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Abstract: Conformal antennas have been widely used in many fields due to their advantages of low
air resistance and better visual appearance. In this paper, an arced conformal leaky-wave antenna
(LWA) for a designable directional beam is proposed. The antenna is achieved based on a substrate-
integrated waveguide (SIW). On the upper surface, a series of non-uniform transverse slots are etched.
In order to guide the design of the antenna, as another key contribution of this work, a theoretical
model for the traveling-wave structure is established. Using the model, the radiation property of the
LWA is analyzed. In addition, by inputting the desired beam direction, the structural parameters
of the LWA can be generated through the model. To verify the performance of the antenna and the
model, an LWA prototype working at 28 GHz was fabricated and tested in a microwave anechoic
chamber. The experimental results are in good agreement with the simulation results. The antenna
achieved a gain of 9.96 dBi with cambered surface area of 1.89 λ0

2. The proposed method may be a
promising candidate for conformal wireless communication applications.

Keywords: conformal leaky-wave antenna; theoretical model; directional beam; substrate-integrated
waveguide

1. Introduction

Conformal antennas have drawn people’s increasing attention in recent years because
of their wide range of applications [1–4], including mobile carriers, wearable kits, funda-
mental wireless coverage devices, etc. The use of conformal antennas has the advantages
of reducing wind resistance and being hidden for better visual appearance. In order to
guarantee and improve the dynamic range of the wireless link, research on directional
conformal antennas is necessary and crucial.

To achieve directional radiation though a conformal antenna, an array method should
be used. By utilizing the joint effect of all elements in the conformally distributed array, a
directional beam is synthesized in the far field.

In general, the conformal antenna design is divided into two categories, i.e., active
and passive methods. For the active method, beam synthesizing is achieved by active
phased arrays. Among them, active phase shifters are employed to provide different phase
distribution of all elements. In [5], a conformal cylindrical phased array antenna excited
with composite right/left-handed (CRLH) phase shifters for switchable directional beam
is proposed. In [6], a Ku-band dual-polarized cylindrical dipole phased antenna array
achieving a scannable beam is put forward. In [7], a 3D-printed tightly coupled antenna
array fed by seven independent ports is investigated. In [8], a wing-conformal planar
inverted F-shaped antenna (PIFA) array skin for a changeable directional beam is presented.
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In [9], a wing-conformal linear phased array with four-branch dipole elements fed by
separate Marchand baluns is proposed.

For the passive method, conformal antennas are realized by passive feeding structures.
In [10], a ground-shared and radiator-shared four-element multi-port conformal patch

antenna array for wide angular coverage is designed. In [11], a Ka-band four-element
standing wave conformal slot array fed by Rotman lenses is proposed. In [12], a single-feed
multi-beam conformal antenna array using independently manipulated ultrathin Huygens
elements is proposed. In [13], a 3D-printed conformal waveguide stand-wave slot array
antenna providing a cosecant squared pattern is designed. In [14], an arced conformal array
composed of four individual patch antennas achieving a beam steering antenna is realized.
In [15], a wearable conformal antenna array with four broadband circularly polarized (BCP)
all-textile antennas is designed. In [16], a 3D-printed conformal slotted waveguide antenna
array beamformed for a normal directional beam fed by an active network is put forward.
In [17], a focusing beam in near field is generated by a curved SIW, which utilizes the
spatial placement of the slot elements to control the desired amplitude and phase of the
excitation. In [18], a conical conformal array integrated by four double rhombic dipoles
achieving dual polarization end-fire beams is developed.

Moreover, there has been some research into beam synthesizing methods on conformal
antennas. In [19], a beam-steering conformal linear patch antenna array designed by deep
reinforcement learning is presented. By combining optimizing excitation phases and
rotating antenna elements, the fixed beam can be synthesized by a cylindrical conformal
array, as described in [20]. In [21], a differential evolution algorithm is used to optimize
and synthesize a sparse conformal array.

