Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,181)

Search Parameters:
Keywords = transmitter power

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2053 KB  
Article
A Terahertz Dual-Band Transmitter in 40 nm CMOS for a Wideband Sparse Synthetic Bandwidth Radar
by Aguan Hong, Lina Su, Yanjun Wang and Xiang Yi
Electronics 2025, 14(22), 4392; https://doi.org/10.3390/electronics14224392 - 11 Nov 2025
Abstract
This paper presents a terahertz (THz) dual-band transmitter for a wideband sparse synthetic bandwidth radar. The transmitter employs an innovative single-path-reuse dual-band architecture. This architecture utilizes a proposed quad-transformer-coupled voltage-controlled oscillator (VCO) as an on-chip local oscillator source. It also incorporates an innovative [...] Read more.
This paper presents a terahertz (THz) dual-band transmitter for a wideband sparse synthetic bandwidth radar. The transmitter employs an innovative single-path-reuse dual-band architecture. This architecture utilizes a proposed quad-transformer-coupled voltage-controlled oscillator (VCO) as an on-chip local oscillator source. It also incorporates an innovative dual-harmonic generator and a dual-band antenna, which work together within the single signal path to generate both the fundamental frequency and its second harmonic, thereby creating the dual bands required for a sparse synthetic bandwidth radar. Fabricated in a TSMC 40 nm CMOS technology, measurement results show that the transmitter achieves a peak equivalent isotropically radiated power (EIRP) of −7.95 dBm in the low-frequency band (121.34∼126.85 GHz) and −7.86 dBm in the high-frequency band (242.68∼253.7 GHz), validating the proposed architecture’s capability to generate dual-band signals simultaneously. The entire chip occupies a compact area of only 0.54 × 0.62 mm2 and consumes 136 mW of DC power. Full article
Show Figures

Figure 1

20 pages, 29995 KB  
Article
Digital Self-Interference Cancellation Strategies for In-Band Full-Duplex: Methods and Comparisons
by Amirmohammad Shahghasi, Gabriel Montoro and Pere L. Gilabert
Sensors 2025, 25(22), 6835; https://doi.org/10.3390/s25226835 - 8 Nov 2025
Viewed by 293
Abstract
In-band full-duplex (IBFD) communication systems offer a promising means of improving spectral efficiency by enabling simultaneous transmission and reception on the same frequency channel. Despite this advantage, self-interference (SI) remains a major challenge to their practical deployment. Among the different SI cancellation (SIC) [...] Read more.
In-band full-duplex (IBFD) communication systems offer a promising means of improving spectral efficiency by enabling simultaneous transmission and reception on the same frequency channel. Despite this advantage, self-interference (SI) remains a major challenge to their practical deployment. Among the different SI cancellation (SIC) techniques, this paper focuses on digital SIC methodologies tailored for multiple-input multiple-output (MIMO) wireless transceivers operating under digital beamforming architectures. Two distinct digital SIC approaches are evaluated, employing a generalized memory polynomial (GMP) model augmented with Itô–Hermite polynomial basis functions and a phase-normalized neural network (PNN) to effectively model the nonlinearities and memory effects introduced by transmitter and receiver hardware impairments. The robustness of the SIC is further evaluated under both single off-line training and closed-loop real-time adaptation, employing estimation techniques such as least squares (LS), least mean squares (LMS), and fast Kalman (FK) for model coefficient estimation. The performance of the proposed digital SIC techniques is evaluated through detailed simulations that incorporate realistic power amplifier (PA) characteristics, channel conditions, and high-order modulation schemes. Metrics such as error vector magnitude (EVM) and total bit error rate (BER) are used to assess the quality of the received signal after SIC under different signal-to-interference ratio (SIR) and signal-to-noise ratio (SNR) conditions. The results show that, for time-variant scenarios, a low-complexity adaptive SIC can be realized using a GMP model with FK parameter estimation. However, in time-invariant scenarios, an open-loop SIC approach based on PNN offers superior performance and maintains robustness across various modulation schemes. Full article
Show Figures

