Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,506)

Search Parameters:
Keywords = transport path

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1814 KiB  
Article
Integrating Environmental Sensing into Cargo Bikes for Pollution-Aware Logistics in Last-Mile Deliveries
by Leonardo Cameli, Margherita Pazzini, Riccardo Ceriani, Valeria Vignali, Andrea Simone and Claudio Lantieri
Sensors 2025, 25(15), 4874; https://doi.org/10.3390/s25154874 (registering DOI) - 7 Aug 2025
Abstract
Cycling represents a significant share of urban transportation, especially in terms of last-mile delivery. It has clear benefits for delivery times, as well as for environmental issues related to freight distribution. Furthermore, the increasing accessibility of low-cost environmental sensors (LCSs) provides an opportunity [...] Read more.
Cycling represents a significant share of urban transportation, especially in terms of last-mile delivery. It has clear benefits for delivery times, as well as for environmental issues related to freight distribution. Furthermore, the increasing accessibility of low-cost environmental sensors (LCSs) provides an opportunity for urban monitoring in any situation. Moving in this direction, this research aims to investigate the use of LCSs to monitor particulate PM2.5 and PM10 levels and map them over delivery ride paths. The calibration process took 49 days of measurements into account, spanning different seasonal conditions (from May 2024 to November 2024). The employment of multiple linear regression and robust regression revealed a strong correlation between pollutant levels from two sources and other factors such as temperature and humidity. Subsequently, a one-month trial was carried out in the city of Faenza (Italy). In this study, a commercially available LCS was mounted on a cargo bike for measurement during delivery processes. This approach was adopted to reveal biker exposure to air pollutants. In this way, the operator’s route would be designed to select the best route in terms of delivery timing and polluting factors in the future. Furthermore, the integration of environmental monitoring to map urban environments has the potential to enhance the accuracy of local pollution mapping, thereby supporting municipal efforts to inform citizens and develop targeted air quality strategies. Full article
(This article belongs to the Section Environmental Sensing)
15 pages, 6405 KiB  
Article
Rainy Season Onset in Northeast China: Characteristic Changes and Physical Mechanisms Before and After the 2000 Climate Regime Shift
by Hanchen Zhang, Weifang Wang, Shuwen Li, Qing Cao, Quanxi Shao, Jinxia Yu, Tao Zheng and Shuci Liu
Water 2025, 17(15), 2347; https://doi.org/10.3390/w17152347 - 7 Aug 2025
Abstract
The rainy season characteristics are directly modulated by atmospheric circulation and moisture transport dynamics. Focusing on the characteristics of the rainy season onset date (RSOD), this study aims to advance the understanding and prediction of climate change impacts on agricultural production and disaster [...] Read more.
The rainy season characteristics are directly modulated by atmospheric circulation and moisture transport dynamics. Focusing on the characteristics of the rainy season onset date (RSOD), this study aims to advance the understanding and prediction of climate change impacts on agricultural production and disaster mitigation strategies. Based on rainfall data from 66 meteorological stations in northeast China (NEC) from 1961 to 2020, this study determined the patterns of the RSOD in the region and established its mechanistic linkages with atmospheric circulation and water vapor transport mechanisms. This study identifies a climatic regime shift around 2000, with the RSOD transitioning from low to high interannual variability in NEC. Further analysis reveals a strong correlation between the RSOD and atmospheric circulation characteristics: cyclonic vorticity amplifies before the RSOD and dissipates afterward. Innovatively, this study reveals a significant transition in the water vapor transport paths during the early rainy season in NEC around 2000, shifting from eastern Mongolia–Sea of Japan to the northwestern Pacific region. Moreover, the advance or delay of the RSOD directly influences the water vapor transport intensity—an early (delayed) RSOD is associated with enhanced (weakened) water vapor transport. These findings provide a new perspective for predicting the RSOD in the context of climate change while providing critical theoretical underpinnings for optimizing agricultural strategies and enhancing disaster prevention protocols. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

