Turkiye’s Carbon Emission Profile: A Global Analysis with the MEREC-PROMETHEE Hybrid Method
Abstract
1. Introduction
- To conduct a detailed sector-based analysis of Turkiye’s carbon emissions,
- To determine Turkiye’s position through a comparative global ranking,
- To identify the sectors with the highest emission intensities and provide guidance to policymakers,
- To propose scientifically grounded strategies to support Turkiye’s achievement of its sustainable development and low-carbon economy goals.
2. Conceptual Background
3. Literature Review
- The disaggregation of Turkiye’s carbon emissions by major sectors, namely industry, transportation, and industrial processes;
- The evaluation of emission trends for the year 2022 based on World Bank data;
- The positioning of Turkiye’s global emission performance within a multi-criteria comparative ranking framework using the PROMETHEE method;
- The provision of scientifically grounded and practically applicable policy recommendations based on the findings.
4. Methodology
4.1. Data Source and Scope
4.2. Method: MEREC
- A decision matrix is constructed (Equation (1)).
- In the second step, a normalized matrix is generated based on Equation (2), where the normalized values necessary for the application of the MEREC method are obtained.
- The aggregated performance values of the alternatives are calculated.
- The performance of the alternatives is recalculated by removing each criterion individually. The key difference from the third step is that, in this step, the performance values of the alternatives are computed separately for each case where a single criterion is omitted.
- Based on the values obtained from Equations (3) and (4), the total absolute deviation is calculated.
- At this stage, the objective weight of each criterion is determined by evaluating its removal effect on the aggregated performance of the alternatives.
4.3. Method: PROMETHEE
- A decision matrix is constructed using the alternatives expressed as (a1, a2, …, aₙ) and the criteria are denoted as (q1, q2, …, qₖ).
- One of the six preference functions is selected, and the subsequent operations are carried out according to the selected function. These functions include Usual, U-shape, V-shape, Level, V-shape with indifference, and Gaussian.
- Preference indices for the alternatives are calculated. For a given pair of alternatives a and b, the preference index is defined as follows:
- 4.
- Equation (13) presents the calculation of the positive outranking flow for alternative a, while Equation (14) provides the calculation of the negative outranking flow.
- 5.
- Pairwise comparisons of the alternatives are conducted, and the relationships are categorized as preference (P), indifference (I), or incomparability (R).
- 6.
- The PROMETHEE I method is applied by comparing the positive and negative outranking flows to determine the partial ranking of the alternatives.
- 7.
- PROMETHEE II is applied to rank the alternatives. In this context, the greater the net outranking flow, the better the performance of the alternative.
4.4. Strengths and Contributions of the Study
- Turkiye’s sectoral carbon emission profile has been ranked globally using the PROMETHEE method.
- The application of the MCDM approach to carbon emission analysis addresses methodological gaps in the existing literature.
- The study provides up-to-date and reliable analyses based on World Bank data.
4.5. Why MEREC and PROMETHEE
4.6. Research Model
5. Analyzing
5.1. Analysis Quality
5.2. Sensitivity Analysis
6. Findings and Discussion
6.1. Policy Implications and Design
6.2. Implications for Policymakers
- Comparative performance indicator: Ranking countries based on their carbon emissions enables policymakers to compare their own country’s climate performance with that of others. This enables them to identify areas for improvement and develop targeted environmental policies.
- Awareness of responsibility and accountability: For countries that perform poorly in the rankings, these results can act as a warning to the public and the international community, creating political pressure. This promotes more transparent and accountable environmental policies.
- Redefining policy priorities: If a country has high carbon emissions but lacks effective policies to address them, this type of analysis can prompt a review of policy priorities. This could result in a reduced reliance on fossil fuels or the introduction of new regulations, such as a carbon tax.
- The need for international cooperation: Some countries cannot achieve meaningful results alone. This ranking could encourage high-emitting countries to collaborate, thereby strengthening the global effort through technology transfer or joint projects.
- Gaining public awareness and legitimacy: this type of analysis can help policymakers organize public environmental awareness campaigns and increase the legitimacy of their environmental policies.