From the works above, it can be seen that most conformal antennas are designed based
on standing-wave structures. For generating a directional beam, each element in some
arrays needs to be fed by individual excitation or some other arrays need to be fed by a
phased beamforming network.

A leaky-wave antenna (LWA) is a kind of traveling wave radiation structure with
the advantage of feeding convenience. In [22], a circular LWA radiating a designable
conical beam or broadside beam is proposed. Based on the structure, further research
on the theoretical model for providing circularly polarized conical and broadside beam
structures and a changeable beam structure have been developed [23,24]. The radiating
elements on the upper surfaces of the antennas are handily fed by traveling wave structures.
For conformal LWAs, comparative studies on single tapered slot radiation for far-field
coverage [25] and longitudinal discrete slot radiation for near-field focused beams [17]
have been investigated.

In this paper, a mm-wave arced conformal substrate-integrated waveguide (SIW)
LWA with non-uniform transverse slots for a designable directional beam is proposed.
To guide the antenna design which conveniently radiates to a given direction, a common
theoretical model based on an arced leaky-wave antenna array established. Through the
model, structural parameters of the LWA with a designable beam angle can be produced.
The established model is suitable for all arced leaky-wave antenna arrays with discrete
elements. The theoretical model of the conformal LWA is demonstrated in Section 2 of
this paper. Using the model, the radiation-property analysis of the LWA is carried out
in Section 3, the antenna design is described in Section 4 and validated by experimental
results in Section 5, and finally the conclusion is given in Section 6.

2. Theoretical Modeling

In this section, a theoretical model is established to describe the radiation property of
the conformal LWA. The radiation pattern of the conformal LWA is calculated by inputting
parameters such as frequency, period quantity in transmission line, array radius, arc length
of array, and so on. The key function of the model is to determine all elements’ positions
that make the space wave superimpose together in the expected direction in the far field
to produce the directional beam. Since the structural parameters can be determined by
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using this model, the antenna design is described and simplified. Moreover, the radiation
properties of the antenna are easy to analyze with the help of the model.

Figure 1 describes the theoretical model of an arced array. O is the origin of the
coordinates where the center of the arced array is located. In Figure 1a, R is the radius
of the arc and Φ denotes the total angle of the arc. For a model of a leaky-wave antenna
array, the traveling wave is assumed to enter from the left, as the arrow shown in the figure.
Along with the arc, a series of elements is arranged. Due to the traveling wave property,
elements at different positions have different phases. For different expected synthesized
beam directions, elements have different distributions. The beam angle ϕd is defined as
the angle between the beam vector r and the y axis. Re(n) represents the vector of the nth
element parallel to r, starting from the nth element. Pslot(n) is the angular position of the
nth element.
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Figure 1. Model of an arced array (a) slot array, (b) searching for slots.

To search for all the elements that reach the in-phase condition, the first element in the
arced array is assigned as the reference element. Then, the wave-path differences between
the other elements and the reference element are calculated, expressed as:

∆R′e(ϕd, n) = R cos(ϕd − Pslot(n)) (1)
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For beam synthesizing, the wave phase of each element in the far field is composed of
the phase of wave-path difference ∆ψR ′ (ϕd, n), the phase from traveling wave ψ0′ (n), and
the phase of the element radiation pattern ψe(ϕn, n). ∆ψR ′ (ϕd, n) is given by:

∆ψ′R(ϕd, n) = k0∆R′e(ϕd, n) (2)

where k0 = 2π/λ0 is the wave number in free space, λ0 is the wavelength in free space.
ψ0′ (n) is expressed by:

ψ′0(n) = −
2π

λg
R(Pslot(n)− Pslot(1)) (3)

where λg is guided wavelength, which is determined by λg = L/N, therein N denotes the
period quantity in the transmission line. ψe(ϕ, n) is given by:

ψ′e(ϕn, n) = ψs(π + ϕd − Pslot(n)) (4)

so the total phase of each element is written as:

ψtotal
′(ϕd, n) = ∆ψ′R(ϕd, n) + ψ′0(n) + ψ′e(ϕn, n) (5)