25 pages, 3588 KiB  
Article
An Intelligent Collaborative Charging System for Open-Pit Mines
by Jinbo Li, Lin Bi, Zhuo Wang and Liyun Zhou
Appl. Sci. 2025, 15(15), 8720; https://doi.org/10.3390/app15158720 - 7 Aug 2025
Abstract
To address challenges in automated charging operations of bulk explosive trucks in open-pit mines—specifically difficulties in borehole identification, positioning inaccuracies, and low operational efficiency—this study proposes an intelligent collaborative charging system integrating three modular components: (1) an explosive transport vehicle (with onboard terminal, [...] Read more.
To address challenges in automated charging operations of bulk explosive trucks in open-pit mines—specifically difficulties in borehole identification, positioning inaccuracies, and low operational efficiency—this study proposes an intelligent collaborative charging system integrating three modular components: (1) an explosive transport vehicle (with onboard terminal, explosive compartment, and mobility system enabling optimal routing and quantitative dispensing), (2) a charging robot (equipped with borehole detection, loading mechanisms, and mobility system for optimized search path planning and precision positioning), and (3) interconnection systems (coupling devices and interfaces facilitating auxiliary explosive transfer). This approach resolves three critical limitations of conventional systems: (i) mechanical arm-based borehole detection difficulties, (ii) blast hole positioning inaccuracies, and (iii) complex transport routing. The experimental results demonstrate that the intelligent cooperative charging method for open-pit mines achieves an 18% improvement in operational efficiency through intelligent collaboration among its modular components, while simultaneously realizing automated and intelligent charging operations. This advancement has significant implications for promoting intelligent development in open-pit mining operations. Full article
(This article belongs to the Special Issue Novel Technologies in Intelligent Coal Mining)
Show Figures

Figure 1

12 pages, 1678 KiB  
Article
Fine-Scale Spatial Distribution of Indoor Radon and Identification of Potential Ingress Pathways
by Dobromir Pressyanov and Dimitar Dimitrov
Atmosphere 2025, 16(8), 943; https://doi.org/10.3390/atmos16080943 - 6 Aug 2025
Abstract
A new generation of compact radon detectors with high sensitivity and fine spatial resolution (1–2 cm scale) was used to investigate indoor radon distribution and identify potential entry pathways. Solid-state nuclear track detectors (Kodak-Pathe LR-115 type II, Dosirad, France), combined with activated carbon [...] Read more.
A new generation of compact radon detectors with high sensitivity and fine spatial resolution (1–2 cm scale) was used to investigate indoor radon distribution and identify potential entry pathways. Solid-state nuclear track detectors (Kodak-Pathe LR-115 type II, Dosirad, France), combined with activated carbon fabric (ACC-5092-10), enabled sensitive, spatially resolved radon measurements. Two case studies were conducted: Case 1 involves a room with elevated radon levels suspected to originate from the floor. Case 2 involves a house with persistently high indoor radon concentrations despite active basement ventilation. In the first case, radon emission from the floor was found to be highly inhomogeneous, with concentrations varying by more than a factor of four. In the second, unexpectedly high radon levels were detected at electrical switches and outlets on walls in the living space, suggesting radon transport through wall voids and entry via non-hermetic electrical fittings. These novel detectors facilitate fine-scale mapping of indoor radon concentrations, revealing ingress routes that were previously undetectable. Their use can significantly enhance radon diagnostics and support the development of more effective mitigation strategies. Full article
Show Figures

Figure 1

21 pages, 4968 KiB  
Article
EQResNet: Real-Time Simulation and Resilience Assessment of Post-Earthquake Emergency Highway Transportation Networks
by Zhenliang Liu and Chuxuan Guo
Computation 2025, 13(8), 188; https://doi.org/10.3390/computation13080188 - 6 Aug 2025
Abstract
Multiple uncertainties in traffic demand fluctuations and infrastructure vulnerability during seismic events pose significant challenges for the resilience assessment of highway transportation networks (HTNs). While Monte Carlo simulation remains the dominant approach for uncertainty propagation, its high computational cost limits its scalability, particularly [...] Read more.
Multiple uncertainties in traffic demand fluctuations and infrastructure vulnerability during seismic events pose significant challenges for the resilience assessment of highway transportation networks (HTNs). While Monte Carlo simulation remains the dominant approach for uncertainty propagation, its high computational cost limits its scalability, particularly in metropolitan-scale networks. This study proposes an EQResNet framework for accelerated post-earthquake resilience assessment of HTNs. The model integrates network topology, interregional traffic demand, and roadway characteristics into a streamlined deep neural network architecture. A comprehensive surrogate modeling strategy is developed to replace conventional traffic simulation modules, including highway status realization, shortest path computation, and traffic flow assignment. Combined with seismic fragility models and recovery functions for regional bridges, the framework captures the dynamic evolution of HTN functionality following seismic events. A multi-dimensional resilience evaluation system is also established to quantify network performance from emergency response and recovery perspectives. A case study on the Sioux Falls network under probabilistic earthquake scenarios demonstrates the effectiveness of the proposed method, achieving 95% prediction accuracy while reducing computational time by 90% compared to traditional numerical simulations. The results highlight the framework’s potential as a scalable, efficient, and reliable tool for large-scale post-disaster transportation system analysis. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

