Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,679)

Search Parameters:
Keywords = transportation problem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9975 KB  
Article
Leveraging LiDAR Data and Machine Learning to Predict Pavement Marking Retroreflectivity
by Hakam Bataineh, Dmitry Manasreh, Munir Nazzal and Ala Abbas
Vehicles 2026, 8(1), 23; https://doi.org/10.3390/vehicles8010023 - 20 Jan 2026
Abstract
This study focused on developing and validating machine learning models to predict pavement marking retroreflectivity using Light Detection and Ranging (LiDAR) intensity data. The retroreflectivity data was collected using a Mobile Retroreflectometer Unit (MRU) due to its increasing acceptance among states as a [...] Read more.
This study focused on developing and validating machine learning models to predict pavement marking retroreflectivity using Light Detection and Ranging (LiDAR) intensity data. The retroreflectivity data was collected using a Mobile Retroreflectometer Unit (MRU) due to its increasing acceptance among states as a compliant measurement device. A comprehensive dataset was assembled spanning more than 1000 miles of roadways, capturing diverse marking materials, colors, installation methods, pavement types, and vehicle speeds. The final dataset used for model development focused on dry condition measurements and roadway segments most relevant to state transportation agencies. A detailed synchronization process was implemented to ensure the accurate pairing of retroreflectivity and LiDAR intensity values. Using these data, several machine learning techniques were evaluated, and an ensemble of gradient boosting-based models emerged as the top performer, predicting pavement retroreflectivity with an R2 of 0.94 on previously unseen data. The repeatability of the predicted retroreflectivity was tested and showed similar consistency as the MRU. The model’s accuracy was confirmed against independent field segments demonstrating the potential for LiDAR to serve as a practical, low-cost alternative for MRU measurements in routine roadway inspection and maintenance. The approach presented in this study enhances roadway safety by enabling more frequent, network-level assessments of pavement marking performance at lower cost, allowing agencies to detect and correct visibility problems sooner and helping to prevent nighttime and adverse weather crashes. Full article
Show Figures

Figure 1

20 pages, 1032 KB  
Article
Challenges and Trends in High-Voltage Insulation of Electric Vehicle Devices
by Marek Florkowski
Energies 2026, 19(2), 526; https://doi.org/10.3390/en19020526 - 20 Jan 2026
Abstract
There are observed unprecedented dynamics in transportation electrification—especially in electric vehicles (even being tested as autonomous units in some regions). The expected improvements in charging and driving distances strive toward higher power levels of passenger cars, public transportation, and trucks, thus leading to [...] Read more.
There are observed unprecedented dynamics in transportation electrification—especially in electric vehicles (even being tested as autonomous units in some regions). The expected improvements in charging and driving distances strive toward higher power levels of passenger cars, public transportation, and trucks, thus leading to elevations of on-board voltage levels. It is expected that the kilovolt level will be crossed soon, thus implying testing at a few kV. To achieve efficient power conversion while maintaining high-power density, new classes of wide-band semiconductors are being implemented; however, fast-switching and ultra-short rise times may result in faster electrical insulation deterioration. The challenges and trends in the development of the high-voltage insulation of various EV components are analyzed. Insulation performance evaluation criteria are discussed, including partial discharges and monitoring approaches. In this context, the development of the transportation segment’s electrification is closely connected with high-voltage insulation problems. Full article
(This article belongs to the Special Issue Condition Monitoring of Electrical Machines Based on Models)
28 pages, 3896 KB  
Article
Research on One-to-Many Pickup and Delivery Vehicle Routing Optimization Method Considering Three-Dimensional Loading
by Jiayi Shen and Yinggui Zhang
Sustainability 2026, 18(2), 988; https://doi.org/10.3390/su18020988 - 18 Jan 2026
Viewed by 75
Abstract
Simultaneous optimization of vehicle routing and cargo loading is essential for reducing operational costs and improving the environmental performance of logistics systems. To overcome the limitations of traditional sequential approaches to the one-to-many pickup and delivery vehicle routing problem with three-dimensional loading constraints [...] Read more.
Simultaneous optimization of vehicle routing and cargo loading is essential for reducing operational costs and improving the environmental performance of logistics systems. To overcome the limitations of traditional sequential approaches to the one-to-many pickup and delivery vehicle routing problem with three-dimensional loading constraints (3L-PDVRP), this paper proposes a deeply coupled hybrid genetic algorithm (HGA). The algorithm adopts a grouping-based genetic encoding strategy to accommodate variable fleet sizes and incorporates a tree-search-based loading module. A dynamic three-dimensional loading feasibility verification mechanism is embedded directly into the evolutionary search so that routing decisions are continuously guided by fragility, stacking stability, support constraints, and other loading constraints. In addition, an adaptive hybrid insertion strategy is employed to balance global exploration and local exploitation during route construction and repair. Extensive computational experiments on extended benchmark instances derived from standard datasets show that the proposed method consistently outperforms a large neighborhood search (LNS)-based baseline from the literature, reducing the average total travel distance by 10.60% and increasing the average vehicle loading rate by 2.76%. These results indicate that the proposed HGA provides an effective approach to the synergistic optimization of routing and loading in one-to-many distribution settings, offering practical value for lowering transportation costs and supporting more sustainable logistics operations. This methodology provides decision support for logistics enterprises, reducing travel distances while ensuring three-dimensional loading feasibility, thereby enabling greener and safer transportation operations. Full article
Show Figures

