Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,902)

Search Parameters:
Keywords = transportation and climate change

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1247 KiB  
Article
Evaluating and Predicting Urban Greenness for Sustainable Environmental Development
by Chun-Che Huang, Wen-Yau Liang, Tzu-Liang (Bill) Tseng and Chia-Ying Chan
Processes 2025, 13(8), 2465; https://doi.org/10.3390/pr13082465 - 4 Aug 2025
Abstract
With the rapid pace of urbanization, cities are increasingly facing severe challenges related to environmental pollution, ecological degradation, and climate change. Extreme climate events—such as heatwaves, droughts, heavy rainfall, and wildfires—have intensified public concern about sustainability, environmental protection, and low-carbon development. Ensuring environmental [...] Read more.
With the rapid pace of urbanization, cities are increasingly facing severe challenges related to environmental pollution, ecological degradation, and climate change. Extreme climate events—such as heatwaves, droughts, heavy rainfall, and wildfires—have intensified public concern about sustainability, environmental protection, and low-carbon development. Ensuring environmental preservation while maintaining residents’ quality of life has become a central focus of urban governance. In this context, evaluating green indicators and predicting urban greenness is both necessary and urgent. This study incorporates international frameworks such as the EU Green City Index, the European Green Capital Award, and the United Nations Sustainable Development Goals to assess urban sustainability. The Extreme Gradient Boosting (XGBoost) algorithm is employed to predict the green level of cities and to develop multiple optimized models. Comparative analysis with traditional models demonstrates that XGBoost achieves superior performance, with an accuracy of 0.84 and an F1-score of 0.81. Case study findings identify “Greenhouse Gas Emissions per Person” and “Per Capita Emissions from Transport” as the most critical indicators. These results provide practical guidance for policymakers, suggesting that targeted regulations based on these key factors can effectively support emission reduction and urban sustainability goals. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

25 pages, 5978 KiB  
Review
Global Research Trends on the Role of Soil Erosion in Carbon Cycling Under Climate Change: A Bibliometric Analysis (1994–2024)
by Yongfu Li, Xiao Zhang, Yang Zhao, Xiaolin Yin, Xiong Wu and Liping Su
Atmosphere 2025, 16(8), 934; https://doi.org/10.3390/atmos16080934 (registering DOI) - 4 Aug 2025
Abstract
Against the backdrop of multifaceted strategies to combat climate change, understanding soil erosion’s role in carbon cycling is critical due to terrestrial carbon pool vulnerability. This study integrates bibliometric methods with visualization tools (CiteSpace, VOSviewer) to analyze 3880 Web of Science core publications [...] Read more.
Against the backdrop of multifaceted strategies to combat climate change, understanding soil erosion’s role in carbon cycling is critical due to terrestrial carbon pool vulnerability. This study integrates bibliometric methods with visualization tools (CiteSpace, VOSviewer) to analyze 3880 Web of Science core publications (1994–2024, inclusive), constructing knowledge graphs and forecasting trends. The results show exponential publication growth, shifting from slow development (1994–2011) to rapid expansion (2012–2024), aligning with international climate policy milestones. The Chinese Academy of Sciences led productivity (519 articles), while the US demonstrated major influence (H-index 117; 52,297 citations), creating a China–US bipolar research pattern. It was also found that Dutch journals dominate this research field. A keyword analysis revealed a shift from erosion-driven carbon transport to ecosystem service assessments. Emerging hotspots include microbial community regulation, climate–erosion feedback, and model–policy integration, though developing country collaboration remains limited. Future research should prioritize isotope tracing, multiscale modeling, and studies in ecologically vulnerable regions to enhance global soil carbon management. This study provides a novel analytical framework and forward-looking perspective for the soil erosion research on soil carbon cycling, serving as an extension of climate change mitigation strategies. Full article
Show Figures