26 pages, 6084 KiB  
Article
Intelligent Route Planning for Transport Ship Formations: A Hierarchical Global–Local Optimization and Collaborative Control Framework
by Zilong Guo, Mei Hong, Yunying Li, Longxia Qian, Yongchui Zhang and Hanlin Li
J. Mar. Sci. Eng. 2025, 13(8), 1503; https://doi.org/10.3390/jmse13081503 - 5 Aug 2025
Abstract
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive [...] Read more.
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive system. Global planning often neglects multi-ship collaborative constraints, while local methods disregard vessel maneuvering characteristics and formation stability. This paper proposes GLFM, a three-layer hierarchical framework (global optimization–local adjustment-formation collaboration module) for intelligent route planning of transport ship formations. GLFM integrates an improved multi-objective A* algorithm for global path optimization under dynamic meteorological and oceanographic (METOC) conditions and International Maritime Organization (IMO) safety regulations, with an enhanced Artificial Potential Field (APF) method incorporating ship safety domains for dynamic local obstacle avoidance. Formation, structural stability, and coordination are achieved through an improved leader–follower approach. Simulation results demonstrate that GLFM-generated trajectories significantly outperform conventional routes, reducing average risk level by 38.46% and voyage duration by 12.15%, while maintaining zero speed and period violation rates. Effective obstacle avoidance is achieved, with the leader vessel navigating optimized global waypoints and followers maintaining formation structure. The GLFM framework successfully balances global optimality with local responsiveness, enhances formation transportation efficiency and safety, and provides a comprehensive solution for intelligent route optimization in multi-constrained marine convoy operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 2172 KiB  
Article
Quantifying Macropore Variability in Terraced Paddy Fields Using X-Ray Computed Tomography
by Rong Ma, Linlin Chu, Lidong Bi, Dan Chen and Zhaohui Luo
Agronomy 2025, 15(8), 1873; https://doi.org/10.3390/agronomy15081873 - 1 Aug 2025
Viewed by 211
Abstract
Large soil pores critically influence water and solute transport in soils. The presence of preferential flow paths created by soil macropores can profoundly impact water quality, underscoring the necessity of accurately assessing the characteristics of these macropores. However, it remains unclear whether variations [...] Read more.
Large soil pores critically influence water and solute transport in soils. The presence of preferential flow paths created by soil macropores can profoundly impact water quality, underscoring the necessity of accurately assessing the characteristics of these macropores. However, it remains unclear whether variations in macropore structure exist between different altitudes and positions of terraced paddy fields. The primary objective of this research was to utilize X-ray computed tomography (CT) and image analysis techniques to characterize the soil pore structure at both the inner field and ridge positions across different altitude levels (high, medium, and low altitude) within terraced paddy fields. The results indicate that there are significant differences in the distribution of large soil pores at different altitudes, with large pores concentrated in the surface layer (0–10 cm) in low-altitude areas, while in high-altitude areas, the distribution of large pores is more uniform. Additionally, as altitude increases, the porosity of large pores shows an increasing trend. The three-dimensional equivalent diameter and large pore volume are primarily characterized by large pores ranging from 1 to 2 mm and 0 to 5 mm3, respectively, with their morphology predominantly appearing spherical or ellipsoidal. The connectivity of large pores in the surface layer of paddy soil is stronger than that in the bunds. However, this connectivity gradually weakens with increasing soil depth. The findings from this study provide valuable quantitative insights into the unique characteristics of soil macropores that vary according to the altitude and position in terraced paddy fields. Moreover, this study emphasizes the necessity for future research that encompasses a broader range of soil types, altitudes, and terraced paddy locations to validate and further explore the identified relationships between altitude and macropore characteristics. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 - 1 Aug 2025
Viewed by 196
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