Figure 1

16 pages, 9693 KB  
Article
Synergistic Driver-Laser/Modulator Co-Design with Versatile Output Stage: A Unified Optical Transmitter EIC Design Approach
by Ruixuan Yang, Cailing Li, Yifei Xia, Yuye Yang, Li Geng and Dan Li
Micromachines 2025, 16(11), 1262; https://doi.org/10.3390/mi16111262 - 6 Nov 2025
Viewed by 209
Abstract
With the rapid deployment of artificial intelligence (AI) data centers, demand for optical modules surges—alongside faster upgrades and stricter low-power requirements. However, traditional optical driver integrated circuits (ICs) rely on device-specific customization, which lengthens driver design cycles, delays module deployment, and raises costs, [...] Read more.
With the rapid deployment of artificial intelligence (AI) data centers, demand for optical modules surges—alongside faster upgrades and stricter low-power requirements. However, traditional optical driver integrated circuits (ICs) rely on device-specific customization, which lengthens driver design cycles, delays module deployment, and raises costs, becoming a bottleneck for optical module evolution. To address these issues, this work proposes a unified optical transmitter electronic integrated circuit (EIC) design approach featuring synergistic driver-laser/modulator co-design and a versatile output driver (VOD). The VOD can be configured into three output impedance states (open-drain, differential 50-Ω, or differential 100-Ω), enabling it to drive various optical devices like distributed feedback lasers (DFBs), vertical-cavity surface-emitting lasers (VCSELs), electro-absorption modulated lasers (EMLs), and Mach-Zehnder modulators (MZMs) with a single design, minimizing device-specific customization. Meanwhile, its power consumption is also adjustable to maximize the power efficiency. The proposed design approach demonstrates the potential to address the critical interoperability, cost, and power challenges faced by AI data centers, providing a scalable template for next-generation coherent and 4-level pulse amplitude modulation systems and facilitating rapid deployment. Full article
Show Figures

Figure 1

12 pages, 2264 KB  
Article
Real-Time Monitoring of Secondary Mineral Precipitation During CO2–H2O–Rock Interactions Under High Temperature and Pressure Using Fiber Optic Scale Sensors
by Sakurako Satake, Ai Hosoki, Hideki Kuramitz, Akira Ueda and Amane Terai
Energies 2025, 18(21), 5856; https://doi.org/10.3390/en18215856 - 6 Nov 2025
Viewed by 243
Abstract
This study successfully monitored the formation of secondary minerals resulting from CO2–H2O–rock reactions under high-temperature, high-pressure conditions (approximately 250 °C and 6 MPa, respectively) in real time using a sensor based on the attenuated total reflection (ATR) detection principle. [...] Read more.
This study successfully monitored the formation of secondary minerals resulting from CO2–H2O–rock reactions under high-temperature, high-pressure conditions (approximately 250 °C and 6 MPa, respectively) in real time using a sensor based on the attenuated total reflection (ATR) detection principle. First, a verification experiment was conducted using a saturated calcium carbonate solution. This experiment quantitatively confirmed an increase in precipitation and a decrease in transmittance as the temperature increased from 25 °C to 250 °C. Next, CO2–H2O–rock reaction tests were conducted within a batch-type apparatus. Under neutral conditions (pH 7.3), the transmittance rapidly decreased to approximately 20% within five days of initiating the reaction. Combined with our previous results from separate batch-based rock reaction tests conducted under identical conditions, it was revealed that the rapid precipitation of secondary minerals, primarily smectite, was the dominant process. Conventional methods estimate precipitation amounts by analyzing rock surface morphology after reaction tests, which leaves the reaction mechanism unclear. The primary innovation of this study lies in directly capturing precipitation dynamics during the initial reaction stage, which could not be achieved using conventional post reaction analysis methods. By employing this monitoring technique to measure the precipitation rates and quantities of secondary minerals under various test conditions, this study is expected to make significant contributions to the understanding and controlling of precipitation phenomena and changes in formation permeability in CO2 geological storage and carbon-recycling geothermal power generation projects. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