Figure 1

21 pages, 5750 KiB  
Article
Numerical Simulations of Coupled Vapor, Water, and Heat Flow in Unsaturated Deformable Soils During Freezing and Thawing
by Sara Soltanpour and Adolfo Foriero
Geotechnics 2025, 5(3), 51; https://doi.org/10.3390/geotechnics5030051 - 4 Aug 2025
Abstract
Freezing and thawing cycles significantly affect the mechanical and hydraulic behavior of soils, posing detrimental challenges for infrastructures in cold climates. This study develops and validates a coupled Thermal–Hydraulic–Mechanical (THM) model using COMSOL Multiphysics (Version 6.3) to demonstrate the complexities of vapor and [...] Read more.
Freezing and thawing cycles significantly affect the mechanical and hydraulic behavior of soils, posing detrimental challenges for infrastructures in cold climates. This study develops and validates a coupled Thermal–Hydraulic–Mechanical (THM) model using COMSOL Multiphysics (Version 6.3) to demonstrate the complexities of vapor and water flux, heat transport, frost heave, and vertical stress build-up in unsaturated soils. The analysis focuses on fine sand, sandy clay, and silty clay by examining their varying susceptibilities to frost action. Silty clay generated the highest amount of frost heave and steepest vertical stress gradients due to its high-water retention and strong capillary forces. Fine sand, on the other hand, produced a minimal amount of frost heave and a polarized vertical stress distribution. The study also revealed that vapor flux is more noticeable in freezing fine sand, while silty clay produces the greatest water flux between the frozen and unfrozen zones. The study also assesses the impact of soil properties including the saturated hydraulic conductivity, the particle thermal conductivity, and particle heat capacity on the frost-induced phenomena. Findings show that reducing the saturated hydraulic conductivity has a greater impact on mitigating frost heave than other variations in thermal properties. Silty clay is most affected by these changes, particularly near the soil surface, while fine sand shows less noticeable responses. Full article
Show Figures

Figure 1

23 pages, 2268 KiB  
Article
Potential for Drought Stress Alleviation in Lettuce (Lactuca sativa L.) with Humic Substance-Based Biostimulant Applications
by Santiago Atero-Calvo, Francesco Magro, Giacomo Masetti, Eloy Navarro-León, Begoña Blasco and Juan Manuel Ruiz
Plants 2025, 14(15), 2386; https://doi.org/10.3390/plants14152386 - 2 Aug 2025
Viewed by 226
Abstract
In the present study, we evaluated the potential use of a humic substance (HS)-based biostimulant in mitigating drought stress in lettuce (Lactuca sativa L.) by comparing both root and foliar modes of application. To achieve this, lettuce plants were grown in a [...] Read more.
In the present study, we evaluated the potential use of a humic substance (HS)-based biostimulant in mitigating drought stress in lettuce (Lactuca sativa L.) by comparing both root and foliar modes of application. To achieve this, lettuce plants were grown in a growth chamber on a solid substrate composed of vermiculite and perlite (3:1). Plants were exposed to drought conditions (50% of Field Capacity, FC) and 50% FC + HS applied as radicular (‘R’) and foliar (‘F’) at concentrations: R-HS 0.40 and 0.60 mL/L, respectively, and 7.50 and 10.00 mL/L, respectively, along with a control (100% FC). HSs were applied three times at 10-day intervals. Plant growth, nutrient concentration, lipid peroxidation, reactive oxygen species (ROS), and enzymatic and non-enzymatic antioxidants were estimated. Various photosynthetic and chlorophyll fluorescence parameters were also analyzed. The results showed that HS applications alleviated drought stress, increased plant growth, and reduced lipid peroxidation and ROS accumulation. HSs also improved the net photosynthetic rate, carboxylation efficiency, electron transport flux, and water use efficiency. Although foliar HSs showed a greater tendency to enhance shoot growth and photosynthetic capacity, the differences between the application methods were not significant. Hence, in this preliminary work, the HS-based product evaluated in this study demonstrated potential for alleviating drought stress in lettuce plants at the applied doses, regardless of the mode of application. This study highlights HS-based biostimulants as an effective and sustainable tool to improve crop resilience and support sustainable agriculture under climate change. However, further studies under controlled growth chamber conditions are needed to confirm these results before field trials. Full article
(This article belongs to the Special Issue Biostimulation for Abiotic Stress Tolerance in Plants)
Show Figures