Figure 1

30 pages, 3887 KB  
Article
Simulation and Parameter Optimization of Inserting–Extracting–Transporting Process of a Seedling Picking End Effector Using Two Fingers and Four Needles Based on EDEM-MFBD
by Jiawei Shi, Jianping Hu, Wei Liu, Mengjiao Yao, Jinhao Zhou and Pengcheng Zhang
Plants 2026, 15(2), 291; https://doi.org/10.3390/plants15020291 - 18 Jan 2026
Viewed by 39
Abstract
This paper aims to address the problem of the low success rate of seedling picking and throwing, and the high damage rate of pot seedling, caused by the unclear interaction and parameter mismatch between the seedling picking end effector and the pot seedling [...] Read more.
This paper aims to address the problem of the low success rate of seedling picking and throwing, and the high damage rate of pot seedling, caused by the unclear interaction and parameter mismatch between the seedling picking end effector and the pot seedling during the seedling picking and throwing process of automatic transplanters. An EDEM–RecurDyn coupled simulation was conducted, through which the disturbance of substrate particles in the bowl body during the inserting, extracting, and transporting processes by the seedling picking end effector was visualized and analyzed. The force and motion responses of the particles during their interaction with the seedling picking end effector were explored, and the working parameters of the seedling picking end effector were optimized. A seedling picking end effector using two fingers and four needles is taken as the research object, a kinematic mathematical model of the seedling picking end effector is established, and the dimensional parameters of each component of the end effector are determined. Physical characteristic tests are conducted on Shanghai bok choy pot seedlings to obtain relevant parameters. A discrete element model of the pot seedling is established in EDEM 2022 software, and a virtual prototype model of the seedling picking end effector is established in Recurdyn 2024 software. Through EDEM-Recurdyn coupled simulation, the force and movement of the substrate particles in the bowl body during the inserting, extracting, and transporting processes of the seedling picking end effector under different operating parameters were explored, providing a theoretical basis for optimizing the working parameters of the end effector. The inserting and extracting velocity, transporting velocity, and inserting depth of the seedling picking end effector were used as experimental factors, and the success rate of seedling picking and throwing, and the loss rate of substrate, were used as evaluation indicators; single-factor tests and three-factor, three-level Box–Behnken bench tests were conducted. Variance analysis, response surface methodology, and multi-objective optimization were performed using Design-Expert 13 software to obtain the optimal parameter combination: when the inserting and extracting velocity was 228 mm/s, the transporting velocity was 264 mm/s, the inserting depth was 37 mm, the success rate of seedling picking and throwing was 97.48%, and the loss rate of substrate was 2.12%. A verification experiment was conducted on the bench, and the success rate of seedling picking and throwing was 97.35%, and the loss rate of substrate was 2.34%, which was largely consistent with the optimized results, thereby confirming the rationality of the established model and optimized parameters. Field trial showed the success rate of seedling picking and throwing was 97.04%, and the loss rate of substrate was 2.41%. The error between the success rate of seedling picking and throwing and the optimized result was 0.45%, indicating that the seedling picking end effector has strong anti-interference ability, and verifying the feasibility and practicality of the established model and optimized parameters. Full article
(This article belongs to the Special Issue Precision Agriculture in Crop Production—2nd Edition)
36 pages, 5250 KB  
Article
Nonlinear Gravity-Wave Effects on the Distribution of Chemical Constituents in a Vertically-Sheared Atmospheric Flow