When searching for the in-phase elements, the arc is discretized by a step angle ∆s, as
depicted in Figure 1b. Therefore, the Equations (1)–(5) are rewritten as:

∆Re(ϕd, j) = R cos((j− 1)∆s− Φ

2
− ϕd) (6)

∆ψR(ϕd, j) = k0∆Re(ϕd, j) (7)

ψ0(j) = −2π

λg
R(j− 1)∆s (8)

ψe(ϕd, j) = ψs(π + ϕd + Φ/2− (j− 1)∆s) (9)

ψtotal(ϕd, j) = ∆ψR(ϕd, j) + ψ0(j) + ψe(ϕj, j) (10)

Here, a phase tolerance δ is introduced. When ψtotal of one element meets the in-phase
condition ψtotal < δ, the element is regarded as an in-phase element and its position is
recorded in the element set. For an LWA, energy gradually radiates out of the transmission
structure. Since the model is set up for a non-uniform LWA, an approximate attenuation
constant α is considered, which is expressed as:

α = − ln(
|S21|√

1−|S11|2
)/L (11)

where L refers to the arc length of the array. In this way, the amplitude of each element is
written as:

lα(n) = 10αln/20 (12)

where ln refers to the arc length from the beginning of the array to the nth element. Finally,
the total far field synthesized by all elements can be calculated by:

Etotal = ∑ Ee × lα(n)× eiψtotol (13)

For clarification, the schematic model diagram is summarized below, as illustrated in
Figure 2.
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Figure 2. Schematic model diagram of arced array producing directional beam.

3. Radiation Property Analysis

In this section, the radiation property of the arced LWA is analyzed. The effects of
adjusting different parameters such as R, α, and ϕd are studied respectively. In addition,
the relationship between element quantity and period quantity in the transmission line and
element intervals along the arc transmission line are investigated.

Figure 3a illustrates the radiation patterns of arced structures with different curvature
radii based on the radiation field calculation model of the proposed arced array when
setting the same beam direction, ϕd. It can be found that the expected directional beam is
achieved by using the established theoretical model. Furthermore, it is possible to generate
the same beam-direction pattern for arced SIW LWAs with different curvature radii by
changing the position of the elements. Consequently, for cylindrical objects with different
radii, the unit position distribution of the directional arced LWA can be easily generated
through the model to meet the requirement. Equation (14) gives the relationship between
radiation efficiency and S parameters. Assuming |S11| is 0, which means that there is no
reflection in the input port, for a given radiation efficiency the corresponding |S21| can be
obtained, and the corresponding attenuation constant α can be further calculated according
to Equation (11), i.e., the attenuation constant can be changed by setting different radiation
efficiencies. Figure 3b depicts the radiation pattern calculated with different radiation
efficiencies or different attenuation constants, in which it is shown that as the radiation
efficiency increases, the calculated main beam of the directional pattern becomes narrower
and the directionality becomes more prominent. Figure 4 provides the radiation patterns
of different beam directions generated by the same arc structure, which indicates that by
setting different beam directions in the model, the corresponding unit position distribution
can be calculated. In other words, for an arced SIW LWA with the same array curvature
radius and transmission line structure, different directional beams can be obtained by
changing only the position of the slots.

η = 1−|S11|2−|S21|2 (14)



Electronics 2023, 12, 3111 6 of 17Electronics 2023, 12, x FOR PEER REVIEW 6 of 17 
 

 

-150 -100 -50 0 50 100 150
-50

-40

-30

-20

-10

0

N
or

m
al

iz
ed

 R
ad

ia
tio

n 
Pa

tte
rn

 (d
B

)

Phi (°)

 R = 60 mm, Φ  = 100°
 R = 80 mm, Φ = 75°
 R = 100 mm, Φ = 60°

 
-150 -100 -50 0 50 100 150

-50

-40

-30

-20

-10

0

N
or

m
al

iz
ed

 ra
di

at
io

n 
pa

tte
rn

 (d
B)

Phi (°)

 η = 10%
 η = 30%
 η = 50%
 η = 70%
 η = 90%

 
(a)    (b) 

Figure 3. Radiation patterns when setting the same beam direction, (a) with different R, (b) with 
different η. 

