Experimental Investigation of the Effects of Backwater on the Velocity Distribution Characteristics in a 90-Degree Curved Channel
Abstract
:1. Introduction
2. Methods
2.1. Experimental Setup
2.2. Data Collection and Process
3. Results
3.1. Depth-Averaged Velocity Distributions
3.2. Transversal and Vertical Velocity Shifts
3.3. Secondary Flow Cell Evolution
3.4. Secondary Flow Intensity Trends
4. Discussion
5. Conclusions
- (1)
- The increasing backwater degree significantly reduces depth-averaged velocities, with mean cross-sectional velocities decreasing by about 60.1–67.2% as the backwater degree increases from 1.00 to its maximum tested values. The deflection angles of depth-averaged velocities decrease as the backwater degree increases, due to the weakened centrifugal effect.
- (2)
- At the apex of the bend, the increasing backwater degree induces velocity attenuation through increasing flow depth, driving the migration of high-velocity zones near the bed toward the inner bank (e.g., 0.1 m migration for Q = 52 L/s as the backwater degree increases from 1.00 to 3.26).
- (3)
- Secondary flow dynamics present the following continuous spatial adjustments: the central cells gradually migrate toward the inner bank with increasing backwater degree, while the secondary flow intensity peaks at the 45° cross section and declines downstream.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akhtari, A.A.; Abrishami, J.; Sharifi, M.B. Experimental investigations water surface characteristics in strongly-curved open channels. J. Appl. Sci. 2009, 9, 3699–3706. [Google Scholar] [CrossRef]
- Blanckaert, K. Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends. Water Resour. Res. 2010, 46, W09506. [Google Scholar] [CrossRef]
- Gholami, A.; Akhtari, A.A.; Minatour, Y.; Bonakdari, H.; Javadi, A.A. Experimental and numerical study on velocity fields and water surface profile in a strongly-curved 90° open channel bend. Eng. Appl. Comput. Fluid Mech. 2014, 8, 447–461. [Google Scholar] [CrossRef]
- Akbari, M.; Vaghefi, M. Experimental investigation on streamlines in a 180° sharp bend. Acta Sci. Technol. 2017, 39, 425–432. [Google Scholar] [CrossRef]
- Vaghefi, M.; Akbari, M.; Fiouz, A.R. An experimental study of mean and turbulent flow in a 180 degree sharp open channel bend: Secondary flow and bed shear stress. KSCE J. Civ. Eng. 2015, 20, 1582–1593. [Google Scholar] [CrossRef]
- Kashyap, S.; Constantinescu, G.; Rennie, C.D.; Post, G.; Townsend, R. Influence of channel aspect ratio and curvature on flow, secondary circulation, and bed shear stress in a rectangular channel bend. J. Hydraul. Eng. 2012, 138, 1045–1059. [Google Scholar] [CrossRef]
- Li, B.D.; Zhang, X.H.; Tang, H.S.; Tsubaki, R. Influence of deflection angles on flow behaviours in open channel bends. J. Mt. Sci. 2018, 15, 2292–2306. [Google Scholar] [CrossRef]
- Zeng, J.; Constantinescu, G.; Blanckaert, K.; Weber, L. Flow and bathymetry in sharp open-channel bends: Experiments and predictions. Water Resour. Res. 2008, 44, W09401. [Google Scholar] [CrossRef]
- Raeisifar, H.; Rahimpour, A.R.; Afzalimehr, H.; Yagci, O.; Valyrakis, M. Experimental assessment of the turbulent flow field due to emergent vegetation at a sharply curved open channel. Water 2025, 17, 205. [Google Scholar] [CrossRef]
- Rismani, N.; Afzalimehr, H.; Asghari-Pari, S.A.; Nazari-Sharabian, M.; Karakouzian, M. Optimization of threshold velocity values for sediment transport at the outer bank of a 180-degree bend with emergent vegetation. Water 2025, 17, 971. [Google Scholar] [CrossRef]