29 pages, 7249 KiB  
Article
Application of Multi-Objective Optimization for Path Planning and Scheduling: The Edible Oil Transportation System Framework
by Chin S. Chen, Chia J. Lin, Yu J. Lin and Feng C. Lin
Appl. Sci. 2025, 15(15), 8539; https://doi.org/10.3390/app15158539 - 31 Jul 2025
Viewed by 230
Abstract
This study proposes a multi-objective optimization scheduling method for edible oil transportation in smart manufacturing, focusing on centralized control and addressing challenges such as complex pipelines and shared resource constraints. The method employs the A* and Dijkstra pathfinding algorithm to determine the shortest [...] Read more.
This study proposes a multi-objective optimization scheduling method for edible oil transportation in smart manufacturing, focusing on centralized control and addressing challenges such as complex pipelines and shared resource constraints. The method employs the A* and Dijkstra pathfinding algorithm to determine the shortest pipeline route for each task, and estimates pipeline resource usage to derive a node cost weight function. Additionally, the transport time is calculated using the Hagen–Poiseuille law by considering the viscosity coefficients of different oil types. To minimize both cost and time, task execution sequences are optimized based on a Pareto front approach. A 3D digital model of the pipeline system was developed using C#, SolidWorks Professional, and the Helix Toolkit V2.24.0 to simulate a realistic production environment. This model is integrated with a 3D visual human–machine interface(HMI) that displays the status of each task before execution and provides real-time scheduling adjustment and decision-making support. Experimental results show that the proposed method improves scheduling efficiency by over 43% across various scenarios, significantly enhancing overall pipeline transport performance. The proposed method is applicable to pipeline scheduling and transportation management in digital factories, contributing to improved operational efficiency and system integration. Full article
Show Figures

Figure 1

16 pages, 9862 KiB  
Article
Analysis of Drone Flight Stability for Building a Korean Urban Air Traffic (K-UAM) Delivery System
by Sohyun Cho, Hyuncheol Kim, Jaeho Chung and Dongmin Shin
Appl. Sci. 2025, 15(15), 8492; https://doi.org/10.3390/app15158492 - 31 Jul 2025
Viewed by 192
Abstract
The Ministry of Land, Infrastructure, and Transport conducted a demonstration project targeting pilot areas to commercialize drone delivery services in urban areas and to present a standard model. In this study, flight data on drone delivery routes in Ulju and drone hovering in [...] Read more.
The Ministry of Land, Infrastructure, and Transport conducted a demonstration project targeting pilot areas to commercialize drone delivery services in urban areas and to present a standard model. In this study, flight data on drone delivery routes in Ulju and drone hovering in Yeosu were collected and analyzed for flight safety. Since there are no domestic or international regulations on the stability of drone flight, we were given the task of analyzing whether drone path flight should be maintained within a 10 m error range from the planned path line by the Korea Transportation Safety Authority and whether hovering works while satisfying the left and right radius errors and altitude errors within 3 m. Accordingly, the drone flight path data analyzed in Ulju met the criteria of up to 1.07%, and the hovering data analyzed in Yeosu met the criteria of less than 3% for the entire section data. Therefore, the drone flight stability evaluation analyzed in this paper is considered to have been passed. Based on the results of this study, is the data are expected to serve as a cornerstone for establishing guidelines for drone delivery flight data analysis regulations. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