by Ahmed S. Almohaimeed and Lucy J. Campbell
Mathematics 2026, 14(2), 322; https://doi.org/10.3390/math14020322 - 17 Jan 2026
Viewed by 81
Abstract
The dynamical processes in the atmosphere are coupled with the chemistry of the atmosphere. Internal gravity waves influence the distribution of chemical constituents in the atmosphere through their effects on the background wind or mean flow. We examine a coupled system of equations [...] Read more.
The dynamical processes in the atmosphere are coupled with the chemistry of the atmosphere. Internal gravity waves influence the distribution of chemical constituents in the atmosphere through their effects on the background wind or mean flow. We examine a coupled system of equations comprising a nonlinear transport equation of Fisher type for the distribution of the chemical species, along with nonlinear Boussinesq equations for internal gravity waves in a vertically stratified and vertically sheared fluid flow in a two-dimensional region. In our model, a horizontally localized gravity-wave packet is generated and propagates upward into a localized region where the chemical species is present. Numerical solutions show that the wave-induced mean flow resulting from nonlinear gravity-wave interactions in the vicinity of a critical level leads to modifications in the distribution of the chemical. An asymptotic analysis of a related qualitatively similar problem gives us information on the dominant behaviour of the chemical concentration perturbation. We conclude that nonlinearity and vertical shear play a vital role in the interplay between gravity-wave dynamics and chemical distributions in the atmosphere. Full article
(This article belongs to the Special Issue Nonlinear Waves: Theory and Applications)
13 pages, 4569 KB  
Article
Transcriptomic Insights into the Molecular Responses of Red Imported Fire Ants (Solenopsis invicta) to Beta-Cypermethrin and Cordyceps cicadae
by Ruihang Cai, Xiaola Li, Yiqiu Chai, Zhe Liu, Yihu Pan and Yougao Liu
Genes 2026, 17(1), 92; https://doi.org/10.3390/genes17010092 - 17 Jan 2026
Viewed by 153
Abstract
Background: Solenopsis invicta, commonly known as the red imported fire ant (RIFA), is an important global invasive pest, and its management is challenging because of insecticide resistance and environmental problems. Methods: In this research, we applied transcriptomics to analyze the molecular responses [...] Read more.
Background: Solenopsis invicta, commonly known as the red imported fire ant (RIFA), is an important global invasive pest, and its management is challenging because of insecticide resistance and environmental problems. Methods: In this research, we applied transcriptomics to analyze the molecular responses of S. invicta worker ants exposed to different types of pesticides, beta-cypermethrin (BC) and the entomopathogenic fungus Cordyceps cicadae (CC), as well as to different concentrations of these pesticides. Results: A total of 2727 differentially expressed genes (DEGs) were identified across all samples. The number of DEGs in the BC treatment group was significantly higher than that in the CC treatment group (2520 vs. 433), and higher concentrations resulted in more DEGs (an increase of 47 in the BC group and 229 in the CC group). KEGG pathway analysis revealed that the DEGs were significantly enriched in lipid metabolism, carbohydrate metabolism, amino acid metabolism, signal transduction, and membrane transport. Immune-related gene analysis showed more general down-regulation (average FPKM value in BC 741.37 to 756.06 vs. CK 1914.42) of pathogen recognition genes (PGRP-SC2) under BC stress conditions, while CC treatment resulted in increases in expression of important immune effectors such as various serine proteases. Conclusions: Overall, this study provides useful insights into the molecular basis of responses to different pesticides in S. invicta and offers a basis to develop new approaches to control this pest. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

