SIW Leaky Wave Antenna for THz Applications
Abstract
1. Introduction
2. Design Methodology and Antenna Array
2.1. Design of SIW
2.2. Design Concept
2.3. Geometry
3. Experiment Results
3.1. Geometry
3.2. S Parameters
3.3. Radiation Features
3.4. Fabrication as Well as Measurement Issues
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hansen, W.W. Radiating Electromagnetic Waveguide. U.S. Patent No. 2,402,622,1940, 26 November 1940. [Google Scholar]
- Marcuvitz, N. On field representation in terms of leaky modes or eigenmodes. IRE Trans. 1956, 4, 192–194. [Google Scholar]
- Nishida, S. Leaky wave antennas. Electron. Commun. Jpn. 1965, 48, 42–48. [Google Scholar]
- Goldstone, L.O.; Oliner, A.A. Leaky-wave antennas—Part I: Rectangular waveguides. IRE Trans. Antennas Propag. 1959, 7, 307–319. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Hong, W.; Wu, K.; Fan, Y. Millimeter-wave substrate integrated waveguide long slot leaky-wave antennas and two- dimensional multibeam applications. IEEE Trans. Antennas Propag. 2011, 59, 40–47. [Google Scholar] [CrossRef]
- Lyu, Y.; Member, S.; Liu, X. Leaky-wave antennas based on non-cutoff substrate integrated waveguide supporting beam scanning from backward to forward. IEEE Trans. Antennas Propag. 2016, 64, 2155–2164. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, J.; Long, Y. Investigation of shorting vias for suppressing the open stopband in an SIW periodic leaky-wave structure. IEEE Trans. Microw. Theory Tech. 2018, 66, 2936–2945. [Google Scholar]
- Agrawal, R.; Belwal, P.; Gupta, S. Asymmetric substrate integrated waveguide leaky wave antenna with open stop band suppression and radiation efficiency equalization through broadside. Radioengineering 2018, 27, 409–416. [Google Scholar] [CrossRef]
- Liu, J.; Jackson, D.R.; Long, Y. Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots. IEEE Trans. Antennas Propag. 2012, 60, 20–29. [Google Scholar] [CrossRef]
- Liu, J.; Tang, X.; Li, Y.; Long, Y. Substrate integrated waveguide leaky-wave antenna with H-shaped slots. IEEE Trans. Antennas Propag. 2012, 60, 3962–3967. [Google Scholar] [CrossRef]
- Liu, L.; Caloz, C.; Itoh, T. Dominant mode (DM) leaky wave antenna with backfire-to-endfire scanning capability. Electronics Lett. 2003, 38, 1414–1416. [Google Scholar] [CrossRef]
- Caloz, C.; Itoh, T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Guglielmi, M.; Jackson, D. Broadside radiation from periodic leaky-wave antennas. IEEE Trans. Antennas Propag. 1993, 41, 31–37. [Google Scholar] [CrossRef]
- Paulotto, S.; Baccarelli, P.; Frezza, F.; Jackson, D.R. A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas. IEEE Trans. Antennas Propag. 2009, 57, 1894–1906. [Google Scholar] [CrossRef]
- Gomez-Torrent, A.; Garcia-Vigueras, M.; Le Coq, L.; Mahmoud, A.; Ettorre, M.; Sauleau, R.; Oberhammer, J. A Low-Profile and High-Gain Frequency Beam Steering Subterahertz Antenna Enabled by Silicon Micromachining. IEEE Trans. Antennas Propag. 2020, 68, 672–682. [Google Scholar] [CrossRef]
- Monnai, Y. Terahertz Radar Based on Leaky-Wave Coherence Tomography. In Proceedings of the 2020 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2020—Proceedings, Sydney, Australia, 2–6 August 2020; pp. 1–2. [Google Scholar]