- Alignment with sustainable development goals (SDGs): Monitoring and reducing carbon emissions is directly linked to Goal 13 (Climate Action) of the UN’s SDGs. Such efforts can also help countries assess their alignment with the SDGs.
6.3. Future Research and New Approaches
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Country | Criteria 1 | Criteria 2 | Criteria 3 | Criteria 4 | Criteria 5 | Criteria 6 | Criteria 7 |
---|---|---|---|---|---|---|---|
Algeria | 32.7084 | 30.1714 | 16.4636 | 16.3075 | 46.4164 | 44.4738 | 0.0023 |
Argentina | 41.2474 | 22.8195 | 21.5828 | 11.0803 | 45.2058 | 49.2634 | 0.0118 |
Australia | 29.754 | 37.0004 | 40.4966 | 13.9555 | 161.1225 | 89.2178 | 0.0158 |
Austria | 7.9462 | 5.7107 | 10.3977 | 4.8772 | 11.057 | 21.1922 | 0.0008 |
Azerbaijan | 10.2394 | 3.1983 | 2.2408 | 1.67 | 13.8711 | 8.0685 | 0.0024 |
Belarus | 7.2781 | 2.8676 | 4.7306 | 4.3927 | 27.4451 | 9.6305 | 0.0131 |
Belgium | 20.8654 | 5.5594 | 15.9582 | 9.3667 | 14.8382 | 23.1126 | 0.0024 |
Benin | 0.1936 | 0.0457 | 0.5103 | 0.9399 | 0.5143 | 4.4149 | 0.0004 |
Bolivia | 2.8358 | 1.2188 | 2.22 | 1.4087 | 3.4608 | 11.5908 | 0.0026 |
Bosnia and Herzegovina | 0.9605 | 1.483 | 1.6481 | 1.4834 | 12.7952 | 4.3349 | 0.0038 |
Brazil | 40.6382 | 26.1711 | 89.0698 | 46.6933 | 50.4856 | 212.577 | 0.2995 |
Brunei Darussalam | 0.0894 | 3.2001 | 0.4095 | 0.1092 | 4.43 | 1.2085 | 0.0018 |
Bulgaria | 1.7673 | 2.5964 | 4.4626 | 4.5882 | 26.3193 | 9.5364 | 0.0016 |
Cambodia | 1.2793 | 0.0002 | 1.0719 | 3.6092 | 4.2005 | 7.1808 | 0.0126 |
Chile | 7.9665 | 2.5752 | 14.4937 | 3.1977 | 29.0231 | 31.1985 | 0.0085 |
China | 609.6716 | 678.1146 | 2725.523 | 1472.267 | 6093.126 | 929.0863 | 3.5582 |
Colombia | 10.422 | 9.2754 | 16.7594 | 6.1194 | 12.4255 | 36.0946 | 0.0187 |
Cuba | 3.197 | 0.3786 | 5.0048 | 0.5226 | 10.5569 | 1.1615 | 0.0005 |
Czechia | 10.666 | 5.6044 | 11.637 | 5.2809 | 46.7229 | 19.3176 | 0.0566 |
Denmark | 3.7172 | 1.7696 | 3.7979 | 1.5864 | 6.0534 | 11.1572 | 0.001 |
Dominican Republic | 1.8355 | 0.348 | 4.5649 | 2.4793 | 12.2551 | 7.9774 | 0.0005 |
Ecuador | 6.175 | 4.9446 | 3.3825 | 2.1478 | 4.6298 | 20.4313 | 0.0046 |
Egypt, Arab Rep. | 17.9829 | 19.886 | 31.0276 | 34.8212 | 87.8877 | 52.7676 | 0.0004 |
Estonia | 0.5937 | 3.8211 | 0.3145 | 0.1688 | 5.1587 | 2.4602 | 0.0001 |
Ethiopia | 1.4415 | 0.0001 | 4.0527 | 3.9699 | 0.0043 | 6.6325 | 0.0016 |
France | 63.6899 | 17.7985 | 43.0375 | 19.9739 | 38.2852 | 123.3696 | 2.3177 |
Gabon | 0.1675 | 3.061 | 0.5053 | 0.2119 | 1.2459 | 0.2031 | 0.0003 |
Germany | 128.6194 | 27.5219 | 85.6557 | 39.6942 | 229.6395 | 147.7071 | 0.0448 |