25 pages, 3126 KB  
Article
Diagnosis of Urban Mobility Using the TICI Index: A Multi-Criteria Approach Applied to Public Transportation in Brazil
by Noé Villegas-Flores, Yelinca Saldeño-Madero, Leonardo Sierra-Varela, Ana Carolina Parapinski-dos Santos, Camilo Alberto Torres-Parra and José Mardones-Ayelef
Appl. Sci. 2026, 16(2), 897; https://doi.org/10.3390/app16020897 - 15 Jan 2026
Viewed by 73
Abstract
This case study in Foz do Iguaçu, Brazil, addresses the urban problem of the degradation of road corridors used by public transport, affecting the accessibility, safety, and efficiency of urban mobility. To address this issue, a multi-criteria methodology based on MIVES (Integrated Value [...] Read more.
This case study in Foz do Iguaçu, Brazil, addresses the urban problem of the degradation of road corridors used by public transport, affecting the accessibility, safety, and efficiency of urban mobility. To address this issue, a multi-criteria methodology based on MIVES (Integrated Value Model for Sustainable Assessments) was applied, combined with the AHP (Analytic Hierarchy Process) method, allowing the evaluation of 20 key urban roads using a hierarchical set of indicators linked to infrastructure, accessibility, and mobility. The assessment was operationalized through the Transport Infrastructure Condition Index (TICI), which yielded results ranging from 0.32 to 0.88, reflecting significant contrasts in the road’s upkeep and maintenance conditions. The lowest scores were associated with deficiencies in universal accessibility, cycling infrastructure, signage, and adaptations for people with reduced mobility, highlighting structural limitations in sustainability and urban inclusion. The model facilitates the prioritization of road interventions based on urgency and criticality, becoming a useful tool for guiding public investment decisions. Its comprehensive approach and replicability make it a valuable methodological alternative for other Latin American contexts, where pressure to improve urban services coexists with budgetary constraints, contributing to more efficient and sustainable strategic planning of public transportation. Full article
Show Figures

Figure 1

19 pages, 1271 KB  
Article
Adherence to the Mediterranean Diet and Metabolic Gene Expression in Smokers: An Integrative Transcriptomic Approach
by İlayda Öztürk Altuncevahir, Ayşe Büşranur Çelik, Kezban Uçar Çifçi, Mervenur Uslu, Meltem Vural, Alev Kural, Ezgi Nurdan Yenilmez Tunoğlu and Yusuf Tutar
Nutrients 2026, 18(2), 276; https://doi.org/10.3390/nu18020276 - 15 Jan 2026
Viewed by 247
Abstract
Background: Cigarette smoking disrupts cellular energy metabolism and remains a major global health problem. The Mediterranean diet, characterized by antioxidant and anti-inflammatory properties, has been implicated in the regulation of metabolic pathways. Objective: This study aimed to examine the association between adherence to [...] Read more.
Background: Cigarette smoking disrupts cellular energy metabolism and remains a major global health problem. The Mediterranean diet, characterized by antioxidant and anti-inflammatory properties, has been implicated in the regulation of metabolic pathways. Objective: This study aimed to examine the association between adherence to the Mediterranean diet and the expression of energy metabolism-related genes in smokers aged 18–55 years. Methods: Smokers were classified according to their Mediterranean Diet Adherence Screener (MEDAS) scores into an adhering group (n = 24) and a non-adhering group (n = 24). Participant characteristics were recorded, blood samples were collected, and total RNA was isolated. Gene expression analysis was performed using a custom RT-qPCR array targeting energy metabolism-related genes. Pathway enrichment analysis was conducted using EnrichR Reactome 2024, and gene–metabolite relationships were explored using MetaboAnalyst 6.0 to support pathway-level interpretation. Results: Smoking was associated with coordinated upregulation of genes involved in glycolysis, glucose transport, lipid metabolism, amino acid metabolism, the pentose phosphate pathway, and redox regulation, consistent with a metabolically stressed state. In contrast, adherence to the Mediterranean diet was associated with lower expression of genes related to glycolytic flux, lipid β-oxidation, and amino acid turnover, alongside relatively higher engagement of tricarboxylic acid cycle-related pathways and reduced activation of redox-associated processes. Conclusions: Adherence to the Mediterranean diet was associated with differences in the expression of genes involved in cellular energy metabolism among smokers, suggesting a potential modulatory role of dietary patterns in smoking-related metabolic alterations. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