Figure 1

17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 (registering DOI) - 1 Aug 2025
Viewed by 173
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

21 pages, 6272 KiB  
Article
Numerical Study of Gas Dynamics and Condensate Removal in Energy-Efficient Recirculation Modes in Train Cabins
by Ivan Panfilov, Alexey N. Beskopylny, Besarion Meskhi and Sergei F. Podust
Fluids 2025, 10(8), 197; https://doi.org/10.3390/fluids10080197 - 29 Jul 2025
Viewed by 158
Abstract
Maintaining the required relative humidity values in the vehicle cabin is an important HVAC task, along with considerations related to the temperature, velocity, air pressure and noise. Deviation from the optimal values worsens the psycho-physiological state of the driver and affects the energy [...] Read more.
Maintaining the required relative humidity values in the vehicle cabin is an important HVAC task, along with considerations related to the temperature, velocity, air pressure and noise. Deviation from the optimal values worsens the psycho-physiological state of the driver and affects the energy efficiency of the train. In this study, a model of liquid film formation on and removal from various cabin surfaces was constructed using the fundamental Navier–Stokes hydrodynamic equations. A special transport model based on the liquid vapor diffusion equation was used to simulate the air environment inside the cabin. The evaporation and condensation of surface films were simulated using the Euler film model, which directly considers liquid–gas and gas–liquid transitions. Numerical results were obtained using the RANS equations and a turbulence model by means of the finite volume method in Ansys CFD. Conjugate fields of temperature, velocity and moisture concentration were constructed for various time intervals, and the dependence values for the film thicknesses on various surfaces relative to time were determined. The verification was conducted in comparison with the experimental data, based on the protocol for measuring the microclimate indicators in workplaces, as applied to the train cabin: the average ranges encompassed temperature changes from 11% to 18%, and relative humidity ranges from 16% to 26%. Comparison with the results of other studies, without considering the phase transition and condensation, shows that, for the warm mode, the average air temperature in the cabin with condensation is 12.5% lower than without condensation, which is related to the process of liquid evaporation from the heated walls. The difference in temperature values for the model with and without condensation ranged from −12.5% to +4.9%. We demonstrate that, with an effective mode of removing condensate film from the window surface, including recirculation modes, the energy consumption of the climate control system improves significantly, but this requires a more accurate consideration of thermodynamic parameters and relative humidity. Thus, considering the moisture condensation model reveals that this variable can significantly affect other parameters of the microclimate in cabins: in particular, the temperature. This means that it should be considered in the numerical modeling, along with the basic heat transfer equations. Full article
Show Figures

Figure 1

25 pages, 6370 KiB  
Article
Emissions of Conventional and Electric Vehicles: A Comparative Sustainability Assessment
by Esra’a Alrashydah, Thaar Alqahtani and Abdulnaser Al-Sabaeei
Sustainability 2025, 17(15), 6839; https://doi.org/10.3390/su17156839 - 28 Jul 2025
Viewed by 305
Abstract
Vehicle emissions, as a source of air pollution and greenhouse gases, have a significant impact on the environment and climate change. Battery electric vehicles (BEVs) have the potential to reduce air pollution and GHGs. However, BEVs often attract the criticism that their benefits [...] Read more.
Vehicle emissions, as a source of air pollution and greenhouse gases, have a significant impact on the environment and climate change. Battery electric vehicles (BEVs) have the potential to reduce air pollution and GHGs. However, BEVs often attract the criticism that their benefits are minimal as the power plant emissions compensate for emissions from the tailpipes of vehicles. This study compared two scenarios: scenario A considers all vehicles as internal combustion engine vehicles (ICEVs), and scenario B considers all vehicles as BEVs. The study used the City of San Antonio, Texas, as the study area. The study also focused on the seasonal and spatial variation in ICEV emissions. The results indicate that scenario A has a considerably higher volume of emissions than scenario B. For ICEVs, PM2.5 emissions were up to 50% higher in rural areas than urban areas, but 45% lower for unrestricted versus restricted conditions. CO2 emissions were highly affected by seasonal variations, with a 51% decrease from winter to summer. The full adoption of BEVs could reduce CO2 and N2O emissions by 99% and 58% per km, especially for natural gas power resources. Therefore, BEVs play a significant role in reducing emissions from the transportation sector. Full article
Show Figures