-150 -100 -50 0 50 100 150
-50

-40

-30

-20

-10

0

N
or

m
al

iz
ed

 ra
di

at
io

n 
pa

tte
rn

 (d
B

)

Phi (°)

 ϕ = -20°
 ϕ = 0°
 ϕ = 20°

 
Figure 4. Radiation patterns calculated by different φ. 

The number of elements calculated by setting a different period quantity N is given 
in Figure 5. The larger the N set, the more in-phase elements are found through the model. 

6 8 10 12 14 16

12

14

16

18

20

El
em

en
t q

ua
nt

ity

Period quantity  
Figure 5. Calculated element numbers with different N. 

Figure 6 shows the relationship between the positions of the reference elements and 
the number of elements obtained by the model within the first waveguide wavelength 
range near the feeding end. It is obvious that the positions of the reference element can be 

Figure 3. Radiation patterns when setting the same beam direction, (a) with different R, (b) with
different η.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 17 
 

 

-150 -100 -50 0 50 100 150
-50

-40

-30

-20

-10

0

N
or

m
al

iz
ed

 R
ad

ia
tio

n 
Pa

tte
rn

 (d
B

)

Phi (°)

 R = 60 mm, Φ  = 100°
 R = 80 mm, Φ = 75°
 R = 100 mm, Φ = 60°

 
-150 -100 -50 0 50 100 150

-50

-40

-30

-20

-10

0

N
or

m
al

iz
ed

 ra
di

at
io

n 
pa

tte
rn

 (d
B)

Phi (°)

 η = 10%
 η = 30%
 η = 50%
 η = 70%
 η = 90%

 
(a)    (b) 

Figure 3. Radiation patterns when setting the same beam direction, (a) with different R, (b) with 
different η. 

-150 -100 -50 0 50 100 150
-50

-40

-30

-20

-10

0

N
or

m
al

iz
ed

 ra
di

at
io

n 
pa

tte
rn

 (d
B

)

Phi (°)

 ϕ = -20°
 ϕ = 0°
 ϕ = 20°

 
Figure 4. Radiation patterns calculated by different φ. 

The number of elements calculated by setting a different period quantity N is given 
in Figure 5. The larger the N set, the more in-phase elements are found through the model. 

6 8 10 12 14 16

12

14

16

18

20

El
em

en
t q

ua
nt

ity

Period quantity  
Figure 5. Calculated element numbers with different N. 

Figure 6 shows the relationship between the positions of the reference elements and 
the number of elements obtained by the model within the first waveguide wavelength 
range near the feeding end. It is obvious that the positions of the reference element can be 

Figure 4. Radiation patterns calculated by different ϕ.

The number of elements calculated by setting a different period quantity N is given in
Figure 5. The larger the N set, the more in-phase elements are found through the model.
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Figure 6 shows the relationship between the positions of the reference elements and
the number of elements obtained by the model within the first waveguide wavelength
range near the feeding end. It is obvious that the positions of the reference element can be
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appropriately designed on the same transmission-line structure to achieve more elements
and hence radiate more energy into space.
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The variation trend of element spacings can be analyzed from the element position
distributions within the model. Figure 7 provides the variation trend of adjacent element
spacing calculated on the basis of different parameters, namely beam direction, radius,
array radian, and period quantity. It is clear that when the beam direction is 20◦ and 60◦,
the element spacing of the two LWAs gradually decreases along the array and tends to be
flat in the rear part.
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4. Antenna Design