- Johannesson, H.; Parker, G. Secondary flow in mildly sinuous channel. J. Hydraul. Eng. 1989, 115, 289–308. [Google Scholar] [CrossRef]
- Russell, P.; Vennell, R. High resolution observations of an outer-bank cell of secondary circulation in a natural river bend. J. Hydraul. Eng. 2019, 145, 04019012. [Google Scholar] [CrossRef]
- Yan, X.H.; Rennie, C.D.; Mohammadian, A. A three-dimensional numerical study of flow characteristics in strongly curved channel bends with different side slopes. Environ. Fluid Mech. 2020, 20, 1491–1510. [Google Scholar] [CrossRef]
- Blanckaert, K.; De Vriend, H. Secondary flow in sharp one-channel bends. J. Fluid Mech. 2004, 498, 353–380. [Google Scholar] [CrossRef]
- Hu, C.; Yu, M.; Wei, H.; Liu, C. The mechanisms of energy transformation in sharp open-channel bends: Analysis based on experiments in a laboratory flume. J. Hydrol. 2019, 571, 723–739. [Google Scholar] [CrossRef]
- Blanckaert, K. Saturation of curvature-induced secondary flow, energy losses, and turbulence in sharp open-channel bends: Laboratory experiments, analysis, and modeling. J. Geophys. Res. 2009, 114, F03015. [Google Scholar] [CrossRef]
- Blanckaert, K. Hydrodynamic processes in sharp bends and their morphological implications. J. Geophys. Res. 2011, 116, F01003. [Google Scholar] [CrossRef]
- Blanckaert, K.; Graf, W. Momentum transport in sharp open-channel bends. J. Hydraul. Eng. 2004, 130, 186–198. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef]
- Lehner, B.; Reidy Liermann, C.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Doell, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef]
- Liro, M. Dam-induced base-level rise effects on the gravel-bed channel planform. Catena 2017, 153, 143–156. [Google Scholar] [CrossRef]
- Liro, M. Dam reservoir backwater as a field-scale laboratory of human-induced changes in river biogeomorphology: A review focused on gravel-bed rivers. Sci. Total Environ. 2019, 651, 2899–2912. [Google Scholar] [CrossRef] [PubMed]
- Liro, M.; Ruiz-Villanueva, V.; Mikuś, P.; Wyżga, B.; Bladé Castellet, E. Changes in the hydrodynamics of a mountain river induced by dam reservoir backwater. Sci. Total Environ. 2020, 74, 140555. [Google Scholar] [CrossRef]
- Lang, J.; Le Heron, D.P.; Van den Berg, J.H.; Winsemann, J. Bedforms and sedimentary structures related to supercritical flows in glacigenic settings. Sedimentology 2021, 68, 1539–1579. [Google Scholar] [CrossRef]
- Ventra, D.; Cartigny, M.J.B.; Bijkerk, J.F.; Acikalin, S. Supercritical-flow structures on a Late Carboniferous delta front: Sedimentologic and paleoclimatic significance. Geology 2015, 43, 731–734. [Google Scholar] [CrossRef]
- Auel, C.; Albayrak, I.; Boes Robert, M. Turbulence characteristics in supercritical open channel flows: Effects of froude number and aspect ratio. J. Hydraul. Eng. 2014, 140, 04014004. [Google Scholar] [CrossRef]
- Tan, C.; Plink-BjÖrklund, P. Morphodynamics of supercritical flow in a linked river and delta system, Daihai Lake, Northern China. Sedimentology 2021, 68, 1606–1639. [Google Scholar] [CrossRef]
- Nie, R.; Zhou, Q.; Li, W.; Liu, X.; Xie, G.; Wang, L. Impact of backwater on water surface profile in curved channels. Water Sci. Eng. 2023, 16, 295–301. [Google Scholar] [CrossRef]
- Chung, W.H.; Aldama-Rodríguez, A.; Smith, J. On the effects of downstream boundary conditions on diffusive flood routing. Adv. Water Resour. 1993, 16, 259–275. [Google Scholar] [CrossRef]
- Di Cristo, C.; Iervolino, M.; Vacca, A. Diffusive approximation for unsteady mud flows with backwater effect. Adv. Water Resour. 2015, 81, 84–94. [Google Scholar] [CrossRef]