Greece | 6.5692 | 3.9061 | 4.3618 | 4.6969 | 17.6261 | 17.6215 | 0.0019 |
Greenland | 0.3317 | 0.0111 | 0.0446 | 0.0001 | 0.0918 | 0.0954 | 0.0011 |
Guyana | 0.2845 | 0.3823 | 0.6325 | 0.1546 | 0.8371 | 1.0311 | 0.0001 |
Honduras | 0.8077 | 0.0179 | 0.853 | 0.6381 | 3.3201 | 4.6589 | 0.0326 |
Hong Kong SAR, China | 1.4605 | 0.2315 | 1.7393 | 0.627 | 23.3627 | 5.1948 | 0.0111 |
Hungary | 10.8086 | 3.4777 | 5.9434 | 3.1922 | 9.3107 | 14.6829 | 0.0185 |
Indonesia | 30.4821 | 27.5292 | 141.775 | 48.6038 | 254.6386 | 147.5568 | 0.1707 |
Ireland | 8.1191 | 0.4792 | 3.7477 | 1.326 | 9.6179 | 11.2571 | 0.0095 |
Italy | 56.919 | 11.8844 | 37.9242 | 20.1273 | 100.683 | 104.0128 | 0.4144 |
Jamaica | 0.3616 | 0.0071 | 1.1001 | 0.453 | 2.151 | 2.2955 | 0.0007 |
Japan | 115.1589 | 36.4151 | 165.4265 | 69.6834 | 432.8552 | 186.5865 | 3.2744 |
Jordan | 2.5786 | 0.4563 | 1.858 | 1.7129 | 7.8467 | 7.8684 | 0.0002 |
Korea, DPR. | 10.4176 | 0.261 | 29.3451 | 2.7057 | 12.0973 | 4.602 | 0.0111 |
Korea, Rep. | 53.147 | 48.3151 | 64.5417 | 59.36 | 253.7968 | 106.5876 | 1.6145 |
Kuwait | 0.7987 | 20.2812 | 16.2495 | 6.6019 | 50.2179 | 15.2447 | 0.0004 |
Lao PDR | 0.0824 | 0.0088 | 0.9617 | 5.9022 | 14.9647 | 2.6158 | 0.0153 |
Lithuania | 1.1905 | 1.3433 | 1.0574 | 1.8414 | 1.2007 | 6.102 | 0.0022 |
Macao SAR, China | 0.3601 | 0.1464 | 0.3576 | 0.0044 | 0.7256 | 1.3253 | 0.0009 |
North Macedonia | 0.2361 | 0.0035 | 1.2529 | 0.7172 | 3.67 | 2.4636 | 0.0199 |
Malaysia | 8.4524 | 35.6316 | 36.9281 | 19.5656 | 113.0066 | 59.2585 | 0.0765 |
Malta | 0.1557 | 0.0017 | 0.0597 | 0.011 | 0.7914 | 0.7397 | 0.0003 |
Mexico | 27.4793 | 58.4938 | 40.9998 | 57.4252 | 150.3145 | 128.0524 | 0.4989 |
Moldova | 1.8309 | 0.0454 | 0.809 | 0.6419 | 3.6735 | 2.3413 | 0.0024 |
Mongolia | 3.2354 | 1.8524 | 2.3241 | 0.5399 | 15.1125 | 2.8252 | 0.0009 |
Myanmar | 6.2035 | 1.011 | 7.3906 | 3.0175 | 8.4405 | 5.1964 | 0.0463 |
New Zealand | 3.3197 | 0.9204 | 5.5918 | 3.1208 | 5.8785 | 14.8641 | 0.0022 |
Norway | 2.3804 | 11.7893 | 6.3567 | 8.5886 | 1.6413 | 13.7387 | 0.0556 |
Papua New Guinea | 0.6772 | 0.4661 | 0.6758 | 0.1263 | 1.3756 | 2.4906 | 0.001 |
Peru | 5.0744 | 3.1023 | 7.3966 | 5.4723 | 11.5504 | 23.1808 | 0.0095 |
Philippines | 13.3768 | 0.784 | 13.1742 | 11.7396 | 75.3688 | 34.8475 | 0.1508 |
Poland | 46.2327 | 12.136 | 27.0521 | 18.5801 | 143.6988 | 67.7151 | 0.1974 |
Portugal | 3.7611 | 1.983 | 5.185 | 3.9011 | 8.013 | 16.4197 | 0.202 |
Romania | 12.1041 | 2.8793 | 12.5652 | 7.7044 | 19.1201 | 20.7484 | 0.0049 |
Singapore | 0.7228 | 4.6361 | 13.4318 | 9.723 | 21.1716 | 6.0305 | 0.0415 |