In the former sections, the proposed theoretical model for the arced LWA array is
described, and the radiation property of the arced LWA is studied through parameter
analysis based on the model. In this section, the antenna design procedure and the specific
steps including expected parameters input, in-phase elements searching, radiation pattern
prediction, etc., and the structural design method of the arced LWA are introduced. The
array was implemented based on an arced SIW using Rogers RO3003. For directional
radiation, non-uniform rectangle slots were etched on the upper metallic layer of the
PCB board.
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4.1. Design Procedure

By virtue of the established model, the arced LWA can be regularly and conveniently
realized. The parameters of the LWA are provided by the model used for directivity design.
The specific design procedure is presented in the following:

(1) Declare ϕd, R, Φ, f 0 and input them into the model.
(2) Based on the model, calculate and determine the position of the reference element

(the first element).
(3) According to a given ∆s, search for the in-phase element distributions in which the

elements meet the in-phase condition corresponding to different reference elements.
(4) Extract the proper set of the distribution with enough element quantity and record

parameters like λg from the model.
(5) Implement structural design of the arced LWA according to the parameters produced

from the model.

4.2. Structural Design and Analysis

Firstly, the propagation property of an arced SIW was analyzed. In [26], both the
SIW and the equivalent rectangular waveguide filled with the same dielectric use the TE10
mode, and the equivalent waveguide width of a straight SIW is expressed as [26]:

we f f = w− 1.08
d2

s
+ 0.1

d2

w
(15)

where the diameter d and spacing s of metallic vias and the waveguide width w should
meet the following criteria [26]:

1 < s/d < 2
d/w < 0.2

(16)

Due to the fact that the conformal SIW is a special form of SIW, the propagation
property of straight SIW was analyzed and compared with that of arced SIW. Figure 8
describes the structure of an arced conformal SIW with a metallic layer at the bottom, a
dielectric layer in the middle, and a metallic layer at the top. The metallic vias are evenly
spaced on both sides of the waveguide. The width between the two rows of the metallic
vias, i.e., the width of the SIW, is w, the diameter of the metallic vias is d, the arc length
spacing of the metallic vias is s, and the arc interval s1 = s/R, where R is the radius of the
conformal SIW. Detailed dimensions of the straight and arced SIWs are listed in Table 1.
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Table 1. Dimensions of the straight and arced SIW.

Parameters L
(mm)

R
(mm)

α
(◦)

w
(mm)

h
(mm)

dvia
(mm)

svia
(mm)

Straight 55.9 - - 3.88 1.524 0.6 1

Arced - 30 104 3.88 1.524 0.6 1
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The operating frequency was set to 28 GHz. Table 2 and Figure 9 respectively provide
the cutoff frequencies and instantaneous electric field distribution of the two kinds of
SIW with the same structural parameters, among which the theoretical cutoff frequencies
in Table 1 was calculated by Equation (17) in [26]. It can be seen that the propagation
properties of the arced SIW and the straight SIW are basically the same. Therefore, the
arced SIW can be designed in line with the design method of the straight SIW [26].

fc =
c

2w
√

εr
(17)

Table 2. Cutoff frequencies of the straight and arced SIW with the same structural parameters.

Straight SIW Arced SIW

Theoretical cutoff frequency 26.403 GHz -

Simulated cutoff frequency 26.385 GHz 26.384 GHz
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Secondly, we applied the proposed model to calculate the radiation element positions
corresponding to the beam with specific direction to determine the slot positions of the
arced LWA. When ϕd = 20◦, N = 13, R = 60 mm, Φ = 100◦, and f 0 = 28 GHz, the element
positions calculated from the theoretical model are shown in Table 2 and the structural
diagram of the arced SIW LWA were established accordingly, as shown in Figure 10. The
element position ϕm in Table 3 represents the angle between the mth element and the first
input port, and dm in Figure 10 represents the angle between the mth and the (m − 1)th
element, for which d1 is the angle between the first element and the input port. Taking the
flexibility of the structure into consideration, the substrate material adopts Rogers RT5880:
εr = 2.2, tanδ = 0.0009, the thickness of the dielectric h = 0.254 mm, and the two rows of
metallic vias and the waveguide width comply with Equation 16. When R, Φ, and N
are determined, the dielectric constant of the equivalent waveguide can be obtained by
Equation (18), and accordingly the equivalent width weff can be calculated by Equation (19).
Then, the width of the SIW can be determined by Equation (15) [26].