- Jin, Z.W.; Lu, J.Y.; Wu, H.L. Study of bedload transport in backwater flow. J. Hydrodyn. 2016, 28, 153–161. [Google Scholar] [CrossRef]
- Tsai, C.W. Flood routing in mild-sloped rivers-wave characteristics and downstream backwater effect. J. Hydrol. 2005, 308, 151–167. [Google Scholar] [CrossRef]
- Han, C.; Dai, T.; Tian, Z.; Tang, Y.; Wu, H.; Wang, Y.; Wang, Z. Source identification and release potential of soil phosphorus in the water-level fluctuation zone of large reservoirs: A case study of the Three Gorges Reservoir, China. Water 2025, 17, 611. [Google Scholar] [CrossRef]
- Leschziner, M.; Rodi, W. Calculation of strongly curved open-channel flow. J. Hydraul. Div. 1979, 105, 1297–1314. [Google Scholar] [CrossRef]
- Rozovskii, I.L. Flow of Water in Bends of Open Channels; Israel Program for Scientific Translations: Jerusalem, Israel, 1961. [Google Scholar]
- Pan, Y.; Li, Z.; Yang, K.; Jia, D. Velocity distribution characteristics in meandering compound channels with one-sided vegetated floodplains. J. Hydrol. 2019, 578, 124068. [Google Scholar] [CrossRef]
- Liu, C.; Shan, Y.; Liu, X.; Yang, K.; Liao, H. The effect of floodplain grass on the flow characteristics of meandering compound channels. J. Hydrol. 2016, 542, 1–17. [Google Scholar] [CrossRef]
- Abhari, M.N.; Ghodsian, M.; Vaghefi, M.; Panahpur, N. Experimental and numerical simulation of flow in a 90° bend. Flow Meas. Instrum. 2010, 21, 292–298. [Google Scholar] [CrossRef]
- Shukry, A. Flow around bends in an open flume. Trans. Am. Soc. Civ. Eng. ASCE 1950, 115, 751–779. [Google Scholar] [CrossRef]
Group | Q (L/s) | Vd (m/s) | hd (mm) | hd0 (mm) | B/hd | Re | Fr | η |
---|---|---|---|---|---|---|---|---|
1-1 | 35 | 0.911 | 64 | 64 | 9.4 | 58,333.3 | 1.15 | 1.00 |
1-2 | 35 | 0.397 | 147 | 64 | 4.1 | 58,333.3 | 0.33 | 2.30 |
1-3 | 35 | 0.250 | 233 | 64 | 2.6 | 58,333.3 | 0.17 | 3.64 |
2-1 | 52 | 1.032 | 84 | 84 | 7.1 | 86,666.7 | 1.14 | 1.00 |
2-2 | 52 | 0.602 | 144 | 84 | 4.2 | 86,666.7 | 0.51 | 1.71 |
2-3 | 52 | 0.385 | 225 | 84 | 2.7 | 86,666.7 | 0.26 | 2.67 |
2-4 | 52 | 0.316 | 274 | 84 | 2.2 | 86,666.7 | 0.19 | 3.26 |
3-1 | 80 | 1.190 | 112 | 112 | 5.4 | 133,333.3 | 1.14 | 1.00 |
3-2 | 80 | 0.663 | 201 | 112 | 3.0 | 133,333.3 | 0.47 | 1.79 |
3-3 | 80 | 0.623 | 214 | 112 | 2.8 | 133,333.3 | 0.43 | 1.91 |
3-4 | 80 | 0.425 | 314 | 112 | 1.9 | 133,333.3 | 0.24 | 2.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Li, Z.; Jin, Z.; Wang, Y.; Chen, P.; Liu, Y.; Yang, X. Experimental Investigation of the Effects of Backwater on the Velocity Distribution Characteristics in a 90-Degree Curved Channel. Water 2025, 17, 1858. https://doi.org/10.3390/w17131858
Zhou Q, Li Z, Jin Z, Wang Y, Chen P, Liu Y, Yang X. Experimental Investigation of the Effects of Backwater on the Velocity Distribution Characteristics in a 90-Degree Curved Channel. Water. 2025; 17(13):1858. https://doi.org/10.3390/w17131858
Chicago/Turabian StyleZhou, Qihang, Zhijing Li, Zhongwu Jin, Yisen Wang, Peng Chen, Yujiao Liu, and Xuhai Yang. 2025. "Experimental Investigation of the Effects of Backwater on the Velocity Distribution Characteristics in a 90-Degree Curved Channel" Water 17, no. 13: 1858. https://doi.org/10.3390/w17131858
APA StyleZhou, Q., Li, Z., Jin, Z., Wang, Y., Chen, P., Liu, Y., & Yang, X. (2025). Experimental Investigation of the Effects of Backwater on the Velocity Distribution Characteristics in a 90-Degree Curved Channel. Water, 17(13), 1858. https://doi.org/10.3390/w17131858