Slovenia | 1.0791 | 0.0102 | 1.6959 | 1.4688 | 3.4877 | 5.382 | 0.0055 |
Spain | 30.3578 | 17.86 | 26.9615 | 19.4975 | 42.8746 | 92.9329 | 4.0727 |
Suriname | 0.577 | 0.0373 | 0.1045 | 0.0202 | 0.9694 | 0.8306 | 0.0002 |
Sweden | 2.0449 | 3.787 | 6.5276 | 4.1335 | 5.9316 | 13.6122 | 0.156 |
Switzerland | 9.9631 | 0.4102 | 4.4043 | 2.5834 | 2.551 | 14.4444 | 0.0086 |
Thailand | 13.0877 | 15.3497 | 57.8141 | 29.2813 | 79.2876 | 78.8804 | 0.0186 |
Timor-Leste | 0.0878 | 0.0651 | 0.079 | 0.0033 | 0.1489 | 0.3279 | 0.0002 |
Turkiye | 71.0482 | 17.4315 | 73.8101 | 50.3655 | 128.7047 | 90.1147 | 0.0019 |
Ukraine | 16.3115 | 11.8561 | 20.5168 | 13.6502 | 51.4608 | 21.7806 | 0.0123 |
United Kingdom | 80.9082 | 25.7593 | 32.056 | 11.3123 | 68.914 | 107.0033 | 0.0558 |
United States | 591.1872 | 294.5233 | 451.4372 | 163.5135 | 1580.189 | 1699.428 | 0.0034 |
Uruguay | 0.9136 | 0.399 | 0.9506 | 0.3763 | 1.4672 | 3.9726 | 0.0014 |
Venezuela, RB | 3.1785 | 35.7637 | 6.3865 | 5.2639 | 13.5746 | 13.54 | 0.0177 |
Viet Nam | 15.4158 | 1.7034 | 88.5516 | 53.4234 | 127.9552 | 35.0434 | 0.0506 |
Country Name | PROMETHEE Rank | GDP (Current US$) | GDP Rank | Carbon İntensity of GDP (kg CO2e per Constant 2015 US$ of GDP) |
---|---|---|---|---|
Timor-Leste | 1 | 2,079,916,900.00 | 72 | 0.40 |
Malta | 2 | 22,328,640,241.56 | 61 | 0.09 |
Suriname | 3 | 3,455,146,280.84 | 71 | 0.58 |
Guyana | 4 | 17,159,509,565.47 | 66 | 0.17 |
Greenland | 5 | - | 73 | 0.21 |
Gabon | 6 | 19,388,402,541.67 | 65 | 0.30 |
Macao SAR, China | 7 | 45,803,067,940.41 | 54 | 0.07 |
Benin | 8 | 19,676,049,075.70 | 63 | 0.36 |
Estonia | 9 | 41,291,245,222.19 | 57 | 0.41 |
Jamaica | 10 | 19,423,355,409.23 | 64 | 0.45 |
Brunei Darussalam | 11 | 15,128,292,980.86 | 70 | 0.74 |
Papua New Guinea | 12 | 30,729,242,919.44 | 59 | 0.23 |
Uruguay | 13 | 77,240,830,877.46 | 48 | 0.14 |
Moldova | 14 | 16,539,436,547.30 | 67 | 1.07 |
Lao PDR | 15 | 15,843,155,731.26 | 68 | 1.28 |
Jordan | 16 | 50,967,475,352.11 | 53 | 0.52 |
North Macedonia | 17 | 15,763,621,848.12 | 69 | 0.75 |
Cuba | 18 | - | 73 | 0.27 |
Ethiopia | 19 | 163,697,927,593.98 | 43 | 0.15 |
Lithuania | 20 | 79,789,877,416.17 | 47 | 0.24 |
Slovenia | 21 | 69,148,468,417.32 | 51 | 0.22 |
Bosnia and Herzegovina | 22 | 27,514,782,476.04 | 60 | 1.06 |
Mongolia | 23 | 20,325,121,393.91 | 62 | 1.81 |
Honduras | 24 | 34,400,509,852.04 | 58 | 0.41 |
Dominican Republic | 25 | 121,444,279,313.93 | 44 | 0.13 |
Cambodia | 26 | 42,335,646,895.80 | 56 | 0.49 |
Hong Kong SAR, China | 27 | 380,812,234,827.83 | 30 | 0.11 |