38 pages, 4109 KB  
Article
End-to-End DAE–LDPC–OFDM Transceiver with Learned Belief Propagation Decoder for Robust and Power-Efficient Wireless Communication
by Mohaimen Mohammed and Mesut Çevik
Sensors 2025, 25(21), 6776; https://doi.org/10.3390/s25216776 - 5 Nov 2025
Viewed by 465
Abstract
This paper presents a Deep Autoencoder–LDPC–OFDM (DAE–LDPC–OFDM) transceiver architecture that integrates a learned belief propagation (BP) decoder to achieve robust, energy-efficient, and adaptive wireless communication. Unlike conventional modular systems that treat encoding, modulation, and decoding as independent stages, the proposed framework performs end-to-end [...] Read more.
This paper presents a Deep Autoencoder–LDPC–OFDM (DAE–LDPC–OFDM) transceiver architecture that integrates a learned belief propagation (BP) decoder to achieve robust, energy-efficient, and adaptive wireless communication. Unlike conventional modular systems that treat encoding, modulation, and decoding as independent stages, the proposed framework performs end-to-end joint optimization of all components, enabling dynamic adaptation to varying channel and noise conditions. The learned BP decoder introduces trainable parameters into the iterative message-passing process, allowing adaptive refinement of log-likelihood ratio (LLR) statistics and enhancing decoding accuracy across diverse SNR regimes. Extensive experimental results across multiple datasets and channel scenarios demonstrate the effectiveness of the proposed design. At 10 dB SNR, the DAE–LDPC–OFDM achieves a BER of 1.72% and BLER of 2.95%, outperforming state-of-the-art models such as Transformer–OFDM, CNN–OFDM, and GRU–OFDM by 25–30%, and surpassing traditional LDPC–OFDM systems by 38–42% across all tested datasets. The system also achieves a PAPR reduction of 26.6%, improving transmitter power amplifier efficiency, and maintains a low inference latency of 3.9 ms per frame, validating its suitability for real-time applications. Moreover, it maintains reliable performance under time-varying, interference-rich, and multipath fading channels, confirming its robustness in realistic wireless environments. The results establish the DAE–LDPC–OFDM as a high-performance, power-efficient, and scalable architecture capable of supporting the demands of 6G and beyond, delivering superior reliability, low-latency performance, and energy-efficient communication in next-generation intelligent networks. Full article
(This article belongs to the Special Issue AI-Driven Security and Privacy for IIoT Applications)
Show Figures

Figure 1

10 pages, 1216 KB  
Article
Printed Ag Mesh Electrodes with Enhanced Adhesion on Diverse Substrates for Transparent Heater Applications
by Han-Jung Kim, Se Yong Park, Jeongmin Park, Yohan Ko, Changjoo Shin, Dong-Woo Man and Yoonkap Kim
Nanomaterials 2025, 15(21), 1681; https://doi.org/10.3390/nano15211681 - 5 Nov 2025
Viewed by 248
Abstract
Digital printing technologies—including inkjet printing, aerosol jet printing, and electrohydrodynamic jet printing—have emerged as promising strategies for next-generation electronic devices. However, the weak adhesion between printed electrodes and substrates can lead to electrode delamination, thereby compromising device reliability and lifetime. In this study, [...] Read more.
Digital printing technologies—including inkjet printing, aerosol jet printing, and electrohydrodynamic jet printing—have emerged as promising strategies for next-generation electronic devices. However, the weak adhesion between printed electrodes and substrates can lead to electrode delamination, thereby compromising device reliability and lifetime. In this study, a dielectric interlayer was introduced to improve the adhesion of silver (Ag) mesh electrodes on glass, polyethersulfone film, and polyimide film substrates. The optimized electrode on PES film achieved an optical transmittance of 83% at 550 nm and line resistance of 0.3 Ω, confirming its suitability as a transparent electrode. The incorporation of the interlayer also enhanced the adhesion and mechanical flexibility across all substrates. Moreover, the printed electrodes exhibited uniform surface heating under an applied bias (≤DC 3 V), and their feasibility as low-power flexible transparent heaters was experimentally demonstrated. These findings present a simple and effective printing strategy for fabricating robust and multifunctional electrodes, offering enormous potential for the realization of future flexible and transparent electronic systems. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