- Rikkinen, K.; Kyosti, P.; Leinonen, M.E.; Berg, M.; Parssinen, A. THz Radio Communication: Link Budget Analysis toward 6G. IEEE Commun. Mag. 2020, 58, 22–27. [Google Scholar] [CrossRef]
- Kwon, H.; Kim, Y.; Yoon, H.; Choi, D. Selective Audio Adversarial Example in Evasion Attack on Speech Recognition System. IEEE Trans. Inf. Forensics Secur. 2020, 15, 526–538. [Google Scholar] [CrossRef]
- Brown, E.R. Fundamentals of Terrestrial Millimeter-Wave and THz Remote Sensing. Int. J. High Speed Electron. Syst. 2003, 13, 995–1097. [Google Scholar] [CrossRef]
- Golubiatnikov, G.Y.; Koshelev, M.A.; Tsvetkov, A.I.; Fokin, A.P.; Glyavin, M.Y.; Tretyakov, M.Y. Sub-Terahertz High-Sensitivity High-Resolution Molecular Spectroscopy with a Gyrotron. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 502–512. [Google Scholar] [CrossRef]
- Guerboukha, H.; Shrestha, R.; Neronha, J.; Ryan, O.; Hornbuckle, M.; Fang, Z.; Mittleman, D.M. Efficient Leaky-Wave Antennas at Terahertz Frequencies Generating Highly Directional Beams. Appl. Phys. Lett. 2020, 117, 261103. [Google Scholar] [CrossRef]
- Agarwal, R.; Agarwal, A.; Dwivedi, A.; Sharma, A. Leaky Wave Antenna for Millimeter Wave Utilization. J. Phys. Conf. Ser. 2021, 1921, 012026. [Google Scholar] [CrossRef]
- Ghalibafan, J.; Hashemi, S.M. Leaky-Wave Centerline Longitudinal Slot Antenna Fed by Transversely Magnetized Ferrite. IEEE Trans. Magn. 2016, 52, 4000104. [Google Scholar] [CrossRef]
- Zheng, D.; Lyu, Y.-L.; Wu, K. Transversely Slotted SIW Leaky-Wave Antenna Applications. IEEE Trans. Antennas Propag. 2020, 68, 4172–4185. [Google Scholar] [CrossRef]
- Ranjan, R.; Ghosh, J. SIW-Based Leaky-Wave Antenna Supporting Wide Range of Beam Scanning Through Broadside. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 606–610. [Google Scholar] [CrossRef]
- Saghati, A.P.; Mirsalehi, M.M.; Neshati, M.H. A HMSIW Circularly Polarized Leaky-Wave Antenna With. IEEE Trans. Antennas Propag. 2014, 13, 451–454. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Li, Y.; Long, Y. Periodic Microstrip Leaky Wave Antenna with Double-Sided Shorting Pins and Pairs of Slots. Int. J. Antennas Propag. 2020, 2020, 7101752. [Google Scholar] [CrossRef]
- Martinez-Ros, A.J.; Gómez-Tornero, J.L.; Goussetis, G. Planar Leaky-Wave Antenna with Flexible Control of the Complex Propagation Constant. IEEE Trans. Antennas Propag. 2012, 60, 1625–1630. [Google Scholar] [CrossRef]
- Grbic, A.; Eleftheriades, G.V. Leaky CPW-Based Slot Antenna Arrays for Millimeter-Wave Applications. IEEE Trans. Antennas Propag. 2002, 50, 494–1504. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Khalily, M.; Shukla, P.; See, C.H.; Abd-Alhameed, R.; Falcone, F.; Limiti, E. Beam-Scanning Leaky-Wave Antenna Based on CRLH-Metamaterial for Millimetre-Wave Applications Mohammad. IET Microw. Antennas Propag. 1941, 74, 535–546. [Google Scholar]
- Pozar, D.M. Microwave Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-0-470-63155-3. [Google Scholar]
- Xu, S.; Gao, H. Double Dielectric Grating Leaky-Wave Antenna-Improved Perturbation Analysis. Int. J. Infrared Millim. Waves 1989, 10, 1103–1119. [Google Scholar] [CrossRef]
