Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (169)

Search Parameters:
Keywords = transverse deflection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4194 KiB  
Article
Incorporating Transverse Normal Strain in the Homogenization of Corrugated Cardboards
by Shao-Keng Liang and Zhi-Wei Wang
Appl. Sci. 2025, 15(14), 7868; https://doi.org/10.3390/app15147868 - 14 Jul 2025
Viewed by 189
Abstract
Homogenization researches for corrugated cardboard are predominantly based on plate theories assuming constant thickness, such as the Reissner–Mindlin plate. However, corrugated cardboard is prone to significant deformation in the thickness direction. To address this limitation, the present work proposes an improved plate element [...] Read more.
Homogenization researches for corrugated cardboard are predominantly based on plate theories assuming constant thickness, such as the Reissner–Mindlin plate. However, corrugated cardboard is prone to significant deformation in the thickness direction. To address this limitation, the present work proposes an improved plate element designed by expanding the deflection function to the quadratic term of the thickness coordinate, enabling a linearly varied transverse normal strain. Furthermore, an extension of the established homogenization method is developed to derive the constitutive matrix. The element is implemented via the Abaqus user subroutine UEL. Validation demonstrates that the proposed element effectively characterizes a linearly varied transverse normal strain and stress. Simulation results from the homogenized model applying the proposed element and extended homogenization method are compared with those from detailed models. The comparisons confirm the efficiency and accuracy of the proposed approach. Full article
Show Figures

Figure 1

18 pages, 1933 KiB  
Article
LTBWTB: A Mathematica Software to Evaluate the Lateral-Torsional Buckling Load of Web-Tapered Mono-Symmetric I-Section Beams
by Tolga Yılmaz
Appl. Sci. 2025, 15(13), 7572; https://doi.org/10.3390/app15137572 - 6 Jul 2025
Viewed by 298
Abstract
Web-tapered beams with I-sections, which are aesthetic and structurally efficient, have been widely used in steel structures. Web-tapered I-section beams bent about the strong axis may undergo out-of-plane buckling through lateral deflection and twisting. This primary stability failure mode in slender beams is [...] Read more.
Web-tapered beams with I-sections, which are aesthetic and structurally efficient, have been widely used in steel structures. Web-tapered I-section beams bent about the strong axis may undergo out-of-plane buckling through lateral deflection and twisting. This primary stability failure mode in slender beams is known as lateral-torsional buckling (LTB). Unlike prismatic I-beams, the complex mode shape of web-tapered I-section beams makes it challenging or even impossible to derive a closed-form expression for the LTB load under certain transverse loading conditions. Therefore, the LTB assessment of web-tapered I-section beams is primarily performed using finite element analysis (FEA). However, this method involves multiple steps, requires specialized expertise, and demands significant computational resources, making it impractical in certain cases. This study proposes an analytical approach based on the Ritz method to evaluate the LTB of simply supported web-tapered beams with doubly or mono-symmetric I-sections. The proposed analytical method accounts for web tapering, I-section mono-symmetry, types and positions of transverse loads, and beam slenderness. The method was implemented in Mathematica to allow the rapid evaluation of the LTB capacity of web-tapered I-beams. The study validates the LTB loads computed using the developed Mathematica package against results from shell-based FEA. An excellent agreement was observed between the analytically and numerically calculated LTB loads. Full article
Show Figures