41 pages, 3023 KiB  
Article
Enhanced Scalability and Security in Blockchain-Based Transportation Systems for Mass Gatherings
by Ahmad Mutahhar, Tariq J. S. Khanzada and Muhammad Farrukh Shahid
Information 2025, 16(8), 641; https://doi.org/10.3390/info16080641 - 28 Jul 2025
Viewed by 422
Abstract
Large-scale events, such as festivals and public gatherings, pose serious problems in terms of traffic congestion, slow transaction processing, and security risks to transportation planning. This study proposes a blockchain-based solution for enhancing the efficiency and security of intelligent transport systems (ITS) by [...] Read more.
Large-scale events, such as festivals and public gatherings, pose serious problems in terms of traffic congestion, slow transaction processing, and security risks to transportation planning. This study proposes a blockchain-based solution for enhancing the efficiency and security of intelligent transport systems (ITS) by utilizing state channels and rollups. Throughput is optimized, enabling transaction speeds of 800 to 3500 transactions per second (TPS) and delays of 5 to 1.5 s. Prevent data tampering, strengthen security, and enhance data integrity from 89% to 99.999%, as well as encryption efficacy from 90% to 98%. Furthermore, our system reduces congestion, optimizes vehicle movement, and shares real-time, secure data with stakeholders. Practical applications include fast and safe road toll payments, faster public transit ticketing, improved emergency response coordination, and enhanced urban mobility. The decentralized blockchain helps maintain trust among users, transportation authorities, and event organizers. Our approach extends beyond large-scale events and proposes a path toward ubiquitous, Artificial Intelligence (AI)-driven decision-making in a broader urban transit network, informing future operations in dynamic traffic optimization. This study demonstrates the potential of blockchain to create more intelligent, more secure, and scalable transportation systems, which will help reduce urban mobility inefficiencies and contribute to the development of resilient smart cities. Full article
Show Figures

Figure 1

29 pages, 8216 KiB  
Article
Research on the Diaphragm Movement Characteristics and Cavity Profile Optimization of a Dual-Stage Diaphragm Compressor for Hydrogen Refueling Applications
by Chongzhou Sun, Zhilong He, Dantong Li, Xiaoqian Chen, Jie Tang, Manguo Yan and Xiangjie Kang
Appl. Sci. 2025, 15(15), 8353; https://doi.org/10.3390/app15158353 - 27 Jul 2025
Viewed by 310
Abstract
The large-scale utilization of hydrogen energy is currently hindered by challenges in low-cost production, storage, and transportation. This study focused on investigating the impact of the diaphragm cavity profile on the movement behavior and stress distribution of a dual-stage diaphragm compressor. Firstly, an [...] Read more.
The large-scale utilization of hydrogen energy is currently hindered by challenges in low-cost production, storage, and transportation. This study focused on investigating the impact of the diaphragm cavity profile on the movement behavior and stress distribution of a dual-stage diaphragm compressor. Firstly, an experimental platform was established to test the gas mass flowrate and fluid pressures under various preset conditions. Secondly, a simulation path integrating the finite element method simulation, theoretical stress model, and movement model was developed and experimentally validated to analyze the diaphragm stress distribution and deformation characteristics. Finally, comparative optimization analyses were conducted on different types of diaphragm cavity profiles. The results indicated that the driving pressure differences at the top dead center position reached 85.58 kPa for the first-stage diaphragm and 75.49 kPa for the second-stage diaphragm. Under experimental conditions of 1.6 MPa suction pressure, 8 MPa second-stage discharge pressure, and 200 rpm rotational speed, the first-stage and second-stage diaphragms reached the maximum center deflections of 4.14 mm and 2.53 mm, respectively, at the bottom dead center position. Moreover, the cavity profile optimization analysis indicated that the double-arc profile (DAP) achieved better cavity volume and diaphragm stress characteristics. The first-stage diaphragm within the optimized DAP-type cavity exhibited 173.95 MPa maximum principal stress with a swept volume of 0.001129 m3, whereas the second-stage optimized configuration reached 172.57 MPa stress with a swept volume of 0.0003835 m3. This research offers valuable insights for enhancing the reliability and performance of diaphragm compressors. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