13 pages, 1609 KB  
Article
A Multi-Mode Wireless Power Transfer System Based on a Reconfigurable Transmitter for Charging Electric Bicycles
by Dongshuai Ding, Yongqi Zang, Xiteng Chen and Shujia Xu
Electronics 2025, 14(21), 4315; https://doi.org/10.3390/electronics14214315 - 3 Nov 2025
Viewed by 302
Abstract
Due to the diverse needs of users, such as the requirement for rapid charging in time-sensitive situations and the need to minimize battery power consumption to extend battery life when the device is idle, a wireless charging system that combines fast and slow [...] Read more.
Due to the diverse needs of users, such as the requirement for rapid charging in time-sensitive situations and the need to minimize battery power consumption to extend battery life when the device is idle, a wireless charging system that combines fast and slow charging capabilities is crucial for adapting to various usage scenarios. This paper proposes a multi-mode wireless charging system based on a reconfigurable transmitter, which can simultaneously charge different types of batteries with both fast and slow charging capabilities. By applying different control logic to the power devices in the reconfigurable inverter, the system can achieve four operating modes: two different constant current (CC) modes and two different constant voltage (CV) modes. Furthermore, the system can switch between these modes by configuring the MOSFETs operating states: two three-coil configurations are used for the two CC modes, while two two-coil configurations are used for the two CV modes. Therefore, the system exhibits high versatility. To verify the theoretical analysis of the proposed system, an experimental prototype with an output specification of 3 A/2.2 A/78 V/65 V is built. Full article
(This article belongs to the Special Issue Wireless Power Transfer and Hybrid Energy Harvesting)
Show Figures

Figure 1

23 pages, 4545 KB  
Article
Optimum Cr Content in Cr, Nd: YAG Transparent Ceramic Laser Rods for Compact Solar-Pumped Lasers
by Tomoyoshi Motohiro and Kazuo Hasegawa
Solar 2025, 5(4), 51; https://doi.org/10.3390/solar5040051 - 1 Nov 2025
Viewed by 154
Abstract
Cr content χ of 0.4 at% for a Cr doped Nd (1 at%): YAG laser rod (LR) gave a higher laser output (Ioutput) than that of 0.0, 0.7, and 1.0 at% in a specially designed compact solar-pumped laser (SPL) outdoors. [...] Read more.
Cr content χ of 0.4 at% for a Cr doped Nd (1 at%): YAG laser rod (LR) gave a higher laser output (Ioutput) than that of 0.0, 0.7, and 1.0 at% in a specially designed compact solar-pumped laser (SPL) outdoors. Ioutputs were measured as a function of an 808 nm pumping laser’s power indoors, changing the transmittance of the output coupler. From the obtained slope efficiencies, round-trip resonator losses Ls for the four χs were estimated, and the best-fit function L(χ) was derived. From the experimentally estimated Cr-to-Nd effective energy transfer efficiency ηCr→Nd at the four χs, the best-fit function ηCr→Nd(χ) was derived. Using L(χ), ηCr→Nd(χ), and a wavelength λ- and χ-dependent absorption coefficient α(λ, χ), inferred from the literature, the power conversion efficiency ηpower(χ) under 1 Sun was estimated. The estimated ηpower(0.4) and ηpower(0.7) were reproduced in experimentally deduced factors at the mode-matching efficiency ηmode = 0.19. The estimated maximum ηpower(χ) appeared around χ = 0.2 at%, being 20% higher than that at χ = 0.4 at%. In addition to this, a composite LR (Cr, Nd: YAG core/Gd: YAG cladding) was found to achieve ηmode = 0.68 and ηpower = 0.064, ranking among the highest-class SPL ηpowers. Full article
Show Figures

Figure 1

13 pages, 5864 KB  
Article
A Wide-Input-Range LDO with High Output Accuracy Based on Digital Trimming Technique
by Jian Ren, Hongchun Wang, Meng Li, Bin Liu, Jianshu Xiao and Wei Zhao
Electronics 2025, 14(21), 4299; https://doi.org/10.3390/electronics14214299 - 31 Oct 2025
Viewed by 240
Abstract
Temperature is a crucial indicator in monitoring industrial operations. Two-wire temperature transmitters, known for their precise measurements, are extensively used in sectors like crude oil extraction, refining, and fine chemicals. These transmitters can handle a maximum input voltage of 36 V and output [...] Read more.
Temperature is a crucial indicator in monitoring industrial operations. Two-wire temperature transmitters, known for their precise measurements, are extensively used in sectors like crude oil extraction, refining, and fine chemicals. These transmitters can handle a maximum input voltage of 36 V and output a current signal up to 20 mA, enhancing resistance to electromagnetic interference and line noise while improving system compatibility and safety. In contrast, traditional low-dropout linear regulators (LDOs) typically have an input voltage below 6 V and suffer from limitations such as low power supply rejection ratio (PSRR), inadequate current driving capability, and significant temperature drift. This paper proposes a wide-input-range LDO with enhanced output accuracy and digital trimming, designed using the 180 nm BCD process. It incorporates dynamic mismatch compensation, digital trimming, and a strong-drive buffer, achieving a broad input voltage range and high PSRR with minimal temperature drift. The input voltage spans 6 V to 60 V, the output voltage is 1.8 V, and the PSRR reaches 124.5 dB. Across a temperature range of −40 °C to 130 °C, the maximum output voltage error is only 0.3%. This makes it highly suitable for high-precision circuit power supplies in industrial process control. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