Figure 1

13 pages, 3040 KiB  
Article
Design and Development of Dipole Magnet for MIR/THz Free Electron Laser Beam Dumps and Spectrometers
by Ekkachai Kongmon, Kantaphon Damminsek, Nopadon Khangrang, Sakhorn Rimjaem and Chitrlada Thongbai
Particles 2025, 8(3), 66; https://doi.org/10.3390/particles8030066 - 25 Jun 2025
Viewed by 801
Abstract
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending [...] Read more.
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending angle for electron beams with energies up to 30 MeV, without requiring water cooling. Using CST EM Studio for 3D magnetic field simulations and ASTRA for particle tracking, the THz dipole (with 414 turns) and MIR dipole (with 600 turns) generated magnetic fields of 0.1739 T and 0.2588 T, respectively, while both operating at currents below 10 A. Performance analysis confirmed effective beam deflection, with the THz dipole showing that it was capable of handling beam energies up to 20 MeV and the MIR dipole could handle up to 30 MeV. The energy measurement at the spectrometer screen position was simulated, taking into account transverse beam size, fringe fields, and space charge effects, using ASTRA. The energy resolution, defined as the ratio of energy uncertainty to the mean energy, was evaluated for selected cases. For beam energies of 16 MeV and 25 MeV, resolutions of 0.2% and 0.5% were achieved with transverse beam sizes of 1 mm and 4 mm, respectively. All evaluated cases maintained energy resolutions below 1%, confirming the spectrometer’s suitability for high-precision beam diagnostics. Furthermore, the relationship between the initial and measured energy spread errors, taking into account a camera resolution of 0.1 mm/pixel, was evaluated. Simulations across various beam energies (10–16 MeV for the THz dipole and 20–25 MeV for the MIR dipole) confirmed that the measurement error in energy spread decreases with smaller RMS transverse beam sizes. This trend was consistent across all tested energies and magnet configurations. To ensure accurate energy spread measurements, a small initial beam size is recommended. Specifically, for beams with a narrow initial energy spread, a transverse beam size below 1 mm is essential. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

13 pages, 6994 KiB  
Article
Experimental Investigation of the Effects of Backwater on the Velocity Distribution Characteristics in a 90-Degree Curved Channel
by Qihang Zhou, Zhijing Li, Zhongwu Jin, Yisen Wang, Peng Chen, Yujiao Liu and Xuhai Yang
Water 2025, 17(13), 1858; https://doi.org/10.3390/w17131858 - 22 Jun 2025
Viewed by 373
Abstract
The impacts of backwater due to large dam construction on flow may lead to navigation or flood control problems in curved rivers. This study conducted flume experiments to investigate the effects of backwater on the velocity distribution characteristics of a 90-degree bend. The [...] Read more.
The impacts of backwater due to large dam construction on flow may lead to navigation or flood control problems in curved rivers. This study conducted flume experiments to investigate the effects of backwater on the velocity distribution characteristics of a 90-degree bend. The experimental results show that the backwater degree (η, defined as the ratio of flow depth under backwater to that under non-backwater conditions) has significant impacts on the three-dimensional velocity distribution in the bend. The depth-averaged velocities decrease with increasing backwater degree, and the deflection degrees of depth-averaged velocities are found to be highly related to the backwater degree and cross-sectional position. In this experimental setup, the mean cross-sectional velocity decreases by 67.2% as η increases from 1.00 to 3.64 for Q = 35 L/s; 63.7% as η increases from 1.00 to 3.26 for Q = 52 L/s; and 60.1% as η increases from 1.00 to 2.80 for Q = 52 L/s. The maximum values of transversal and vertical velocities near the riverbed gradually shift to the inner bank as the backwater degree increases at the 45° cross section. The center of the high transversal velocity area shifts about 0.1 m toward the inner bank as the backwater degree increases from 1.00 to 3.26 for Q = 52 L/s, which can reduce the erosion of the riverbed near the outer bank. In the current study, we also demonstrate that the growth and decay processes of secondary flow cells under backwater conditions are similar to those under non-backwater conditions. However, the scales and positions of the secondary flow cells change continuously with different backwater degrees. From the entrance to the exit of the bend, the secondary flow intensity first increases, and then decreases, with its maximum values occurring at the 45° cross section. The findings detailed in this manuscript provide insights for navigation channel design in reservoir backwater zones. Full article
(This article belongs to the Special Issue Effects of Vegetation on Open Channel Flow and Sediment Transport)
Show Figures