Figure 1

23 pages, 8212 KiB  
Review
Recent Developments in the Nonlinear Hydroelastic Modeling of Sea Ice Interaction with Marine Structures
by Sarat Chandra Mohapatra, Pouria Amouzadrad and C. Guedes Soares
J. Mar. Sci. Eng. 2025, 13(8), 1410; https://doi.org/10.3390/jmse13081410 - 24 Jul 2025
Viewed by 347
Abstract
This review provides the recent advancements in nonlinear sea ice modeling for hydroelastic analysis of ice-covered channels and their interaction with floating structures. It surveys theoretical, experimental, and numerical methodologies used to analyze complex coupled sea ice–structure interactions. The paper discusses governing fluid [...] Read more.
This review provides the recent advancements in nonlinear sea ice modeling for hydroelastic analysis of ice-covered channels and their interaction with floating structures. It surveys theoretical, experimental, and numerical methodologies used to analyze complex coupled sea ice–structure interactions. The paper discusses governing fluid domain solutions, fluid–ice interaction mechanisms, and ice–structure (ship) contact models, alongside experimental techniques and various numerical models. While significant progress has been made, particularly with coupled approaches validated by experimental data, challenges remain in full-scale validation and accurately representing ice properties and dynamic interactions. Findings highlight the increasing importance of understanding sea ice interactions, particularly in the context of climate change, Arctic transportation, and the development of very large floating structures. This review serves as a crucial resource for advancing safe and sustainable Arctic and offshore engineering. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 1579 KiB  
Article
Forecasting Infrastructure Needs, Environmental Impacts, and Dynamic Pricing for Electric Vehicle Charging
by Osama Jabr, Ferheen Ayaz, Maziar Nekovee and Nagham Saeed
World Electr. Veh. J. 2025, 16(8), 410; https://doi.org/10.3390/wevj16080410 - 22 Jul 2025
Viewed by 273
Abstract
In recent years, carbon dioxide (CO2) emissions have increased at the fastest rates ever recorded. This is a trend that contradicts global efforts to stabilise greenhouse gas (GHG) concentrations and prevent long-term climate change. Over 90% of global transport relies on [...] Read more.
In recent years, carbon dioxide (CO2) emissions have increased at the fastest rates ever recorded. This is a trend that contradicts global efforts to stabilise greenhouse gas (GHG) concentrations and prevent long-term climate change. Over 90% of global transport relies on oil-based fuels. The continued use of diesel and petrol raises concerns related to oil costs, supply security, GHG emissions, and the release of air pollutants and volatile organic compounds. This study explored electric vehicle (EV) charging networks by assessing environmental impacts through GHG and petroleum savings, developing dynamic pricing strategies, and forecasting infrastructure needs. A substantial dataset of over 259,000 EV charging records from Palo Alto, California, was statistically analysed. Machine learning models were applied to generate insights that support sustainable and economically viable electric transport planning for policymakers, urban planners, and other stakeholders. Findings indicate that GHG and gasoline savings are directly proportional to energy consumed, with conversion rates of 0.42 kg CO2 and 0.125 gallons per kilowatt-hour (kWh), respectively. Additionally, dynamic pricing strategies such as a 20% discount on underutilised days and a 15% surcharge during peak hours are proposed to optimise charging behaviour and improve station efficiency. Full article
Show Figures