38 pages, 9535 KB  
Article
Novel Design and Experimental Validation of a Technique for Suppressing Distortion Originating from Various Sources in Multiantenna Full-Duplex Systems
by Keng-Hwa Liu, Juinn-Horng Deng and Min-Siou Yang
Electronics 2025, 14(21), 4300; https://doi.org/10.3390/electronics14214300 - 31 Oct 2025
Viewed by 201
Abstract
Complex distortion cancellation methods are often used at the radio frequency (RF) front end of multiantenna full-duplex transceivers to mitigate signal distortion; however, these methods have high computational complexity and limited practicality. To address these problems, the present study explored the complexities associated [...] Read more.
Complex distortion cancellation methods are often used at the radio frequency (RF) front end of multiantenna full-duplex transceivers to mitigate signal distortion; however, these methods have high computational complexity and limited practicality. To address these problems, the present study explored the complexities associated with such transceivers to develop a practical multistep approach for suppressing distortions arising from in-phase and quadrature (I/Q) imbalance, nonlinear power amplifier (PA) responses, and multipath self-interference caused by simultaneous transmissions on the same frequency. In this approach, the I/Q imbalance is estimated and then compensated for, following which nonlinear PA distortion is estimated and pre-compensated for. Subsequently, an auxiliary RF transmitter is combined with linearly regenerating self-interference signals to achieve full-duplex self-interference cancellation. The proposed method was implemented on a software-defined radio platform, with the distortion factor calibration specifically optimized for multiantenna full-duplex transceivers. The experimental results indicate that the image signal caused by I/Q imbalance can be suppressed by up to 60 dB through iterative computation. By combining IQI and DPD preprocessing, the nonlinear distortion spectrum can be reduced by 25 dB. Furthermore, integrating IQI, DPD, and self-interference preprocessing achieves up to 180 dB suppression of self-interference signals. Experimental results also demonstrate that the proposed method achieves approximately 20 dB suppression of self-interference. Thus, the method has high potential for enhancing the performance of multiantenna RF full-duplex systems. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

20 pages, 1364 KB  
Article
Pilot Design for Block Compressed Sensing-Based MIMO-OFDM Channel Estimation with Joint Criterion
by Shenyang Xiao, Yongjing Wei, Weili Yue, Chao Sun, Shihao Wang, Anqi Tian, Shengrun Mi and Junming Cao
Electronics 2025, 14(21), 4262; https://doi.org/10.3390/electronics14214262 - 30 Oct 2025
Viewed by 211
Abstract
This paper studies the pilot design for compressed sensing (CS)-based sparse channel estimation in multi-input–multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. To improve the performance of estimating multiple jointly sparse channels, based on the assumption that the modulus of the pilot symbol at [...] Read more.
This paper studies the pilot design for compressed sensing (CS)-based sparse channel estimation in multi-input–multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. To improve the performance of estimating multiple jointly sparse channels, based on the assumption that the modulus of the pilot symbol at each pilot carrier position is equal to a constant, the pilot is currently allocated by means of lowering the sensing matrix’s total coherence (TC). However, according to the block compressed sensing (BCS) theory, the recovery ability of the sensing matrix is determined by the block coherence (BC) and subblock coherence (SC), which should be as small as possible. Therefore, we propose a novel scheme, which designs the pilot by simultaneously minimizing the TC, BC, and SC of the sensing matrix to improve the channel estimation accuracy. We first formulate the jointly sparse channel estimation as a block sparse signal recovery problem, and the pilot allocation problem is comprised of allocating the pilot index for each transmitter and allocating the pilot symbol at each carrier. Then, we derive the error bound of BCS-based channel estimation, where the pilot symbols bear any value. Finally, a novel sequential joint criterion design (SJCD) method is proposed to design pilots with a joint criterion, where the pilot pattern and pilot power are designed by BC and TC, respectively. Simulation results show that, compared with existing algorithms, the proposed algorithm can achieve a better channel estimation performance in terms of normalized mean square error (NMSE) and bit error rate (BER). Full article
Show Figures