Figure 1

22 pages, 3922 KiB  
Article
Research on the Dynamic Characteristics of a Typical Medium–Low-Speed Maglev Train–Bridge System Influenced by the Transverse Stiffness of Pier Tops
by Yanghua Cui, Xiangrong Guo, Hongwei Mao and Jianghao Liu
Appl. Sci. 2025, 15(12), 6628; https://doi.org/10.3390/app15126628 - 12 Jun 2025
Viewed by 302
Abstract
With the continuous development of maglev transportation technology, medium–low-speed maglev trains have been widely implemented in many countries. However, due to the limitations of existing specifications, the stiffness limit values of the large-span main girders used in medium–low-speed maglev trains have not been [...] Read more.
With the continuous development of maglev transportation technology, medium–low-speed maglev trains have been widely implemented in many countries. However, due to the limitations of existing specifications, the stiffness limit values of the large-span main girders used in medium–low-speed maglev trains have not been unified. To address this issue, this study takes a specific bridge on a dedicated maglev line as an example and uses self-developed software to model the vehicle–bridge dynamic system. The natural vibration characteristics and vehicle–bridge coupling vibration response of the bridge are calculated and analyzed. Based on this, the influence of pier top stiffness on the dynamic characteristics of a typical medium–low-speed maglev train–bridge system under different working conditions is investigated, with a focus on the lateral line stiffness at the pier top. The results show that vehicle speed has no significant effect on the lateral displacement of the main girder, the lateral displacement of the pier top, the lateral acceleration of the pier top, and the transverse and longitudinal angles of the beam end, and no obvious regularity is observed. However, in the double-track operating condition, the vertical deflection of the main girder is significantly higher than that in the single-track operating condition. As the lateral linear stiffness at the pier top increases, the fundamental frequency of the bridge’s lateral bending vibration gradually increases, while the fundamental frequency of longitudinal floating gradually decreases. The lateral displacements, including those of the main girder, pier top, and beam ends, all decrease, whereas the lateral and vertical vibration accelerations of the main girder and the train are less affected by the lateral stiffness at the pier top. Full article
Show Figures

Figure 1

28 pages, 4795 KiB  
Article
Numerical and Geometrical Evaluation of Steel Plates with Transverse Hat-Stiffeners Under Bending
by Mariana Alvarenga Alves, Eduarda Machado Rodrigues, Luiz Alberto Oliveira Rocha, Elizaldo Domingues dos Santos, William Ramires Almeida and Liércio André Isoldi
Metals 2025, 15(6), 647; https://doi.org/10.3390/met15060647 - 10 Jun 2025
Viewed by 983
Abstract
Thin steel plates with stiffeners are widely used in shipbuilding, aeronautics, and civil construction due to their lightness and structural strength. This study presents a numerical model developed using ANSYS Mechanical APDL with SHELL281 finite elements to evaluate the deflection of thin steel [...] Read more.
Thin steel plates with stiffeners are widely used in shipbuilding, aeronautics, and civil construction due to their lightness and structural strength. This study presents a numerical model developed using ANSYS Mechanical APDL with SHELL281 finite elements to evaluate the deflection of thin steel plates with trapezoidal-shaped box-beam stiffeners, known as hat-stiffened plates. The structure is analyzed under a uniformly distributed load perpendicular to the plate, with simply supported boundary conditions. The constructal design method combined with the exhaustive search technique is employed to optimize the geometry. A volume fraction of 30% is used, transferring material from the reference plate (without stiffeners) to the stiffeners, defining parameters such as number, height, and thickness—considered degrees of freedom. The stiffener angle is fixed at 120°. The results show that increasing stiffener height and reducing thickness generally improve structural performance by reducing deflections. The best configuration with transverse stiffeners reduced deflection by 97.15% compared to the reference plate, and by 79.27% compared to the best longitudinal configuration from previous studies. Therefore, transverse stiffeners were more effective than longitudinal ones. This study highlights the importance of stiffener orientation and geometry in the structural optimization of thin steel plates. Full article
Show Figures