19 pages, 568 KB  
Article
Feature-Driven Distributionally Robust Optimization for Sustainable Emergency Response Under Uncertainty: A Relief Network Design Perspective
by Yuchen Li, Xinwen Yang, Yang Liu and Peng Wan
Sustainability 2026, 18(2), 871; https://doi.org/10.3390/su18020871 - 15 Jan 2026
Viewed by 106
Abstract
Against the backdrop of the suddenness and inherent uncertainty of emergencies, pre-disaster emergency facility location and emergency relief stockpiling are critical for improving the efficiency and sustainability of emergency response. This paper focuses on the emergency response network design problem considering uncertain transportation [...] Read more.
Against the backdrop of the suddenness and inherent uncertainty of emergencies, pre-disaster emergency facility location and emergency relief stockpiling are critical for improving the efficiency and sustainability of emergency response. This paper focuses on the emergency response network design problem considering uncertain transportation time and emergency demands. We cluster historical disaster events and extract cluster-specific statistical features, such as the average value, mean absolute deviation, and probabilistic statistical distance of uncertain parameters, constructing an ambiguity set based on the disaster feature and multivariate probability distribution information. Then, to minimize the total rescue cost, a feature-driven two-stage distributionally robust optimization model is formulated to determine reliable pre-disaster emergency facility locations, inventory decisions, and post-disaster resource allocation strategies. Finally, through an earthquake case in Sichuan Province of China, this work verifies that incorporating disaster clustering information enables a superior trade-off between the robustness and conservatism of emergency rescue decisions. Compared with the benchmark model, the proposed method displays better out-of-sample performance and can effectively enhance the sustainability of emergency response in uncertain environments. Full article
Show Figures