11 pages, 2203 KiB  
Article
Superlattice Structure for High Performance AlGaN Deep Ultraviolet LEDs
by Mano Bala Sankar Muthu, Ravi Teja Velpula, Barsha Jain and Hieu Pham Trung Nguyen
Photonics 2025, 12(8), 752; https://doi.org/10.3390/photonics12080752 - 26 Jul 2025
Viewed by 264
Abstract
This study presents a novel approach to mitigate electron overflow in deep ultraviolet (UV) AlGaN light-emitting diodes (LEDs) by integrating engineered quantum barriers (QBs) with a concave shape and an optimized AlGaN superlattice (SL) electron blocking layer (EBL). The concave QBs reduce electron [...] Read more.
This study presents a novel approach to mitigate electron overflow in deep ultraviolet (UV) AlGaN light-emitting diodes (LEDs) by integrating engineered quantum barriers (QBs) with a concave shape and an optimized AlGaN superlattice (SL) electron blocking layer (EBL). The concave QBs reduce electron leakage by lowering the electron thermal velocity and mean free path, enhancing electron capture in the active region. The SL EBL further reduces electron overflow without compromising hole transport. At a wavelength of ~253.7 nm, the proposed LED demonstrates a 2.67× improvement in internal quantum efficiency (IQE) and a 2.64× increase in output power at 150 mA injection, with electron leakage reduced by ~4 orders of magnitude compared to conventional LEDs. The efficiency droop is found to be just 2.32%. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

20 pages, 3407 KiB  
Article
Impact of Adverse Mobility Ratio on Oil Mobilization by Polymer Flooding
by Abdulmajeed Murad, Arne Skauge, Behruz Shaker Shiran, Tormod Skauge, Alexandra Klimenko, Enric Santanach-Carreras and Stephane Jouenne
Polymers 2025, 17(15), 2033; https://doi.org/10.3390/polym17152033 - 25 Jul 2025
Viewed by 211
Abstract
Polymer flooding is a widely used enhanced oil recovery (EOR) method for improving energy efficiency and reducing the carbon footprint of oil production. Optimizing polymer concentration is critical for maximizing recovery while minimizing economic and environmental costs. Here, we present a systematic experimental [...] Read more.
Polymer flooding is a widely used enhanced oil recovery (EOR) method for improving energy efficiency and reducing the carbon footprint of oil production. Optimizing polymer concentration is critical for maximizing recovery while minimizing economic and environmental costs. Here, we present a systematic experimental study which shows that even very low concentrations of polymers yield relatively high recovery rates at adverse mobility ratios (230 cP oil). A series of core flood experiments were conducted on Bentheimer sandstone rock, with polymer concentrations ranging from 40 ppm (1.35 cP) to 600 ppm (10.0 cP). Beyond a mobility ratio threshold, increasing polymer concentration did not significantly enhance recovery. This plateau in performance was attributed to the persistence of viscous fingering and oil crossflow into pre-established water channels. The study suggests that low concentrations of polymer may mobilize oil at high mobility ratios by making use of the pre-established water channels as transport paths for the oil and that the rheology of the polymer enhances this effect. These findings enable reductions in the polymer concentration in fields with adverse mobility ratios, leading to substantial reductions in chemical usage, energy consumption, and environmental impact of the extraction process. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 2103 KiB  
Article
Airport Field Path Optimization Method Based on Conflict Hotspot Avoidance Mechanism
by Wen Tian, Mingjian Yang, Xuefang Zhou, Jianan Yin and Xv Shi
Appl. Sci. 2025, 15(15), 8204; https://doi.org/10.3390/app15158204 - 23 Jul 2025
Viewed by 172
Abstract
The state path optimization model, alongside strategies like slowing down and waiting, aims to identify optimal aircraft routes that minimize the total taxi time and prevent conflicts. Optimization reduces taxiing times for aircraft YZR7537, CES2558, and CSZ9806, while slightly increasing the times for [...] Read more.
The state path optimization model, alongside strategies like slowing down and waiting, aims to identify optimal aircraft routes that minimize the total taxi time and prevent conflicts. Optimization reduces taxiing times for aircraft YZR7537, CES2558, and CSZ9806, while slightly increasing the times for CSN6310 and CSN3210 due to conflict hotspot avoidance measures. This approach also decreases the number of aircraft passing through key conflict hotspots, effectively reducing both conflicts and risk levels in these areas. Consequently, the total taxiing time for the optimized aircraft is cut by 53 s, enhancing airport operational efficiency. The proposed model serves as a theoretical foundation for developing an intelligent airport operation management system. Full article
Show Figures

Figure 1

Back to TopTop