Figure 1

23 pages, 7142 KiB  
Article
Analysis of Vibration Characteristics of the Grading Belt in Wolfberry Sorting Machines
by Yang Yu, Zhiwei Su, Junhao Zhang, Jinglong Li and Wu Qin
Appl. Sci. 2025, 15(11), 6022; https://doi.org/10.3390/app15116022 - 27 May 2025
Viewed by 300
Abstract
The vibration of the belt drive system in fresh wolfberry sorting machines significantly impacts the sorting efficiency of wolfberries. To analyze the vibration changes induced by the belt drive, a simulation model was developed using multi-body dynamics software, Recur Dyn. The lateral vibration [...] Read more.
The vibration of the belt drive system in fresh wolfberry sorting machines significantly impacts the sorting efficiency of wolfberries. To analyze the vibration changes induced by the belt drive, a simulation model was developed using multi-body dynamics software, Recur Dyn. The lateral vibration characteristics of the grading device’s belt were examined under varying initial tensions, speeds, and deflection angles. Response surface methodology (RSM) was employed to determine the relative influence of these factors on the belt’s vibration characteristics. The analysis indicated the order of influence, from greatest to least, as initial tension, deflection angle, and speed. Aiming to minimize the vibration amplitude at the belt’s midpoint, the optimal parameter combination was determined. The operating conditions yielding the minimum amplitude were found to be an initial tension of 520 N/mm, a drive speed of 60 rpm, and a belt deflection angle of 5°. Concurrently, a transverse vibration modal analysis was conducted to study the system’s natural frequencies and corresponding mode shapes, aiding in the identification of potential resonance issues. Finally, under optimal operating conditions, guided by the results of the belt simulation test, a 10 mm fillet was introduced at the edge of the pulley, effectively mitigating wear and vibration. Specifically, when the effective length of the transmission mechanism is set to 2200 mm and the total length of the fixed device is configured as 1600 mm, the amplitude attenuation rate achieves its peak value. This study demonstrates that the integration of theoretical analysis with simulation techniques provides a robust approach for optimizing the structural design of the grading device. Full article
Show Figures

Figure 1

18 pages, 4292 KiB  
Article
Using Near-Surface-Mounted Small-Diameter Steel Wires to Improve Construction Efficiency in Strengthening Substandard Lapped Spliced Reinforced Concrete Beams
by Sabry Fayed, Mohamed Ghalla, Ehab A. Mlybari, Rabeea W. Bazuhair, Emrah Madenci and Yasin Onuralp Özkılıç
Buildings 2025, 15(6), 957; https://doi.org/10.3390/buildings15060957 - 18 Mar 2025
Viewed by 308
Abstract
Strengthening lapped spliced reinforced concrete (RC) beams using tiny-diameter steel wires as near-surface-mounted (NSM) rods has not been carried out previously. Thus, the purpose of this work is to examine the behavior of RC beams with insufficient lap splices that are strengthened by [...] Read more.
Strengthening lapped spliced reinforced concrete (RC) beams using tiny-diameter steel wires as near-surface-mounted (NSM) rods has not been carried out previously. Thus, the purpose of this work is to examine the behavior of RC beams with insufficient lap splices that are strengthened by NSM steel wires with different schemes to improve durability, efficiency, and effectiveness. At the middle of the beam, a splice length equal to 25 times the diameter of the rebar was used to join two tension bars. Many different schemes were implemented in strengthening the splice region, such as attaching longitudinal wires to the sides and/or bottom of the beam in different quantities with/without end anchorage, placing perpendicular and inclined U-shaped wires at the splice region in different quantities, and implementing a network of intersecting and opposite wires in two different directions. The effect of variables on the behavior of strengthened beams was studied. The findings proved that when the longitudinal wire reinforcement-to-lapped rebars area ratio was 9.4%, 18.7%, and 28%, the ultimate load of the beams was improved by 15.71%, 71.43%, and 104.57%, respectively. When the transverse U-shaped wire reinforcement ratio was 0.036, 0.051, 0.064, 0.075, and 0.150, the ultimate load of the beams was improved by 3.7%, 20%, 31.4%, 50%, and 80%, respectively, and the ultimate deflection was enhanced by 2%, 32%, 19%, 67%, and 62.4% compared to the unstrengthened beam. Full article
Show Figures

