by using a longitudinal rectangular slot and three cross-slots in the transverse direction. Because of weak coupling, the slot sizes are smaller than a conventional 3 dB coupler, hence yielding a device whose length is less than one guided wavelength (λg) without compromising the bandwidth. The presented coupler is 0.63 λg in length, which is smaller than the state-of-the-art while maintaining a fractional bandwidth of 37% that is comparable to half-mode substrate integrated waveguide (HMSIW) couplers. Full article
Show Figures

Figure 1

19 pages, 5991 KiB  
Article
Wire Electrical Discharge Machining of AISI304 and AISI316 Alloys: A Comparative Assessment of Machining Responses, Empirical Modeling and Multi-Objective Optimization
by Mona A. Aboueleaz, Noha Naeim, Islam H. Abdelgaliel, Mohamed F. Aly and Ahmed Elkaseer
J. Manuf. Mater. Process. 2023, 7(6), 194; https://doi.org/10.3390/jmmp7060194 - 3 Nov 2023
Cited by 5 | Viewed by 2560
Abstract
This research investigates the multi-response of both material removal rate (MRR) and surface roughness (Ra) for the wire electrical discharge machining (WEDM) of two stainless steel alloys: AISI 304 and AISI 316. Experimental results are utilized to compare the machining responses obtained for [...] Read more.
This research investigates the multi-response of both material removal rate (MRR) and surface roughness (Ra) for the wire electrical discharge machining (WEDM) of two stainless steel alloys: AISI 304 and AISI 316. Experimental results are utilized to compare the machining responses obtained for AISI 316 with those obtained for AISI 304, as previously reported in the literature. The experimental work is conducted through a full factorial experimental design of five running parameters with different levels: applied voltage, transverse feed, pulse-on/pulse-off times and current intensity. The machined workpieces are analyzed using an image processing technique in order to evaluate the size of cut slots to allow the calculation of the MRR. Followed by the characterization of the surface roughness along the side walls of the slots. Different mathematical regression techniques were developed to represent the multi-response of both materials using the MATLAB regression toolbox. It was found that WEDM process parameters have a fuzzy influence on the responses of both material models. This allowed for multi-objective optimization of the regression models using four different techniques: multi-objective genetic algorithm (MOGA), multi-objective pareto search algorithm (MOPSA), weighted value grey wolf optimizer (WVGWO) and osprey optimization algorithm (OOA). The optimization results reveal that the optimal WEDM parameters of each response are inconsistent to the others. Hence, the optimal results are considered a compromise between the best results of different responses. Noteworthily, the multi-objective pareto search algorithm outperformed the other candidates. Eventually, the optimal results of both materials share the high voltage, high transverse feed rate and low pulse-off time parameters; however, AISI 304 requires low pulse-on time and current intensity levels while AISI 316 optimal results entail higher pulse-on time and current levels. Full article
(This article belongs to the Topic Advanced Manufacturing and Surface Technology)
Show Figures

Figure 1

16 pages, 2977 KiB  
Article
Fracture Toughness Testing of Brittle Laminated Geomaterials Using Hollow Double-Wing Slotted Specimens
by Zilong Yao, Zidong Fan, Qin Zhou, Xiaofang Nie and Li Ren
Materials 2023, 16(20), 6754; https://doi.org/10.3390/ma16206754 - 18 Oct 2023
Viewed by 1219
Abstract
The fracture toughness of shale is a key parameter guiding hydraulic fracturing design and optimization. The hollow double-wing slotted (HDWS) specimen is a typical specimen configuration for measuring the mode I fracture toughness of rock. The calibration of the shape factor (f [...] Read more.
The fracture toughness of shale is a key parameter guiding hydraulic fracturing design and optimization. The hollow double-wing slotted (HDWS) specimen is a typical specimen configuration for measuring the mode I fracture toughness of rock. The calibration of the shape factor (f) is the basis for accurately obtaining the fracture toughness of rocks. In this study, the influences of crack length, hole size, and the anisotropy of elastic parameters on f for specimens with three typical bedding orientations—arrester (A), divider (D), and short-transverse (ST) orientations—are systematically investigated using finite element software. The numerical simulation results support the following findings. The mode I f increases monotonically with an increase in hole size. The influence of crack length on f varies depending on hole sizes. Under different bedding orientations, significant anisotropy in f was observed. In addition, the degree of anisotropy in Young’s modulus has a major impact on f, which is related to the bedding orientation of the specimen. The apparent shear modulus ratio has relatively little influence on f. As the hole size and crack length increase, the influence of the anisotropy of elastic parameters on f increases. Based on numerical calculations, hydraulic fracturing experiments were conducted on HDWS specimens of Longmaxi shale with three bedding orientations, and the results showed that the peak pressure and fracture toughness of the samples in the ST direction were the lowest, while those in the A direction were the highest. Full article
(This article belongs to the Special Issue Advances in Natural Rocks and Their Composite Materials)
Show Figures