- Hammad, H.F.; Antar, Y.M.; Freundorfer, A.P.; Sayer, M. Frequency. IEEE Trans. Antennas Propag. 2004, 52, 36–44. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, S. A Novel Dual-Beam Terahertz Leaky-Wave Antenna Based On Spoof Surface Plasmon Waveguide. Optoelectron. Lett. 2022, 18, 404–407. [Google Scholar] [CrossRef]
- Choi, J.H.; Itoh, T. Beam-Scanning Leaky-Wave Antennas. In Handbook of Antenna Technologies; Chen, Z., Ed.; Springer: Singapore, 2015. [Google Scholar] [CrossRef]
- Salman, A.O. On the antenna efficiencies for the dielectric leaky-wave antennas with a sinusoidal metallic diffraction grating coupled from the broad and the narrow face of the dielectric. Microw. Opt. Technol. Lett. 2011, 53, 2030–2034. [Google Scholar]
- Aysu, B.; Filiz, G.; Merih, P.; Ozlem, T.; Peyman, M. 3D EM Data Driven Surrogate Based Design Optimization of Traveling Wave Antennas for Beam Scanning In X-Band: An Application Example. Wirel. Netw. 2022, 28, 1827–1834. [Google Scholar] [CrossRef]
- Zandamela, A.; Al-Bassam, A.; Heberling, D. Circularly Polarized Periodic Leaky-Wave Antenna Based on Dielectric Image Line for Millimeter-Wave Radar Applications. IEEE Antennas Wirel. Propag. Letter. 2021, 20, 938–942. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Guo, Y.X.; Bao, X.Y.; Ng, K.B. Millimeter-Wave Low Temperature Co-Fired Ceramic Leaky-Wave Antenna and Array Based on the Substrate Integrated Image Guide Technology. IEEE Trans. Antennas Propag. 2014, 62, 669–676. [Google Scholar] [CrossRef]
- Patrovsky, A.; Wu, K. Substrate Integrated Image Guide Array Antenna for the Upper Millimeter-Wave Spectrum. IEEE Trans. Antennas Propag. 2007, 55, 2994–3001. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Yin, X.; Chen, Z.N. Wide-Angle Beam Scanning Leaky-Wave Antenna Using Spoof Surface Plasmon Polaritons Structure. Electronics 2018, 7, 348. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Zografopoulos, D.C.; Imperato, F.; Burghignoli, P.; Beccherelli, R.; Galli, A. Analysis and Design of Tunable THz 1-D Leaky-Wave Antennas Based on Nematic Liquid Crystals. Appl. Sci. 2022, 12, 11770. [Google Scholar] [CrossRef]
- Sharma, J.; De, A. Full-Wave Analysis of Dielectric Rectangular Waveguides. Prog. Electromagn. Res. M 2010, 13, 121–131. [Google Scholar]
- Torabi, Y.; Dadashzadeh, G.; Hadeie, M.; Oraizi, H.; Lalbakhsh, A. A Wide-Angle Scanning Sub-Terahertz Leaky-Wave Antenna Based on a Multilayer Dielectric Image Waveguide. Electronics 2021, 10, 2172. [Google Scholar]
- Tesmer, H.; Razzouk, R.; Polat, E.; Wang, D.; Jakoby, R.; Maune, H. Temperature Characterization of Liquid Crystal Dielectric Image Line Phase Shifter for Millimeter-Wave Applications. Crystals 2021, 11, 63. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Afzal, M.U.; Hayat, T.; Esselle, K.P.; Mandal, K. All-Metal Wideband Metasurface for near-Field Transformation of Medium-to-High Gain Electromagnetic Sources. Sci. Rep. 2021, 11, 9421. [Google Scholar] [CrossRef] [PubMed]
- Mirmozafari, M.; Zhang, Z.; Gao, M.; Zhao, J.; Honari, M.M.; Booske, J.H.; Behdad, N. Mechanically Reconfigurable, Beam-Scanning Reflectarray and Transmitarray Antennas: A Review. Appl. Sci. 2021, 11, 6890, ISBN 0000000211512. [Google Scholar] [CrossRef]