Figure 1

23 pages, 20698 KiB  
Article
Numerical Study on the Bending Performance of Steel-Ribbed Composite Slabs for Substations
by Lin Li, Yong Liu, Zhenzhong Wei, Yunan Jiang, Haomiao Chen, Yu Zhang, Chen Liu, Kunjie Rong and Li Tian
Appl. Sci. 2025, 15(6), 2876; https://doi.org/10.3390/app15062876 - 7 Mar 2025
Viewed by 634
Abstract
This study investigates the bending behavior of steel-ribbed composite slabs for a 500 kV substation project in China through numerical simulation. The unidirectional bending performance of the slab was first analyzed and validated against theoretical calculations. After that, the bidirectional bending performance of [...] Read more.
This study investigates the bending behavior of steel-ribbed composite slabs for a 500 kV substation project in China through numerical simulation. The unidirectional bending performance of the slab was first analyzed and validated against theoretical calculations. After that, the bidirectional bending performance of double-spliced and triple-spliced composite slabs were evaluated against the monolithic slab, followed by a parametric analysis to identify the influence of key factors. The results indicate that the steel-ribbed composite slabs feature high cracking strength, post-crack stiffness, bearing capacity, and commendable ductility under both unidirectional and bidirectional loading conditions. Under unidirectional loading, the ultimate capacity of the slab reaches 57–58 kN/m2. Under bidirectional loading, the cracking load and bearing capacity of the dense-splicing composite slabs increase by more than 60% compared with unidirectional loading. Composite and monolithic slabs exhibit similar crack patterns and ultimate capacities under bidirectional loading; however, the presence of splicing joints results in a slight increase in the ultimate deflection of the double-spliced and triple-spliced composite slabs by 7.53% and 7.75% compared with that of the monolithic slab. The ratio of prestressing steel is identified as the most critical parameter for failure control, followed by the concrete strength. When the strength of the joint-connecting rebars exceeds 235 MPa and the diameter is greater than 4 mm, transversal force transfer across the joints is reliable. This paper provides valuable insights and practical guidance for the prefabricated construction of substations. Full article
Show Figures

Figure 1

41 pages, 5611 KiB  
Article
An Annular Conductive Membrane-Based Hollow Capacitive Wind Pressure Sensor: Analytical Solution and Numerical Design and Calibration
by Jun-Yi Sun, Zhi-Qiang Yan, He-Hao Feng and Xiao-Ting He
Materials 2025, 18(5), 965; https://doi.org/10.3390/ma18050965 - 21 Feb 2025
Cited by 1 | Viewed by 388
Abstract
A novel hollow capacitive wind pressure sensor is for the first time proposed. The sensing element of the proposed sensor uses a non-parallel plate variable capacitor, whose movable electrode plate uses a transversely uniformly loaded annular conductive membrane with a fixed outer edge [...] Read more.
A novel hollow capacitive wind pressure sensor is for the first time proposed. The sensing element of the proposed sensor uses a non-parallel plate variable capacitor, whose movable electrode plate uses a transversely uniformly loaded annular conductive membrane with a fixed outer edge and a rigid inner edge (acting as the wind pressure sensitive element of the sensor). Due to the unique hollow configuration of the proposed sensor, it can be used alone to detect the pressure exerted by fast-moving air in the atmosphere or by fast-moving air or gas, etc., in pipes, but it also can be used in pairs to measure the flow rate of fast-moving air or gas, etc., in pipes. The analytical solution of the large deflection elastic behavior of the transversely uniformly loaded annular conductive membrane is derived by using a new set of membrane governing equations. The effectiveness of the new analytical solution is analyzed. The new membrane governing equations are compared with the previous ones to show the differences between them. The superiority of the new analytical solution over the existing ones is analyzed. An example is given to demonstrate the numerical design and calibration of the proposed sensor and the effect of changing design parameters on the important capacitance–pressure (Cq) analytical relationship of the proposed sensor is investigated comprehensively. Finally, an experimental verification of the analytical solution derived is carried out. Full article
(This article belongs to the Special Issue Materials and Machine Learning-Related Challenges for Sensors)
Show Figures