Denmark | 28 | 407,091,920,305.40 | 27 | 0.07 |
Bolivia | 29 | 45,135,398,008.82 | 55 | 0.60 |
Bulgaria | 30 | 102,407,653,020.61 | 46 | 0.63 |
Korea, Rep. | 31 | 1,712,792,854,202.37 | 11 | 0.33 |
Kuwait | 32 | 163,704,878,875.85 | 42 | 0.93 |
New Zealand | 33 | 252,175,506,110.17 | 37 | 0.16 |
Azerbaijan | 34 | 72,356,176,470.59 | 49 | 0.74 |
Ireland | 35 | 551,394,889,339.78 | 20 | 0.07 |
Switzerland | 36 | 884,940,402,230.41 | 15 | 0.04 |
Greece | 37 | 243,498,333,237.80 | 39 | 0.23 |
Ecuador | 38 | 118,844,826,000.00 | 45 | 0.41 |
Singapore | 39 | 501,427,500,080.06 | 23 | 0.15 |
Austria | 40 | 511,685,203,845.00 | 22 | 0.14 |
Myanmar | 41 | 66,757,619,000.00 | 52 | 0.52 |
Belarus | 42 | 71,857,382,745.61 | 50 | 0.91 |
Korea, Dem. People’s Rep. | 43 | - | 73 | - |
Norway | 44 | 485,310,823,603.66 | 24 | 0.10 |
Sweden | 45 | 584,960,475,767.32 | 19 | 0.06 |
Venezuela, RB | 46 | - | 73 | - |
Peru | 47 | 267,603,248,655.25 | 36 | 0.26 |
Hungary | 48 | 212,388,906,458.72 | 40 | 0.28 |
Portugal | 49 | 289,114,289,663.54 | 35 | 0.15 |
Chile | 50 | 335,533,331,669.22 | 34 | 0.30 |
Romania | 51 | 350,775,856,415.19 | 32 | 0.30 |
Belgium | 52 | 644,782,756,682.76 | 18 | 0.16 |
Egypt, Arab Rep. | 53 | 396,002,496,996.96 | 29 | 0.53 |
Czechia | 54 | 343,207,874,553.73 | 33 | 0.41 |
Algeria | 55 | 247,626,161,016.41 | 38 | 0.84 |
Colombia | 56 | 363,493,841,244.30 | 31 | 0.28 |
Ukraine | 57 | 178,757,021,965.01 | 41 | 1.78 |
Philippines | 58 | 437,146,372,729.94 | 25 | 0.37 |
Argentina | 59 | 646,075,277,525.13 | 17 | 0.31 |
Turkiye | 60 | 1,118,252,964,260.77 | 14 | 0.35 |
Viet Nam | 61 | 429,716,969,043.57 | 26 | 0.98 |
Thailand | 62 | 514,968,699,239.01 | 21 | 0.60 |
Malaysia | 63 | 399,705,169,318.48 | 28 | 0.71 |
Australia | 64 | 1,728,057,316,695.61 | 10 | 0.23 |
Poland | 65 | 809,200,697,797.09 | 16 | 0.45 |
Spain | 66 | 1,620,090,734,956.89 | 12 | 0.16 |
United Kingdom | 67 | 3,380,854,520,809.54 | 5 | 0.09 |
United States | 68 | 27,720,709,000,000.00 | 1 | 0.21 |
Italy | 69 | 2,300,941,152,991.81 | 7 | 0.15 |
France | 70 | 3,051,831,611,384.76 | 6 | 0.11 |
Mexico | 71 | 1,789,114,434,843.46 | 9 | 0.37 |
Germany | 72 | 4,525,703,903,627.53 | 3 | 0.16 |
Indonesia | 73 | 1,371,171,152,331.16 | 13 | 0.57 |
Brazil | 74 | 2,173,665,655,937.27 | 8 | 0.24 |
Japan | 75 | 4,204,494,802,431.55 | 4 | 0.21 |
China | 76 | 17,794,783,039,552.00 | 2 | 0.75 |
References
- Stern, N. The Economics of Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- IPCC. Climate Change 2023: Synthesis Report. 2023. Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 7 July 2025).