- Goudarzi, A.; Honari, M.M.; Gharaati; Mirzavand, R. A Cavity-Backed Antenna with a Tilted Directive Beam for 5G Applications. In Proceedings of the 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 4–10 December 2021; pp. 1737–1738. [Google Scholar]
- Afzal, M.U.; Matekovits, L.; Esselle, K.P.; Lalbakhsh, A. Beam-Scanning Antenna Based on near-Electric Field Phase Transformation and Refraction of Electromagnetic Wave through Dielectric Structures. IEEE Access 2020, 8, 199242–199253. [Google Scholar] [CrossRef]
- Ibrahim, I.M.; Ahmed, M.I.; Abdelkader, H.M. A Novel Compact High Gain Wide-Band Log Periodic Dipole Array Antenna for Wireless Communication Systems. J. Infrared Millim. Terahertz Waves 2022, 43, 872–894. [Google Scholar] [CrossRef]
- Kishihara, M.; Ohta, I.; Okubo, K.; Yamakita, J. Analysis of Post-Wall Waveguide Based on H-Plane Planar Circuit Approach. IEICE Trans. Electron. 2009, E92-C, 63–71. [Google Scholar] [CrossRef]
- Cassivi, Y.; Perregrini, L.; Arcioni, P.; Bressan, M.; Wu, K.; Conciauro, G. Dispersion Characteristics of Substrate Integrated Rectangular Waveguide. IEEE Microw. Wirel. Compon. Lett. 2002, 12, 333–335. [Google Scholar] [CrossRef]
- Ghasemi, A.; Laurin, J.-J. A Continuous Beam Steering Slotted Waveguide Antenna Using Rotating Dielectric Slabs. IEEE Trans. Antennas Propag. 2021, 67, 6362–6370. [Google Scholar] [CrossRef]
- Sarabandi, K.; Jam, A.; Vahidpour, M.; East, J. A Novel Frequency Beam-Steering Antenna Array for Submillimeter-Wave Applications. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 654–665. [Google Scholar] [CrossRef]
- Arya, V.; Garg, T.; Al-Khafaji, H.M.R. High Gain and Wide-Angle Continuous Beam Scanning SIW Leaky-Wave Antenna. Electronics 2023, 12, 370. [Google Scholar]
Parameters | Values (mm) |
---|---|
P | 14.7 |
W | 16 |
AL | 5.5 |
AT | 3.6 |
D | 1 |
B | 0.8 |
C | 1.5 |
S | 2 |
Weff | 14 |
References | Broadside Radiation | Radiator Length | Range of Scanning Frequency (GHz) | Range of Beam Scanning (Degree) | Max. Gain |
---|---|---|---|---|---|
[15] | No | ~10 | 220 to 300 | −75° to −30° (Backward Only) | ~28.5 dBi |
[38] | Yes | ~11.1 | 75 to 85 | −10° to −8° | ~12.7 dBi |
[39] | No | ~2.6 | 58 to 67 | +7° to +38° (Forward Only) | ~11.7 dBi |
[40] | Yes | ~6 | 86 to 106 | −31° to +10° | ~11 dBi |
[53] | No | ~12 | 55 to 67 | 4° to 18° (Forward Only) | ~6 dBi |
[54] | Yes | ~8 | 230 to 245 | −25° to 25° | ~29 dBi |
[44] | Yes | ~6.9 | 157.5 to 206 | −23° to +38° | ~15 dBi |
This work | Yes | ~6.84 | 105 to 109 | +78° to −6° | ~16.02 dBi |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arya, V.; Garg, T.; Al-Khafaji, H.M.R. SIW Leaky Wave Antenna for THz Applications. Electronics 2023, 12, 1839. https://doi.org/10.3390/electronics12081839
Arya V, Garg T, Al-Khafaji HMR. SIW Leaky Wave Antenna for THz Applications. Electronics. 2023; 12(8):1839. https://doi.org/10.3390/electronics12081839
Chicago/Turabian StyleArya, Vivek, Tanuj Garg, and Hamza Mohammed Ridha Al-Khafaji. 2023. "SIW Leaky Wave Antenna for THz Applications" Electronics 12, no. 8: 1839. https://doi.org/10.3390/electronics12081839
APA StyleArya, V., Garg, T., & Al-Khafaji, H. M. R. (2023). SIW Leaky Wave Antenna for THz Applications. Electronics, 12(8), 1839. https://doi.org/10.3390/electronics12081839