Figure 1

26 pages, 8754 KiB  
Article
Weight Effects on Vertical Transverse Vibration of a Beam with a Nonlinear Energy Sink
by Xiang Fu, Sha Wei, Hu Ding and Li-Qun Chen
Appl. Sci. 2025, 15(3), 1380; https://doi.org/10.3390/app15031380 - 29 Jan 2025
Cited by 2 | Viewed by 750
Abstract
Reductions in the vibration of a continuum system via a nonlinear energy sink have been widely investigated. It is usually assumed that weight effects can be ignored if the vibration is measured from the static equilibrium configuration. The present investigation reveals the dynamic [...] Read more.
Reductions in the vibration of a continuum system via a nonlinear energy sink have been widely investigated. It is usually assumed that weight effects can be ignored if the vibration is measured from the static equilibrium configuration. The present investigation reveals the dynamic effects of weight on the vertical transverse vibrations of a Euler–Bernoulli beam coupled with a nonlinear energy sink. The governing equations considering and neglecting weights were derived. The equations were discretized with some numerical support. The discretized equations were analytically solved via the harmonic balance method. The harmonic balance solutions were compared with the numerical solution via the Runge–Kutta method. Finite element simulations were performed via ANSYS software (version number: 2.2.1). Free and forced vibrations, predicted by equations considering or neglecting the weights, were compared with the finite element solutions. For the forced vibrations, the amplitude–frequency responses determined by the harmonic balance method agree well with those calculated by the Runge–Kutta method. The free and forced vibration responses predicted by the equations considering the weights are closer to those computed by the finite element method than the responses predicted by the equation neglecting the weights. The assumption that weights can be balanced by static deflections leads to errors in the analysis of the vertical transverse vibrations of a Euler–Bernoulli beam with a nonlinear energy sink. Full article
(This article belongs to the Special Issue Advances in Architectural Acoustics and Vibration)
Show Figures

Figure 1

17 pages, 6706 KiB  
Article
Research on the Local Damage Characteristics of Steel Box Girder Structures Under the Effects of Explosive Shock Waves
by Shouyi Qu and Yumin Song
Appl. Sci. 2025, 15(3), 1113; https://doi.org/10.3390/app15031113 - 23 Jan 2025
Viewed by 745
Abstract
This study investigates the local damage characteristics and influencing factors of steel box girder structures under explosive shock waves. The single-box, double-chamber steel box girder commonly used in urban road bridges was chosen as the research object. Based on model validation of the [...] Read more.
This study investigates the local damage characteristics and influencing factors of steel box girder structures under explosive shock waves. The single-box, double-chamber steel box girder commonly used in urban road bridges was chosen as the research object. Based on model validation of the explosion test values of a 1:10 scaled-down model of the steel box girder, a 1:1 numerical model of the steel box girder structure was established. The research analyzed failure modes under varying explosive charge weights and detonation locations. The results showed that failure primarily occurred in the top plate, base plate, and internal partitions, with the top plate experiencing the most severe damage due to direct impact. The effectiveness of transverse and longitudinal partitions in mitigating damage was highlighted, with unpartitioned sections exhibiting up to a 70% increase in damage area. Additionally, stiffening ribs influenced the deflection of base plate cracks, with maximum offset distances ranging from 0.5 m to 1.5 m as explosive weight increased. These findings emphasize the critical role of structural features in enhancing the blast resistance of steel box girder bridges, providing valuable insights for improving protective designs against explosive threats. Full article
Show Figures

Figure 1

39 pages, 13329 KiB  
Article
Large Deflection Analysis of Bimodular Functionally Graded Truncated Thin Conical Shells Under Mechanical and Thermal Loads
by Xiao-Ting He, Ming-Wei Luo, He-Hao Feng and Jun-Yi Sun
Materials 2025, 18(2), 362; https://doi.org/10.3390/ma18020362 - 14 Jan 2025
Viewed by 959
Abstract
The purpose of this study is to analyze the large deflection problem of bimodular functionally graded truncated thin conical shells under the transverse mechanical load and non-uniform thermal load, in which two different boundary constraints of the truncated shell with two ends simply [...] Read more.
The purpose of this study is to analyze the large deflection problem of bimodular functionally graded truncated thin conical shells under the transverse mechanical load and non-uniform thermal load, in which two different boundary constraints of the truncated shell with two ends simply supported and fully fixed are considered. It is assumed that the temperature distribution along the thickness direction satisfies the Fourier law of heat transfer, and the material properties change exponentially along the thickness direction while different properties in tension and compression are considered. The geometric equation of the conical shell is established based on the equivalent method of curvature correction of von-Kármán deformation theory, and the analytical solution of the problem is obtained by Ritz method. Numerical simulation of bimodular functionally graded conical shells under the thermal and mechanical loads is carried out by Abaqus, and the numerical solution agrees with the theoretical solution. The results show that the introduction of bimodular functionally graded material will affect the maximum displacement and this effect has different rules under the mechanical load and thermal load. In addition, factors such as the cone apex angle and the truncated distance have a great influence on the maximum displacement and its location of the conical shell. Full article
Show Figures