Figure 1

20 pages, 1487 KiB  
Article
Structural Evolution and Factors of the Electric Vehicle Lithium-Ion Battery Trade Network Among European Union Member States
by Liqiao Yang, Ni Shen, Izabella Szakálné Kanó, Andreász Kosztopulosz and Jianhao Hu
Sustainability 2025, 17(15), 6675; https://doi.org/10.3390/su17156675 - 22 Jul 2025
Viewed by 368
Abstract
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European [...] Read more.
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European Union (EU) member states from 2012 to 2023, employing social network analysis and the multiple regression quadratic assignment procedure method. The findings demonstrate the transformation of the network from a centralized and loosely connected structure, with Germany as the dominant hub, to a more interconnected and decentralized system in which Poland and Hungary emerge as the leading players. Key network metrics, such as the density, clustering coefficients, and average path lengths, reveal increased regional trade connectivity and enhanced supply chain efficiency. The analysis identifies geographic and economic proximity, logistics performance, labor cost differentials, energy resource availability, and venture capital investment as significant drivers of trade flows, highlighting the interaction among spatial, economic, and infrastructural factors in shaping the network. Based on these findings, this study underscores the need for targeted policy measures to support Central and Eastern European countries, including investment in logistics infrastructure, technological innovation, and regional cooperation initiatives, to strengthen their integration into the supply chain and bolster their export capacity. Furthermore, fostering balanced inter-regional collaborations is essential in building a resilient trade network. Continued investment in transportation infrastructure and innovation is recommended to sustain the EU’s competitive advantage in the global electric vehicle lithium-ion battery supply chain. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

19 pages, 5629 KiB  
Article
Achieving Net-Zero in Canada: Sectoral GHG Reductions Through Provincial Clustering and the Carbon Mitigation Initiative’s Stabilization Wedges Concept
by Alaba Boluwade
Sustainability 2025, 17(15), 6665; https://doi.org/10.3390/su17156665 - 22 Jul 2025
Viewed by 349
Abstract
The primary objective of this paper is to quantify a realistic pathway for Canada to reach net-zero emissions by 2050. This study analyzed greenhouse gas (GHG) emissions from the 10 provinces and 3 territories of Canada based on the emissions from their economic [...] Read more.
The primary objective of this paper is to quantify a realistic pathway for Canada to reach net-zero emissions by 2050. This study analyzed greenhouse gas (GHG) emissions from the 10 provinces and 3 territories of Canada based on the emissions from their economic sectors. A time series analysis was performed to understand the trajectory of the emissions profile from 1990 to 2023. Using the 2023 emissions as the baseline, a linear reduction, based on the GHG proportions from each jurisdiction, was performed and projected to 2050 (except for Prince Edward Island (PEI), where net zero was targeted for 2040). Moreover, a machine learning technique (k-means unsupervised algorithm) was used to group all the jurisdictions into homogeneous regions for national strategic climate policy initiatives. The within-cluster sum of squares identified the following clusters: Cluster 1: Manitoba (MB), New Brunswick, Nova Scotia, and Newfoundland and Labrador; Cluster 2: Alberta (AB); Cluster 3: Quebec (QC) and Saskatchewan; Cluster 4: Ontario (ON); and Cluster 5: PEI, Northwest Territories, Nunavut, and Northwest Territories. Considering the maximum GHG reductions needed per cluster (Clusters 1–5), the results show that 0.309 Mt CO2 eq/year, 5.447 Mt CO2 eq/year, 1.293 Mt CO2 eq/year, 2.217 Mt CO2 eq/year, and 0.04 Mt CO2 eq/year must be targeted from MB (transportation), AB (stationary combustion), QC (transportation), ON (stationary combustion) and PEI (transportation), respectively. The concept of climate stabilization wedges, which provides a practical framework for addressing the monumental challenge of mitigating climate change, was introduced to each derived region to cut GHG emissions in Canada through tangible, measurable actions that is specific to each sector/cluster. The clustering-based method breaks climate mitigation problems down into manageable pieces by grouping the jurisdictions into efficient regions that can be managed effectively by fostering collaboration across jurisdictions and economic sectors. Actionable and strategic recommendations were made within each province to reach the goal of net-zero. The implications of this study for policy and climate action include the fact that actionable strategies and tailored policies are applied to each cluster’s emission profile and economic sector, ensuring equitable and effective climate mitigation strategies in Canada. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