Figure 1

19 pages, 2822 KB  
Article
A New Framework for Job Shop Integrated Scheduling and Vehicle Path Planning Problem
by Ruiqi Li, Jianlin Mao, Xing Wu, Wenna Zhou, Chengze Qian and Haoshuang Du
Sensors 2026, 26(2), 543; https://doi.org/10.3390/s26020543 - 13 Jan 2026
Viewed by 118
Abstract
With the development of manufacturing industry, traditional fixed process processing methods cannot adapt to the changes in workshop operations and the demand for small batches and multiple orders. Therefore, it is necessary to introduce multiple robots to provide a more flexible production mode. [...] Read more.
With the development of manufacturing industry, traditional fixed process processing methods cannot adapt to the changes in workshop operations and the demand for small batches and multiple orders. Therefore, it is necessary to introduce multiple robots to provide a more flexible production mode. Currently, some Job Shop Scheduling Problems with Transportation (JSP-T) only consider job scheduling and vehicle task allocation, and does not focus on the problem of collision free paths between vehicles. This article proposes a novel solution framework that integrates workshop scheduling, material handling robot task allocation, and conflict free path planning between robots. With the goal of minimizing the maximum completion time (Makespan) that includes handling, this paper first establishes an extended JSP-T problem model that integrates handling time and robot paths, and provides the corresponding workshop layout map. Secondly, in the scheduling layer, an improved Deep Q-Network (DQN) method is used for dynamic scheduling to generate a feasible and optimal machining scheduling scheme. Subsequently, considering the robot’s position information, the task sequence is assigned to the robot path execution layer. Finally, at the path execution layer, the Priority Based Search (PBS) algorithm is applied to solve conflict free paths for the handling robot. The optimized solution for obtaining the maximum completion time of all jobs under the condition of conflict free path handling. The experimental results show that compared with algorithms such as PPO, the scheduling algorithm proposed in this paper has improved performance by 9.7% in Makespan, and the PBS algorithm can obtain optimized paths for multiple handling robots under conflict free conditions. The framework can handle scheduling, task allocation, and conflict-free path planning in a unified optimization process, which can adapt well to job changes and then flexible manufacturing. Full article
Show Figures

Figure 1

15 pages, 2396 KB  
Article
A Study on Perception Differences in Sustainable Non-Motorized Transportation Assessment Based on Female Perspectives and Machine Scoring: A Case Study of Changsha
by Ziyun Ye, Jiawei Zhu, Yaming Ren and Jiachuan Wang
Sustainability 2026, 18(2), 810; https://doi.org/10.3390/su18020810 - 13 Jan 2026
Viewed by 241
Abstract
Against the backdrop of rising global carbon emissions, promoting active transportation modes such as walking and cycling has become a key strategy for countries worldwide to meet carbon reduction targets and advance the goals of sustainable development. In China, the concept of low-carbon [...] Read more.
Against the backdrop of rising global carbon emissions, promoting active transportation modes such as walking and cycling has become a key strategy for countries worldwide to meet carbon reduction targets and advance the goals of sustainable development. In China, the concept of low-carbon mobility has gained rapid traction, leading to a significant increase in public demand for non-motorized travel options like walking and cycling. From the perspective of inclusive urban development, gender imbalances in sample representation during design and evaluation processes have contributed to homogenization and a lack of diversity in urban slow-traffic environments. To address this issue, this study adopts a problem-oriented approach. First, we collect street scene images of slow-traffic environments through self-conducted field surveys. Concurrently, we gather satisfaction survey responses from 511 urban residents regarding existing slow-traffic streets, identifying three key environmental evaluation indicators: safety, liveliness, and beauty. Second, an experimental analysis is conducted to compare machine-generated assessments based on self-collected street view data with manual evaluations performed by 27 female participants. The findings reveal significant perceptual differences between genders in the assessment of slow-moving environments, particularly regarding attention to environmental elements, challenges in utilizing non-motorized lanes, and overall environmental satisfaction. Moreover, notable discrepancies are observed between machine scores and manual assessments performed by women. Based on these findings, this study investigates the underlying causes of such perceptual disparities and the mechanisms influencing them. Finally, it proposes female-inclusive strategies aimed at enhancing the quality of slow-traffic environments, thereby addressing the current absence of gender considerations in their design. This research seeks to provide a robust female perspective and empirical evidence to support improvements in the quality of slow-moving environments and to inform strategic advancements in their design. The findings of this study can provide a theoretical and empirical basis for the optimization of gender-inclusive non-motorized transportation environment design, policy formulation, and subsequent interdisciplinary research. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