Figure 1

13 pages, 7877 KiB  
Article
Integrity Assessment of High-Performance PVC Pipes for Thermal Wells
by Sayyad Zahid Qamar, Tasneem Pervez and Farooq Al-Jahwari
Polymers 2023, 15(17), 3593; https://doi.org/10.3390/polym15173593 - 29 Aug 2023
Cited by 1 | Viewed by 2053
Abstract
In wells with high-viscosity crude oil, steam injection is used to improve the fluidity of the heavy oil. Screens made of steel are employed for sand control, with corrosion being a serious problem. Non-metallic pipe materials, such as novel high-strength PVC, are therefore [...] Read more.
In wells with high-viscosity crude oil, steam injection is used to improve the fluidity of the heavy oil. Screens made of steel are employed for sand control, with corrosion being a serious problem. Non-metallic pipe materials, such as novel high-strength PVC, are therefore being tried out. This paper presents the results of an integrity assessment of large-diameter hard PVC pipes under compressive loading. Plain, built-up, and slotted pipes were subjected to a 3-month aging process in saline water. Strain gauge sets were used for dynamic testing of longitudinal and transverse deformations. Values of fracture strength, total deformation, and anisotropy (Poisson’s ratio) were extracted from the stress–strain graphs and analyzed. Upon aging in saline water, the stiffness of all pipes increased and was the highest for slotted pipes. Maximum stress after soaking was reduced by 11–12%. The ductility was the highest for plain pipes and the lowest for built-up pipes. Poisson’s ratio remained almost constant for all pipes and aging conditions. The good news for field applications is that overall, aging had only a minor impact on the major compressive properties. The main conclusion was that corrosion-prone steel pipes and sand screens can be successfully replaced by corrosion-free high-strength PVC pipes and screens for water transport applications in thermal wells. This work provides a scientific basis for the structural integrity assessment of this new PVC and helps field engineers in the proper pre-deployment selection of pipes for target oilfields. Full article
(This article belongs to the Special Issue Plastics II)
Show Figures

Figure 1

17 pages, 8061 KiB  
Article
Millimeter-Wave Conformal Directional Leaky-Wave Antenna Based on Substrate-Integrated Waveguide
by Yuchen Ma, Xiaoya Shi, Junhong Wang, Yu Zhang, Fanqi Sun and Fan Wu
Electronics 2023, 12(14), 3111; https://doi.org/10.3390/electronics12143111 - 18 Jul 2023
Cited by 2 | Viewed by 2022
Abstract
Conformal antennas have been widely used in many fields due to their advantages of low air resistance and better visual appearance. In this paper, an arced conformal leaky-wave antenna (LWA) for a designable directional beam is proposed. The antenna is achieved based on [...] Read more.
Conformal antennas have been widely used in many fields due to their advantages of low air resistance and better visual appearance. In this paper, an arced conformal leaky-wave antenna (LWA) for a designable directional beam is proposed. The antenna is achieved based on a substrate-integrated waveguide (SIW). On the upper surface, a series of non-uniform transverse slots are etched. In order to guide the design of the antenna, as another key contribution of this work, a theoretical model for the traveling-wave structure is established. Using the model, the radiation property of the LWA is analyzed. In addition, by inputting the desired beam direction, the structural parameters of the LWA can be generated through the model. To verify the performance of the antenna and the model, an LWA prototype working at 28 GHz was fabricated and tested in a microwave anechoic chamber. The experimental results are in good agreement with the simulation results. The antenna achieved a gain of 9.96 dBi with cambered surface area of 1.89 λ02. The proposed method may be a promising candidate for conformal wireless communication applications. Full article
(This article belongs to the Special Issue Recent Advances in Microwave Engineering: Design and Application)
Show Figures