19 pages, 1567 KiB  
Review
Design Efficiency: A Critical Perspective on Testing Methods for Solar-Driven Photothermal Evaporation and Photocatalysis
by Hady Hamza, Maria Vittoria Diamanti, Vanni Lughi, Sergio Rossi and Daniela Meroni
Nanomaterials 2025, 15(14), 1121; https://doi.org/10.3390/nano15141121 - 18 Jul 2025
Viewed by 377
Abstract
Water scarcity is a growing global challenge, intensified by climate change, seawater intrusion, and pollution. While conventional desalination methods are energy-intensive, solar-driven interfacial evaporators offer a promising low-energy solution by leveraging solar energy for water evaporation, with the resulting steam condensed into purified [...] Read more.
Water scarcity is a growing global challenge, intensified by climate change, seawater intrusion, and pollution. While conventional desalination methods are energy-intensive, solar-driven interfacial evaporators offer a promising low-energy solution by leveraging solar energy for water evaporation, with the resulting steam condensed into purified water. Despite advancements, challenges persist, particularly in addressing volatile contaminants and biofouling, which can compromise long-term performance. The integration of photocatalysts into solar-driven interfacial evaporators has been proposed as a solution, enabling pollutant degradation and microbial inactivation while enhancing water transport and self-cleaning properties. This review critically assesses testing methodologies for solar-driven interfacial evaporators incorporating both photothermal and photocatalytic functions. While previous studies have examined materials and system design, the added complexity of photocatalysis necessitates new testing approaches. First, solar still setups are analyzed, particularly concentrating on the selection of materials and geometry for the transparent cover and water-collecting surfaces. Then, performance evaluation tests are discussed, with focus on the types of tested pollutants and analytical techniques. Finally, key challenges are presented, providing insights for future advancements in sustainable water purification. Full article
(This article belongs to the Special Issue Degradation of Pollutants by Nanostructured Photocatalysts)
Show Figures

Graphical abstract

21 pages, 2152 KiB  
Article
Effect of 2000-Hour Ultraviolet Irradiation on Surface Degradation of Glass and Basalt Fiber-Reinforced Laminates
by Irina G. Lukachevskaia, Aisen Kychkin, Anatoly K. Kychkin, Elena D. Vasileva and Aital E. Markov
Polymers 2025, 17(14), 1980; https://doi.org/10.3390/polym17141980 - 18 Jul 2025
Viewed by 388
Abstract
This study focuses on the influence of prolonged ultraviolet (UV) irradiation on the mechanical properties and surface microstructure of glass fiber-reinforced plastics (GFRPs) and basalt fiber-reinforced plastics (BFRPs), which are widely used in construction and transport infrastructure. The relevance of the research lies [...] Read more.
This study focuses on the influence of prolonged ultraviolet (UV) irradiation on the mechanical properties and surface microstructure of glass fiber-reinforced plastics (GFRPs) and basalt fiber-reinforced plastics (BFRPs), which are widely used in construction and transport infrastructure. The relevance of the research lies in the need to improve the reliability of composite materials under extended exposure to harsh climatic conditions. Experimental tests were conducted in a laboratory UV chamber over 2000 h, simulating accelerated weathering. Mechanical properties were evaluated using three-point bending, while surface conditions were assessed via profilometry and microscopy. It was shown that GFRPs exhibit a significant reduction in flexural strength—down to 59–64% of their original value—accompanied by increased surface roughness and microdefect depth. The degradation mechanism of GFRPs is attributed to the photochemical breakdown of the polymer matrix, involving free radical generation, bond scission, and oxidative processes. To verify these mechanisms, FTIR spectroscopy was employed, which enabled the identification of structural changes in the polymer phase and the detection of mass loss associated with matrix decomposition. In contrast, BFRP retained up to 95% of their initial strength, demonstrating high resistance to UV-induced aging. This is attributed to the shielding effect of basalt fibers and their ability to retain moisture in microcavities, which slows the progress of photo-destructive processes. Comparison with results from natural exposure tests under extreme climatic conditions (Yakutsk) confirmed the reliability of the accelerated aging model used in the laboratory. Full article
Show Figures