- International Energy Agency. Energy System. 2023. Available online: https://www.iea.org/energy-system (accessed on 7 July 2025).
- Climate Change Directorate. 2025 Yılı Performans Programı; T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı: Ankara, Türkiye, 2025. Available online: https://iklim.gov.tr/db/turkce/icerikler/files/Performans%20Program%C4%B1%202025.pdf (accessed on 7 July 2025).
- Brans, J.P.; Mareschal, B. Promethee methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; International Series in Operations Research & Management Science; Figueira, J., Greco, S., Ehrgott, M., Eds.; Springer: New York, NY, USA, 2005; Volume 78. [Google Scholar] [CrossRef]
- Keshavarz-Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. Determination of objective weights using a new method based on the removal effects of criteria (MEREC). Symmetry 2021, 13, 525. [Google Scholar] [CrossRef]
- Tighnavard, A.; Balasbaneh, A.; Aldrovandi, S.; Sher, W. A systematic review of implementing multi-criteria decision-making (MCDM) approaches for the circular economy and cost assessment. Sustainability 2025, 17, 5007. [Google Scholar] [CrossRef]
- Elsayed, A. Multi-criteria decision-making framework for evaluating green fuels alternatives: A hybrid MEREC-TODIM approach. Neutrosophic Optim. Intell. Syst. 2024, 3, 41–56. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Dong, Y.; Song, M.; Shahbaz, M.; Xie, Q. Coupling coordination between carbon emissions and the eco-environment in China. J. Clean. Prod. 2020, 276, 123848. [Google Scholar] [CrossRef]
- Behzadian, M.; Kazemzadeh, R.B.; Albadvi, A.; Aghdasi, M. PROMETHEE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2010, 200, 198–215. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Khalifah, Z.; Jusoh, A.; Nor, K.M. Application of multiple-criteria decision-making techniques and approaches to evaluating of service quality: A systematic review. J. Bus. Econ. Manag. 2015, 16, 1034–1068. [Google Scholar] [CrossRef]
- Hezam, I.M.; Mishra, A.R.; Rani, P.; Cavallaro, F.; Saha, A.; Ali, J.; Strielkowski, W.; Štreimikienė, D. A hybrid intuitionistic fuzzy-MEREC-RS-DNMA method for assessing the alternative fuel vehicles with sustainability perspectives. Sustainability 2022, 14, 5463. [Google Scholar] [CrossRef]
- Zorlu, K.; Dede, V.; Zorlu, B.Ş.; Serin, S. Quantitative assessment of geoheritage with the GAM and MEREC-based PROMETHEE-GAIA method. Resour. Policy 2023, 84, 103796. [Google Scholar] [CrossRef]
- Bertoncini, M.; Boggio, A.; Dell’Anna, F.; Becchio, C.; Bottero, M. An application of the PROMETHEE II method for the comparison of energy requalification strategies to design post-carbon cities. AIMS Energy 2022, 10, 553–581. [Google Scholar] [CrossRef]
- Miçooğulları, S.A. The nexus between carbon emissions and economic growth in Türkiye at the 100th anniversary of the Republic: Rolling window causality analysis with historical data. Kent Akad. 2023, 16, 175–188. [Google Scholar] [CrossRef]
- Li, T.; Li, A.; Song, Y. Development and utilization of renewable energy based on carbon emission reduction—Evaluation of multiple MCDM methods. Sustainability 2021, 13, 9822. [Google Scholar] [CrossRef]
- Saraswat, S.K.; Digalwar, A.K. Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon’s entropy fuzzy multi-criteria decision approach. Renew. Energy 2021, 171, 58–74. [Google Scholar] [CrossRef]
- Esangbedo, M.O.; Tang, M. Evaluation of enterprise decarbonization scheme based on grey-MEREC-MAIRCA hybrid MCDM method. Systems 2023, 11, 397. [Google Scholar] [CrossRef]