εg = (
β

k0
)

2
= (

λ0

λg
)

2
= (

Nλ0

L
)

2
(18)

we f f =
λ0

2
√

εr − εg
(19)
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Table 3. Element positions on the upper surface of the LWA.

Element Position (◦) Element Position (◦) Element Position (◦)

ϕ1 9.54 ϕ7 50.46 ϕ13 80.62

ϕ2 17.92 ϕ8 55.92 ϕ14 85.22

ϕ3 25.46 ϕ9 61.16 ϕ15 89.76

ϕ4 32.34 ϕ10 66.22 ϕ16 94.26

ϕ5 38.74 ϕ11 71.14 ϕ17 98.7

ϕ6 44.76 ϕ12 75.92

In order to achieve good impedance matching, we considered gradually changing
the lengths of the first few slots while keeping other parameters unchanged to reduce the
electromagnetic wave reflection. The number of the slots with gradient lengths is set to Ng,
and the final stable slot length ls is 2.625 mm. The slot length of the mth increased slot l(m)
can be calculated by l(m) = ls × m/(Ng + 1). The impedance and radiation characteristics
with Ng set to 4, 7, and 10, respectively, were analyzed in this work. Taking Ng = 7 as an
example, Figure 11 depicts the expanded planar graph of the arced antenna.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 17 
 

 

φ4 32.34 φ10 66.22 φ16 94.26 
φ5 38.74 φ11 71.14 φ17 98.7 
φ6 44.76 φ12 75.92   

z x

yd17

d13

φ13

R

φ17

 
Figure 10. Structure of the arced antenna with non-uniform slot spacing. 

In order to achieve good impedance matching, we considered gradually changing 
the lengths of the first few slots while keeping other parameters unchanged to reduce the 
electromagnetic wave reflection. The number of the slots with gradient lengths is set to 
Ng, and the final stable slot length ls is 2.625 mm. The slot length of the mth increased slot 
l(m) can be calculated by l(m) = ls × m/(Ng + 1). The impedance and radiation characteristics 
with Ng set to 4, 7, and 10, respectively, were analyzed in this work. Taking Ng = 7 as an 
example, Figure 11 depicts the expanded planar graph of the arced antenna. 

W0

L

Metallic via Slot

z
xwd1 d2 d17ls

ws
 

Figure 11. Planar graph of the arced antenna with gradually increasing slot lengths. 

Figure 12 presents the radiation patterns of different values of Ng and shows that the 
beam direction is not affected by the number of Ng while the right sidelobe level rises with 
the increase of Ng. Figure 13 gives the simulated S parameters of the arced LWA with non-
uniform slot distribution and different Ng, in which it can be seen that the impedance 
characteristics of the antenna performed well when Ng was set to 7. Furthermore, the ra-
diation efficiencies of the LWA in the three cases were 38.83%, 44.83%, and 36.86%, respec-
tively. Taking the performance of both the impedance characteristics and radiation effi-
ciency into consideration, Ng was determined to be 7. 

Figure 11. Planar graph of the arced antenna with gradually increasing slot lengths.

Figure 12 presents the radiation patterns of different values of Ng and shows that the
beam direction is not affected by the number of Ng while the right sidelobe level rises with
the increase of Ng. Figure 13 gives the simulated S parameters of the arced LWA with
non-uniform slot distribution and different Ng, in which it can be seen that the impedance
characteristics of the antenna performed well when Ng was set to 7. Furthermore, the
radiation efficiencies of the LWA in the three cases were 38.83%, 44.83%, and 36.86%,
respectively. Taking the performance of both the impedance characteristics and radiation
efficiency into consideration, Ng was determined to be 7.
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Figure 13. Simulated S parameters of the proposed arced LWA with different values of Ng, (a) Ng = 4,
(b) Ng = 7, (c) Ng = 10.