36 pages, 4465 KB  
Review
Earth-Driven Hydrogen: Integrating Geothermal Energy with Methane Pyrolysis Reactors
by Ayann Tiam, Sarath Poda and Marshall Watson
Hydrogen 2026, 7(1), 10; https://doi.org/10.3390/hydrogen7010010 - 13 Jan 2026
Viewed by 209
Abstract
The increasing global demand for clean hydrogen necessitates production methods that minimize greenhouse gas emissions while being scalable and economically viable. Hydrogen has a very high gravimetric energy density of about 142 MJ/kg, which makes it a very promising energy carrier for many [...] Read more.
The increasing global demand for clean hydrogen necessitates production methods that minimize greenhouse gas emissions while being scalable and economically viable. Hydrogen has a very high gravimetric energy density of about 142 MJ/kg, which makes it a very promising energy carrier for many uses, such as transportation, industrial processes, and fuel cells. Methane pyrolysis has emerged as an attractive low-carbon alternative, decomposing methane (CH4) into hydrogen and solid carbon while circumventing direct CO2 emissions. Still, the process is very endothermic and has always depended on fossil-fuel heat sources, which limits its ability to run without releasing any carbon. This review examines the integration of geothermal energy and methane pyrolysis as a sustainable heat source, with a focus on Enhanced Geothermal Systems (EGS) and Closed-Loop Geothermal (CLG) technologies. Geothermal heat is a stable, carbon-free source of heat that can be used to preheat methane and start reactions. This makes energy use more efficient and lowers operating costs. Also, using flared natural gas from remote oil and gas fields can turn methane that would otherwise be thrown away into useful hydrogen and solid carbon. This review brings together the most recent progress in pyrolysis reactors, catalysts, carbon management, geothermal–thermochemical coupling, and techno-economic feasibility. The conversation centers on major problems and future research paths, with a focus on the potential of geothermal-assisted methane pyrolysis as a viable way to make hydrogen without adding to the carbon footprint. Full article
Show Figures

Figure 1

28 pages, 5468 KB  
Article
Robust Scheduling of Multi-Service-Area PV-ESS-Charging Systems Along a Highway Under Uncertainty
by Shichao Zhu, Zhu Xue, Yuexiang Li, Changjing Xu, Shuo Ma, Zixuan Li and Fei Lin
Energies 2026, 19(2), 372; https://doi.org/10.3390/en19020372 - 12 Jan 2026
Viewed by 88
Abstract
Against the backdrop of China’s dual-carbon goals, traditional road transportation has relatively high carbon emissions and is in urgent need of a low-carbon transition. The intermittency of photovoltaic (PV) power generation and the stochastic nature of electric vehicle (EV) charging demand introduce significant [...] Read more.
Against the backdrop of China’s dual-carbon goals, traditional road transportation has relatively high carbon emissions and is in urgent need of a low-carbon transition. The intermittency of photovoltaic (PV) power generation and the stochastic nature of electric vehicle (EV) charging demand introduce significant uncertainty for PV-energy storage-charging systems in highway service areas. Existing approaches often struggle to balance economic efficiency and reliability. This study develops a min-max-min robust optimization model for a full-route PV-energy storage-charging system. A box uncertainty set is used to characterize uncertainties in PV output and EV load, and a tunable uncertainty parameter is introduced to regulate risk. The model is solved using a column-and-constraint generation (C&CG) algorithm that decomposes the problem into a master problem and a subproblem. Strong duality, combined with a big-M formulation, enables an alternating iterative solution between the master problem and the subproblem. Simulation results demonstrate that the proposed algorithm attains the optimal solution and, relative to deterministic optimization, achieves a desirable trade-off between economic performance and robustness. Full article
Show Figures