- Xue, X.; Zhang, Q.; Cai, X.; Ponkratov, V.V. Multi-criteria decision analysis for evaluating the effectiveness of alternative energy sources in China. Sustainability 2023, 15, 8142. [Google Scholar] [CrossRef]
- Martins, M.B.; Ferreira, M.F.; Costa, S.G. Combining value-focused thinking and PROMETHEE techniques to support the selection of distributed generation technologies in Brazil. Sustainability 2021, 13, 11091. [Google Scholar] [CrossRef]
- Richards, D.; Kumar, A.; Elbeltagi, I.; Zhang, Y. Sustainable solar energy deployment: A multi-criteria decision-making approach for site suitability and greenhouse gas emission reduction. Environ. Sci. Pollut. Res. 2025, 32, 2007–2035. [Google Scholar] [CrossRef]
- Soytaş, U.; Sarı, R. Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member. Ecol. Econ. 2009, 68, 1667–1675. [Google Scholar] [CrossRef]
- Ozdemir, B.K.; Koç, K. Türkiye’de karbon emisyonlari, yenilenebilir enerji ve ekonomik büyüme. Ege Strat. Araştırmalar Derg. 2020, 11, 66–86. [Google Scholar] [CrossRef]
- Çoban, O. Yenilenebilir enerji tüketimi karbon ve emisyonu ilişkisi: TR örneği. Erciyes Üniversitesi Sos. Bilim. Enstitüsü Derg. 2015, 1, 195–208. [Google Scholar]
- European Bank for Reconstruction and Development. Türkiye Ülke Stratejisi 2024–2029. 2023. Available online: https://www.ebrd.com/content/dam/ebrd_dxp/assets/pdfs/country-strategies/t%C3%BCrkiye/Turkiye+Country+Strategy+-+translated_final.pdf (accessed on 7 July 2025).
- Avşar, İ.İ.; Ecemiş, O. Yeşil lojistik ve çok kriterli karar verme üzerine inceleme. J. Int. Econ. Financ. Trade 2023, 1, 29–48. [Google Scholar]
- Brans, J.P.; Vincke, P. Note—A preference ranking organisation method. Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef]
- Brans, J.P.; Vincke, P.; Mareschal, B. How to select and how to rank projects: The Promethee method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Brans, J.P. L’ingénièrie de la décision; Elaboration d’instruments d’aide à la decision, La méthode PROMETHEE. In L’aide à la Décision: Nature, Instruments et Perspectives D’Avenir; Nadeau, R., Landry, M., Eds.; Presses de l’Université Laval: Québec, QC, Canada, 1982; pp. 183–213. [Google Scholar]
- Hu, Y.; Panyadee, C. LogTODIM-PROMETHEE technique for development evaluation of school-enterprise cooperation from the perspective of collaborative education based on the probabilistic linguistic group decision-making. Heliyon 2024, 10, e33391. [Google Scholar] [CrossRef] [PubMed]
- Peng, D. Comprehensive analysis using probabilistic linguistic group decision-making and MEREC technique with sustainable development evaluation in higher education. Int. J. Decis. Support Syst. Technol. 2024, 16, 24. [Google Scholar] [CrossRef]
- He, T.; Wang, Q. Analyzing the service quality evaluation of railway cold chain logistics based on probabilistic linguistic group decision-making. Int. J. Decis. Support Syst. Technol. 2025, 17, 1–20. [Google Scholar] [CrossRef]
- Mao, Q.; Fan, J.; Gao, Y. An investment framework for hydro-wind-photovoltaic-hydrogen hybrid power system based on the improved picture fuzzy regret-PROMETHEE model. Int. J. Hydrogen Energy 2025, 106, 565–585. [Google Scholar] [CrossRef]
- Dang, Y. Intelligent optimization algorithm for strategic planning in economics with multi-factors assessment: A ME-REC-driven Heronian mean framework. AIMS Math. 2025, 10, 10866–10897. [Google Scholar] [CrossRef]
- PROMETHEE-GAIA, Bertrand Mareschal ULB Personal Pages. Available online: https://bertrand.mareschal.web.ulb.be/promethee.html (accessed on 8 April 2025).