Figure 1

22 pages, 791 KiB  
Article
Turkiye’s Carbon Emission Profile: A Global Analysis with the MEREC-PROMETHEE Hybrid Method
by İrem Pelit and İlker İbrahim Avşar
Sustainability 2025, 17(14), 6527; https://doi.org/10.3390/su17146527 - 16 Jul 2025
Viewed by 365
Abstract
This study conducts a comparative evaluation of Turkiye’s carbon emission profile from both sectoral and global perspectives. Utilizing 2022 data from 76 countries, it applies two widely recognized multi-criteria decision-making (MCDM) methods: MEREC, for determining objective weights of criteria, and PROMETHEE II, for [...] Read more.
This study conducts a comparative evaluation of Turkiye’s carbon emission profile from both sectoral and global perspectives. Utilizing 2022 data from 76 countries, it applies two widely recognized multi-criteria decision-making (MCDM) methods: MEREC, for determining objective weights of criteria, and PROMETHEE II, for ranking countries based on these criteria. All data used in the analysis were obtained from the World Bank, a globally recognized and credible statistical source. The study evaluates seven criteria, including carbon emissions from the energy, transport, industry, and residential sectors, along with GDP-related indicators. The results indicate that Turkiye’s carbon emissions, particularly from industry, transport, and energy, are substantially higher than the global average. Moreover, countries with higher levels of industrialization generally rank lower in environmental performance, highlighting a direct relationship between industrial activity and increased carbon emissions. According to PROMETHEE II rankings, Turkiye falls into the lower-middle tier among the assessed countries. In light of these findings, the study suggests that Turkiye should implement targeted, sector-specific policy measures to reduce emissions. The research aims to provide policymakers with a structured, data-driven framework that aligns with the country’s broader sustainable development goals. MEREC was selected for its ability to produce unbiased criterion weights, while PROMETHEE II was chosen for its capacity to deliver clear and meaningful comparative rankings, making both methods highly suitable for evaluating environmental performance. This study also offers a broader analysis of how selected countries compare in terms of their carbon emissions. As carbon emissions remain one of the most pressing environmental challenges in the context of global warming and climate change, ranking countries based on emission levels serves both to support scientific inquiry and to increase international awareness. By relying on recent 2022 data, the study offers a timely snapshot of the global carbon emission landscape. Alongside its contribution to public awareness, the findings are expected to support policymakers in developing effective environmental strategies. Ultimately, this research contributes to the academic literature and lays a foundation for more sustainable environmental policy development. Full article
Show Figures

Graphical abstract

18 pages, 1268 KiB  
Article
An Optimistic Vision for Public Transport in Bucharest City After the Bus Fleet Upgrades
by Anca-Florentina Popescu, Ecaterina Matei, Alexandra Bădiceanu, Alexandru Ioan Balint, Maria Râpă, George Coman and Cristian Predescu
Environments 2025, 12(7), 242; https://doi.org/10.3390/environments12070242 - 15 Jul 2025
Viewed by 586
Abstract
Air pollution caused by CO2 emissions has become a global issue of vital importance, posing irreversible risks to health and life when concentration of CO2 becomes too high. This study aims to estimate the CO2 emissions and carbon footprint of [...] Read more.
Air pollution caused by CO2 emissions has become a global issue of vital importance, posing irreversible risks to health and life when concentration of CO2 becomes too high. This study aims to estimate the CO2 emissions and carbon footprint of the public transport bus fleet in Bucharest, with a comparative analysis of greenhouse gas (GHG) emissions generated by diesel and electric buses of the Bucharest Public Transport Company (STB S.A.) in the period 2021–2024, after the modernization of the fleet through the introduction of 130 hybrid buses and 58 electric buses. In 2024, the introduction of electric buses and the reduction in diesel bus mileage reduced GHG emissions by almost 13% compared to 2023, saving over 11 kilotons of CO2e. There was also a 2.68% reduction in the specific carbon footprint compared to the previous year, which is clear evidence of the potential of electric vehicles in achieving decarbonization targets. We have also developed two strategies, one for 2025 and one for the period 2025–2030, replacing the aging fleet with electric vehicles. This demonstrates the relevance of electric transport integrated into the sustainable development strategy for urban mobility systems and alignment with European standards, including improving air quality and living standards. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

Back to TopTop