Figure 1

30 pages, 3247 KB  
Article
The Clausius–Mossotti Factor in Dielectrophoresis: A Critical Appraisal of Its Proposed Role as an ‘Electrophysiology Rosetta Stone’
by Ronald Pethig
Micromachines 2026, 17(1), 96; https://doi.org/10.3390/mi17010096 - 11 Jan 2026
Viewed by 259
Abstract
The Clausius–Mossotti (CM) factor underpins the theoretical description of dielectrophoresis (DEP) and is widely used in micro- and nano-scale systems for frequency-dependent particle and cell manipulation. It has further been proposed as an “electrophysiology Rosetta Stone” capable of linking DEP spectra to intrinsic [...] Read more.
The Clausius–Mossotti (CM) factor underpins the theoretical description of dielectrophoresis (DEP) and is widely used in micro- and nano-scale systems for frequency-dependent particle and cell manipulation. It has further been proposed as an “electrophysiology Rosetta Stone” capable of linking DEP spectra to intrinsic cellular electrical properties. In this paper, the mathematical foundations and interpretive limits of this proposal are critically examined. By analyzing contrast factors derived from Laplace’s equation across multiple physical domains, it is shown that the CM functional form is a universal consequence of geometry, material contrast, and boundary conditions in linear Laplacian fields, rather than a feature unique to biological systems. Key modelling assumptions relevant to DEP are reassessed. Deviations from spherical symmetry lead naturally to tensorial contrast factors through geometry-dependent depolarisation coefficients. Complex, frequency-dependent CM factors and associated relaxation times are shown to inevitably arise from the coexistence of dissipative and storage mechanisms under time-varying forcing, independent of particle composition. Membrane surface charge influences DEP response through modified interfacial boundary conditions and effective transport parameters, rather than by introducing an independent driving mechanism. These results indicate that DEP spectra primarily reflect boundary-controlled field–particle coupling. From an inverse-problem perspective, this places fundamental constraints on parameter identifiability in DEP-based characterization. The CM factor remains a powerful and general modelling tool for micromachines and microfluidic systems, but its interpretive scope must be understood within the limits imposed by Laplacian field theory. Full article
(This article belongs to the Special Issue Advances in Electrokinetics for Cell Sorting and Analysis)
Show Figures

Figure 1

25 pages, 8923 KB  
Review
Mechanisms and Protection Strategies for Concrete Degradation Under Magnesium Salt Environment: A Review
by Xiaopeng Shang, Xuetao Yue, Lin Pan and Jingliang Dong
Buildings 2026, 16(2), 264; https://doi.org/10.3390/buildings16020264 - 7 Jan 2026
Viewed by 201
Abstract
Concrete structures suffering from Mg2+ environments may suffer severe damage, which mainly has something to do with the coupled effect among Cl, SO42−, and Mg2+. Based on a systematic review of Web of Science and [...] Read more.
Concrete structures suffering from Mg2+ environments may suffer severe damage, which mainly has something to do with the coupled effect among Cl, SO42−, and Mg2+. Based on a systematic review of Web of Science and Scopus database (2000–2025), we first summarized the migration behavior, reaction paths, and interaction mechanism of Cl, SO42−, and Mg2+ in cementitious matrices. Secondly, from the perspective of Cl cyclic adsorption–desorption breaking the passivation film of steel bars, SO42− generating expansion products leads to crack expansion, then Mg2+ decalcifies C-S-H and transforms into M-S-H; we analyzed the main damage mechanisms, respectively. In addition, under the coexistence conditions of three kinds of ions, the “fixation–substitution–redissolution” process and “crack–transport” coupling positive feedback mechanism further increase the development rate of damage. Then, some anti-corrosion measures, such as mineral admixtures, functional chemical admixtures, fiber reinforcements, surface coatings, and new binder systems, are summarized, and the pros and cons of different anti-corrosion technologies are compared and evaluated. Lastly, from two aspects of simulation prediction for the coupled corrosion damage mechanism and service life prediction, respectively, we have critically evaluated the advances and problems existing in the current research on the aspects of ion migration-reaction coupled models, multi-physics coupled frameworks, phase-field methods, etc. We found that there is still much work to be conducted in three respects: deepening mechanism understanding, improving prediction precision, and strengthening the connection between laboratory test results and actual projects, so as to provide theoretical basis and technical support for the durability design and anti-corrosion strategies of concrete in complex Mg2+ environments. Full article
Show Figures

Figure 1

Back to TopTop