- Bošković, S.; Švadlenka, L.; Jovčić, L.; Dobrodolac, M.; Simić, V.; Bacanin, N. An alternative ranking order method accounting for two-step normalization (AROMAN)—A case study of the electric vehicle selection problem. IEEE Access 2023, 11, 39496–39507. [Google Scholar] [CrossRef]
- Türkiye İstatistik Kurumu. Sera Gazı Emisyon İstatistikleri, 1990–2023 (Haber Bülteni No: 53974). 2024. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Sera-Gazi-Emisyon-Istatistikleri-1990-2023-53974 (accessed on 8 April 2025).
- World Bank. World Bank Open Data. Available online: https://data.worldbank.org (accessed on 8 April 2025).
Criteria Number | Benefit/Cost | Criteria Description (Mt CO2e) |
---|---|---|
Criteria 1 | Cost | Carbon dioxide (CO2) emissions from building (energy) |
Criteria 2 | Cost | Carbon dioxide (CO2) emissions from fugitive emissions |
Criteria 3 | Cost | Carbon dioxide (CO2) emissions from industrial combustion (energy) |
Criteria 4 | Cost | Carbon dioxide (CO2) emissions from industrial processes |
Criteria 5 | Cost | Carbon dioxide (CO2) emissions from power industry (energy) |
Criteria 6 | Cost | Carbon dioxide (CO2) emissions from transport (energy) |
Criteria 7 | Cost | Carbon dioxide (CO2) emissions from waste |
Criteria 1 | Criteria 2 | Criteria 3 | Criteria 4 | Criteria 5 | Criteria 6 | Criteria 7 | |
---|---|---|---|---|---|---|---|
Weight | 0.225780 | 0.077411 | 0.195452 | 0.026200 | 0.052025 | 0.195995 | 0.227138 |
Country | ||||||
---|---|---|---|---|---|---|
Timor-Leste | 1 | 1 | 1 | 1 | 1 | 1 |
Malta | 2 | 2 | 2 | 2 | 2 | 2 |
Suriname | 3 | 3 | 3 | 3 | 3 | 3 |
Guyana | 4 | 4 | 4 | 4 | 4 | 4 |
Greenland | 5 | 5 | 6 | 6 | 6 | 6 |
Gabon | 6 | 6 | 5 | 5 | 5 | 5 |
Macao | 7 | 7 | 8 | 8 | 9 | 9 |
Benin | 8 | 8 | 7 | 7 | 7 | 7 |
Estonia | 9 | 9 | 9 | 9 | 8 | 8 |
Jamaica | 10 | 10 | 10 | 10 | 10 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelit, İ.; Avşar, İ.İ. Turkiye’s Carbon Emission Profile: A Global Analysis with the MEREC-PROMETHEE Hybrid Method. Sustainability 2025, 17, 6527. https://doi.org/10.3390/su17146527
Pelit İ, Avşar İİ. Turkiye’s Carbon Emission Profile: A Global Analysis with the MEREC-PROMETHEE Hybrid Method. Sustainability. 2025; 17(14):6527. https://doi.org/10.3390/su17146527
Chicago/Turabian StylePelit, İrem, and İlker İbrahim Avşar. 2025. "Turkiye’s Carbon Emission Profile: A Global Analysis with the MEREC-PROMETHEE Hybrid Method" Sustainability 17, no. 14: 6527. https://doi.org/10.3390/su17146527
APA StylePelit, İ., & Avşar, İ. İ. (2025). Turkiye’s Carbon Emission Profile: A Global Analysis with the MEREC-PROMETHEE Hybrid Method. Sustainability, 17(14), 6527. https://doi.org/10.3390/su17146527