With regard to the feeding structure, a tapered microstrip transmission line is adopted
to feed the arced conformal SIW LWA, for which the structural expansion graph is shown
in Figure 14 and the simulation structure is shown in Figure 15. Furthermore, Table 4 gives
the dimensions of the arced antenna fed by the tapered microstrip line. The ending width
of the microstrip line and the thickness of the dielectric layer meet the impedance matching
of 50 Ω.
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Figure 15. Diagram of the arced antenna fed by the tapered microstrip line.

Table 4. Dimensions of the arced antenna fed by the tapered microstrip line.

Parameters R α w h ls ls1

Value (mm) 60 100◦ 8.2 0.254 3 0.375

Parameters ls2 ls3 ls4 ls5 ls6 ls7

Value (mm) 0.75 1.125 1.5 1.875 2.25 2.625

Parameters ws dvia svia wm1 wm2

Value (mm) 0.4 0.5 0.8 0.8 3.2

Figure 16 illustrates the S parameters of the arced LWA fed by the tapered microstrip
line. It can be seen that the impedance performance was good at 28 GHz. Figure 17 displays
the radiation patterns fed by a perfect waveguide port and by the tapered microstrip line.
It is clear that the beam direction remained the same for both of the two feedings, which
indicates that the arced LWA in this feeding structure can achieve good impedance and
radiation characteristics. Furthermore, radiation efficiency of around 45.7% can be achieved
by the tapered microstrip-line-fed LWA.
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5. Experimental Verification

In order to verify the proposed arced SIW LWA with non-uniform slot distribution, the
LWA was implemented based on PCB processing. A metallic layer of thickness of 0.018 mm
was used to achieve better conformal and flexible properties, and gold sinking process was
carried out for the metallic layer to avoid oxidation. For convenience of testing, the LWA
was conformally fabricated on a nylon support material with an outer radius of R, which
was produced by 3D-printing technology. A photograph of the fabricated LWA with the
support material is shown in Figure 18. A 2.92 mm coaxial connector was utilized with a
probe diameter of 0.64 mm, probe length of 3mm, and outer conductor length of 7.6 mm.
The coaxial connector was connected to the microstrip line by welding.
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The antenna was tested by utilizing a vector network analyzer in a microwave ane-
choic chamber. Figure 19 lists the comparison of S parameters between simulation and
measurement results, in which it can be seen that the |S11|s are in good agreement. The
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tested |S21| parameters are generally lower than simulated |S21|s, which is mainly caused
by the loss of coaxial feeding and energy reflection from welding errors.
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During measurement, the two ports of the antenna under testing (AUT) were con-
nected to a matching load, and a 28 GHz horn antenna was employed as the standard
gain antenna, with the aperture center of the E plane aligned with the aperture center of
the AUT. The distance between the horn antenna surface and the AUT surface meets the
far-field requirement. Figure 20 displays the measurement environment; figure (a) presents
the alignment process with the AUT and figure (b) shows the horn antenna employed.
By comparison with the standard Ka-band horn antenna, the measured gain of 9.96 dBi
was obtained. Figure 21 is the comparison of normalized patterns between simulation and
measurement, which indicates that the main beam directions of the two are both basically
consistent, as well as the two pattern curves. The measured and simulated main lobe
directions are −16.5◦ and −18◦, respectively. Consequently, the measurement results verify
that the proposed arced LWA with non-uniform slots achieved directional beamforming.
Table 5 shows the parameters and performance of several existing conformal antenna. It
can be observed that the proposed antenna in this work has a low profile of 0.0017 λ0 and a
small cambered surface area of 1.89 λ0

2. This is attributed to the compact feed structure,
i.e., a leaky wave structure. The slots on the upper side of the SIW are conveniently fed by
the structure. A directional beam with 9.96 dBi was generated without any isolated feed
network. The beam direction can be rigged by changing the structural parameters before
manufacture with the guidance of the established model.
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Table 5. Performance comparisons. 