Figure 1

20 pages, 10227 KiB  
Article
Effects of Gas Thermophysical Properties on the Full-Range Endwall Film Cooling of a Turbine Vane
by Jian Liu, Mengyao Xu and Wenxiong Xi
Aerospace 2023, 10(7), 592; https://doi.org/10.3390/aerospace10070592 - 28 Jun 2023
Cited by 3 | Viewed by 1700
Abstract
To protect turbine endwall from heat damage of hot exhaust gas, film cooling is the most significant method. The complex vortex structures on the endwall, such as the development of horseshoe vortices and transverse flow, affects cooling coverage on the endwall. In this [...] Read more.
To protect turbine endwall from heat damage of hot exhaust gas, film cooling is the most significant method. The complex vortex structures on the endwall, such as the development of horseshoe vortices and transverse flow, affects cooling coverage on the endwall. In this study, the effects of gas thermophysical properties on full-range endwall film cooling of a turbine vane are investigated. Three kinds of gas thermophysical properties models are considered, i.e., the constant property gas model, ideal gas model, and real gas model, with six full-range endwall film cooling holes patterns based on different distribution principles. From the results, when gas thermophysical properties are considered, the coolant coverage in the pressure side (PS)-vane junction region is improved in Pattern B, Pattern D, Pattern E, and Pattern F, which are respectively designed based on the passage middle gap, limiting streamlines, heat transfer coefficients (HTCs), and four-holes pattern. Endwall η distribution is mainly determined by relative ratio of ejecting velocity and density of the hot gas and the coolant. For the cooling holes on the endwall with an injection angle of 30°, the density ratio is more dominant in determining the coolant coverage. At the injection angle of 45°, i.e., the slot region, the ejecting velocity is more dominant in determining the coolant coverage. When the ejecting velocity Is large enough from the slot, the coolant coverage on the downstream endwall region is also improved. Full article
(This article belongs to the Special Issue Heat Transfer, Combustion and Flow Dynamics in Propulsion Systems)
Show Figures

Figure 1

13 pages, 5456 KiB  
Article
Broad Stopband, Low-Loss, and Ultra-Compact Dual-Mode Bandpass Filter Based on HMSIRC
by Rusan Kumar Barik, Slawomir Koziel and Anna Pietrenko-Dabrowska
Electronics 2023, 12(13), 2831; https://doi.org/10.3390/electronics12132831 - 26 Jun 2023
Cited by 4 | Viewed by 1671
Abstract
In this investigation, an ultra-compact dual-mode bandpass filter (BPF) with a wide stopband response is realized by using a half-mode substrate-integrated rectangular cavity (HMSIRC). The HMSIRC resonator is designed with a cavity that is rectangular in shape and has metallic vias along three [...] Read more.
In this investigation, an ultra-compact dual-mode bandpass filter (BPF) with a wide stopband response is realized by using a half-mode substrate-integrated rectangular cavity (HMSIRC). The HMSIRC resonator is designed with a cavity that is rectangular in shape and has metallic vias along three of the sides. The fourth side is open-ended and contains microstrip feed lines. For the purpose of constructing a magnetic wall, a rectangular slot is cut into each of the HMSIRC’s three edges. In order to produce an electrical wall that may generate a variety of resonances, the side with the open edges is provided with a single metallic via in the center. After that, a second-order BPF is generated by loading a transverse slot in the middle of the BPF, which enables independent frequency regulation of the mode frequencies. The eigen-mode analysis; field distributions; coupling matrix; and full-wave simulation of the proposed HMSIRC filter topology are used to develop the working principle of the filter. A second-order BPF is realized, constructed, and experimentally validated in order to provide evidence that the theory is correct. The BPF prototype achieves satisfactory performance thanks to its compact footprint of 0.028 λg2; its broad passband of 15.9%; its low insertion loss of 0.41 dB; and its wide stopband of 4.36 f0 with a rejection level greater than 20 dB. Both the measured and EM-simulated responses of the BPF are very consistent with one another. Full article
(This article belongs to the Special Issue Substrate Integrated Circuits and Antennas)
Show Figures

Figure 1

12 pages, 5003 KiB  
Article
A Compact Polarization MMI Combiner Using Silicon Slot-Waveguide Structures
by Omer Brand, Benjamin Wolftson and Dror Malka
Micromachines 2023, 14(6), 1203; https://doi.org/10.3390/mi14061203 - 6 Jun 2023
Cited by 10 | Viewed by 2378
Abstract
The study of designing a compact transverse electric (TE)/transverse magnetic (TM) polarization multimode interference (MMI) combiner based on silicon slot-waveguide technology is proposed for solving the high demands for high-speed ability alongside more energy power and minimizing the environmental impact of power consumption, [...] Read more.
The study of designing a compact transverse electric (TE)/transverse magnetic (TM) polarization multimode interference (MMI) combiner based on silicon slot-waveguide technology is proposed for solving the high demands for high-speed ability alongside more energy power and minimizing the environmental impact of power consumption, achieving a balance between high-speed performance and energy efficiency has become an important consideration in an optical communication system. The MMI coupler has a significant difference in light coupling (beat-length) for TM and TE at 1550 nm wavelength. By controlling the light propagation mechanism inside the MMI coupler, a lower order of mode can be obtained which can lead to a shorter device. The polarization combiner was solved using the full-vectorial beam propagation method (FV-BPM), and the main geometrical parameters were analyzed using Matlab codes. Results show that after a short light propagation of 16.15 μm, the device can function as TM or TE combiner polarization with an excellent extinction ratio of 10.94 dB for TE mode and 13.08 dB for TM mode with low insertion losses of 0.76 dB (TE) and 0.56 dB (TM) and the combiner function well over the C-band spectrum. The polarization combiner also has a robust MMI coupler length tolerance of 400 nm. These attributes make it a good candidate for using this proposed device in photonic integrated circuits for improving power ability at the transmitter system. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Physics 2023)
Show Figures