Figure 1

22 pages, 6595 KiB  
Article
Flexural and Shear Strengthening of High-Strength Concrete Beams Using near Surface Basalt Fiber Bars
by Ahmed Ashteyat, Ala’ Taleb Obaidat, Ahmad Al-Khreisat and Mu’tasime Abdel-Jaber
Infrastructures 2025, 10(1), 1; https://doi.org/10.3390/infrastructures10010001 - 24 Dec 2024
Cited by 1 | Viewed by 1384
Abstract
Strengthening of reinforced concrete (RC) structures has become a primary challenge in civil engineering. Different materials and procedures have been used in order to repair or strengthen RC structures. In this research, the NSM-Basalt Bar (NSM-BFRP) technique was used to strengthen high-strength reinforced [...] Read more.
Strengthening of reinforced concrete (RC) structures has become a primary challenge in civil engineering. Different materials and procedures have been used in order to repair or strengthen RC structures. In this research, the NSM-Basalt Bar (NSM-BFRP) technique was used to strengthen high-strength reinforced concrete beams in flexure and shear. Twelve beams were designed, constructed, and tested under four-point loads. Six of them were designed to have insufficient longitudinal steel reinforcement to make sure that the failure would be a flexural failure in the control beam. Whereas, the other six specimens were designed to have insufficient transverse steel reinforcement to make sure that the failure will be a shear failure in the control beam. All RC beams were strengthened using NSM-BFRP with different configurations except control specimens. The load deflection curve, the cracking pattern and the failure mode were evaluated. The experimental results reveal that NSM-BFRP bars significantly enhance the ultimate load capacity of high-strength concrete beams, with flexural capacity improvements of up to 33.33% and shear capacity enhancements of up to 63.5%. However, the use of BFRP bars also led to a shift in failure modes from flexural to shear, particularly in specimens with increased flexural reinforcement. The findings suggest that while NSM-BFRP bars are highly effective in strengthening concrete beams, careful consideration of the reinforcement configuration is necessary to avoid premature shear failure and ensure balanced structural performance. Full article
Show Figures

Figure 1

11 pages, 2796 KiB  
Article
Determination of the XUV Frequency Chirp at the Free-Electron Laser FLASH via THz Streaking and Electron Beam Diagnostics
by Mahdi M. Bidhendi, Gesa Goetzke, Ivette J. Bermudez Macias, Rosen Ivanov, Evgeny A. Schneidmiller, Najmeh Mirian and Stefan Düsterer
Photonics 2024, 11(12), 1153; https://doi.org/10.3390/photonics11121153 - 7 Dec 2024
Cited by 1 | Viewed by 2398
Abstract
Free-electron lasers (FELs) operating in the extreme ultraviolet (XUV) and X-ray regions deliver ultrashort pulses with unprecedented intensity, enabling groundbreaking research across various scientific disciplines. A potential chirp (frequency change within the pulse) of these pulses influences their spectral properties, directly impacting the [...] Read more.
Free-electron lasers (FELs) operating in the extreme ultraviolet (XUV) and X-ray regions deliver ultrashort pulses with unprecedented intensity, enabling groundbreaking research across various scientific disciplines. A potential chirp (frequency change within the pulse) of these pulses influences their spectral properties, directly impacting the experimental outcomes and FEL performance. The accurate characterization of the chirp is, therefore, important for optimizing FEL operation and interpreting experimental results. This study presents a comprehensive comparison of two techniques determining the chirp of the XUV pulses at FLASH by directly measuring the XUV pulses with THz streaking and by detecting the chirp of the electron bunches by a Transverse Deflection Structure (PolariX TDS) to infer the XUV chirp. We conducted simultaneous measurements using both techniques at FLASH2 while tuning the FEL to produce various energy chirps on the electron bunch. Full article
Show Figures

Figure 1

Back to TopTop