Ref. Type of Antenna 
f0 

(GHz) 
Bandwidth (%) 

Profile 
Height 

(λ0) 

Cambered Sur-
face Area 

(λ02) 

Peak Realized 
Gain 
(dBi) 

[5] phased array 5.5 11 n.a. n.a. 8.93 
[7] phased array 1.58 5 0.05 8.42 20.2 
[8] Transmitarray 10 9 0.017 75.87 18.29 

[12] phased array 2 148 n.a. 1.15 n.a. 
This 
work 

leaky wave 28 5.5  0.0017 1.89 9.96 

n.a. means the values are not stated in the references. 

6. Conclusions 
In this paper, a low-profile directional conformal LWA based on SIW is proposed. It 

adopts a microstrip feeding structure with SIW as the transmission line to feed the non-
uniform slot array placed on its surface, thereby achieving a specific directional beam. For 
guiding the design, a radiation-field theoretical model for the arced LWA was built by 
combining traveling wave theory and circular array theory. By using this model, the radi-
ation characteristics of the arced SIW LWA array were analyzed and the element position 
distribution of the directional beam with a specific direction was determined. Further-
more, in order to realize the LWA, the traveling wave propagation property of the arced 
SIW transmission line was studied, showing that the design method of the straight-line 
SIW can be applied to design the arced SIW. The arced SIW LWA was realized with pa-
rameters such as slot distribution, guided wavelength, etc., generated by the model. Fi-
nally, the effectiveness of the antenna was verified through actual fabricating and testing, 
and meanwhile it was confirmed that the proposed theoretical model is able to guide the 
design of the antenna. The fabricated antenna designed by using the established model 
achieved a gain of 9.96 dBi with a cambered surface area of 1.89 λ02. This work provides 
an alternative solution for conformal antennas for wireless communication with arc-
shaped carriers. 

Author Contributions: Methodology, Y.M., J.W. and F.W.; Validation, Y.M., X.S. and F.S.; Formal 
analysis, Y.Z. and F.W.; Investigation, X.S., Y.Z. and F.S.; Writing—original draft, Y.M.; Writing—

Figure 21. Comparison of normalized pattern between simulation and measurement results.

Table 5. Performance comparisons.

Ref. Type of
Antenna

f 0
(GHz) Bandwidth (%) Profile Height

(λ0)

Cambered
Surface Area

(λ0
2)

Peak Realized
Gain
(dBi)

[5] phased array 5.5 11 n.a. n.a. 8.93

[7] phased array 1.58 5 0.05 8.42 20.2

[8] Transmitarray 10 9 0.017 75.87 18.29

[12] phased array 2 148 n.a. 1.15 n.a.

This
work leaky wave 28 5.5 0.0017 1.89 9.96

n.a. means the values are not stated in the references.

6. Conclusions

In this paper, a low-profile directional conformal LWA based on SIW is proposed.
It adopts a microstrip feeding structure with SIW as the transmission line to feed the
non-uniform slot array placed on its surface, thereby achieving a specific directional beam.
For guiding the design, a radiation-field theoretical model for the arced LWA was built
by combining traveling wave theory and circular array theory. By using this model, the
radiation characteristics of the arced SIW LWA array were analyzed and the element
position distribution of the directional beam with a specific direction was determined.
Furthermore, in order to realize the LWA, the traveling wave propagation property of the
arced SIW transmission line was studied, showing that the design method of the straight-
line SIW can be applied to design the arced SIW. The arced SIW LWA was realized with
parameters such as slot distribution, guided wavelength, etc., generated by the model.
Finally, the effectiveness of the antenna was verified through actual fabricating and testing,
and meanwhile it was confirmed that the proposed theoretical model is able to guide
the design of the antenna. The fabricated antenna designed by using the established
model achieved a gain of 9.96 dBi with a cambered surface area of 1.89 λ0

2
. This work

provides an alternative solution for conformal antennas for wireless communication with
arc-shaped carriers.
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