Figure 1

12 pages, 3731 KiB  
Article
High-Efficiency and Compact Polarization-Insensitive Multi-Segment Linear Silicon Nitride Edge Coupler
by Yuhao Zhang, Yi Liu, Xuhua Cao, Li Wang, Chunyuan Mu, Ming Li, Ninghua Zhu and Wei Chen
Photonics 2023, 10(5), 510; https://doi.org/10.3390/photonics10050510 - 27 Apr 2023
Cited by 10 | Viewed by 4201
Abstract
Edge couplers are widely utilized in photonic integrated circuits and are vital for ensuring efficient chip-to-fiber coupling. In this paper, we present a high-efficiency and compact polarization-insensitive multi-segment linear silicon nitride edge coupler for coupling to high numerical aperture fibers. By optimizing the [...] Read more.
Edge couplers are widely utilized in photonic integrated circuits and are vital for ensuring efficient chip-to-fiber coupling. In this paper, we present a high-efficiency and compact polarization-insensitive multi-segment linear silicon nitride edge coupler for coupling to high numerical aperture fibers. By optimizing the thickness of the up cladding and introducing air slots in the transverse direction, we have further modified the limiting effect of the mode field. This innovative edge coupler scheme boasts a compact structure and is compatible with existing mature standard processes, with a total length of only 38 μm. We numerically demonstrate that the proposed edge coupler exhibits a low coupling loss of 0.22 dB/0.31 dB for TE/TM modes at λ = 1550 nm. Furthermore, the proposed coupler displays high wavelength insensitivity within the range of 1400–1850 nm and maintains a coupling loss of less than 0.2 dB with a manufacturing deviation of ±20 nm. Full article
(This article belongs to the Topic Optical and Optoelectronic Materials and Applications)
Show Figures

Figure 1

14 pages, 1820 KiB  
Article
SIW Leaky Wave Antenna for THz Applications
by Vivek Arya, Tanuj Garg and Hamza Mohammed Ridha Al-Khafaji
Electronics 2023, 12(8), 1839; https://doi.org/10.3390/electronics12081839 - 12 Apr 2023
Cited by 12 | Viewed by 3358
Abstract
This paper proposes a new design of leaky wave antenna (LWA) based on substrate integrated waveguide (SIW) technology for THz applications. The suggested LWA structure has a combination of longitudinal and transverse slots and makes a 10-element linear array of radiating elements. To [...] Read more.
This paper proposes a new design of leaky wave antenna (LWA) based on substrate integrated waveguide (SIW) technology for THz applications. The suggested LWA structure has a combination of longitudinal and transverse slots and makes a 10-element linear array of radiating elements. To address the problem of open-stop-band (OSB), four additional smaller slots were etched on the corners of longitudinal and transversal slots. At the broadside, this LWA provided a gain of 12.33 dBi, and a continuous wide beam scanning range from +78° to −6° via the broadside while exhibiting efficient radiation performance over the operating frequency bands of 105 GHz to 109 GHz with a peak gain of 16.02 dBi. Full article
Show Figures

Figure 1

15 pages, 4380 KiB  
Article
Thermal Performance of Slotted Light Steel-Framed Composite Wall
by Zhijian Yang, Lisuo Sun, Bo Nan and Shunli Wei
Energies 2023, 16(5), 2482; https://doi.org/10.3390/en16052482 - 5 Mar 2023
Cited by 6 | Viewed by 2403
Abstract
In this study, calibrated hot box and finite element simulation methods were used to study the influence of a slotted web on the thermal performance of a lightweight steel stud composite wall. By comparing the results from the simulations and experiments, the accuracy [...] Read more.
In this study, calibrated hot box and finite element simulation methods were used to study the influence of a slotted web on the thermal performance of a lightweight steel stud composite wall. By comparing the results from the simulations and experiments, the accuracy of the finite element method was verified; this method was then used for parameter analyses. The results showed that the wall’s thermal transfer coefficient is inversely proportional to increases in the length of the slot and height of the stud web, leading to improvements in the thermal insulation effect; vice versa, the wall thermal transfer coefficient increases when the slot transverse spacing and stud thickness increase, and the insulation effect correspondingly worsens. The stud spacing influences the insulation performance of the wall by changing the proportion of studs within a certain wall. The greater the proportion of studs, the greater the stud thermal bridging, the faster the thermal loss, and the worse the insulation effect of the wall. In practice, the height of the stud web can be set as required. Preferably, for practical applications, the number of rows of slots is 5–7, the length of the slots is 70–80 mm, the transverse distance of the slots is 6–8 mm, the thickness of each stud is 1 or 1.2 mm, and the distance of each stud is 600 mm. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

Back to TopTop