Figure 1

8 pages, 2022 KB  
Article
Fabrications of Fully Transparent Gallium Oxide Solar-Blind Photodetectors
by Li-Wen Wang, Tai-Yu Wu and Sheng-Yuan Chu
Nanomaterials 2025, 15(21), 1614; https://doi.org/10.3390/nano15211614 - 23 Oct 2025
Viewed by 327
Abstract
This article presents a remarkable achievement: a gallium oxide-based, non-metallic, fully transparent, and self-powered solar-blind ultraviolet photodetector. We have replaced the traditional metal electrode with gallium-doped zinc oxide (GZO), a transparent conductive oxide, for this transparent purpose. Gallium oxide, a wide-bandgap material suitable [...] Read more.
This article presents a remarkable achievement: a gallium oxide-based, non-metallic, fully transparent, and self-powered solar-blind ultraviolet photodetector. We have replaced the traditional metal electrode with gallium-doped zinc oxide (GZO), a transparent conductive oxide, for this transparent purpose. Gallium oxide, a wide-bandgap material suitable for solar-blind detection, is used as the active layer. Glass and natural mica are used for the transparent substrate. The gallium oxide thin film is deposited by RF sputtering at room temperature, with polycrystalline orientation, and the top integrated GZO electrode is also prepared at room temperature using the same technique. This simple two-layer structure device maintains a transmittance of over 88% in the visible spectrum for both substrates, a truly impressive performance. Both glass and mica substrates exhibit self-powered photoresponsivity at 265 nm with responsivities of 8.8 × 10−9 and 4.4 × 10−7 (A/W), operating with an externally applied voltage of 1 V and boasting a responsivity of around two orders of magnitude with rise/fall times less than 10 s. An X-ray diffractometer, ultraviolet–visible spectroscopy, semiconductor analysis, and a semiconductor electron microscope are used for material analysis and device performance. This article presents a transparent gallium oxide solar-blind photodetector with a simple structure. Our research explains the exceptional transmittance of non-metal electrodes with gallium oxide solar-blind photodetectors, setting a new standard in the field. Full article
(This article belongs to the Special Issue Graphene and 2D Material-Based Photodetectors)
Show Figures

Figure 1

20 pages, 1186 KB  
Article
Contactless Battery Solution for Sustainable IoT Devices: Assessment of Environmental Impact
by Jona Cappelle, Lieven De Strycker and Liesbet Van der Perre
Electronics 2025, 14(21), 4140; https://doi.org/10.3390/electronics14214140 - 22 Oct 2025
Viewed by 338
Abstract
When energy harvesting is not feasible or fails to provide sufficient power, the energy buffer of battery-powered Internet of Things (IoT) devices inevitably depletes. The proper disposal and/or replacement of depleted and end-of-life (EoL) batteries is challenging, especially in rural IoT deployments, where [...] Read more.
When energy harvesting is not feasible or fails to provide sufficient power, the energy buffer of battery-powered Internet of Things (IoT) devices inevitably depletes. The proper disposal and/or replacement of depleted and end-of-life (EoL) batteries is challenging, especially in rural IoT deployments, where human intervention is cumbersome. When batteries are left in nature, they can pose a significant environmental risk, leaking harmful chemicals into the soil. This work proposes a novel contactless battery solution for longevity and recyclability, providing automated battery replacement using a short-range wireless power transfer (WPT) link instead of a direct battery-to-IoT node contact-based connection for powering the IoT device. It facilitates battery recovery at EoL by, e.g., an unmanned vehicle (UV), reducing the need for manual intervention. Unlike complex mechanical solutions or contacts prone to corrosion, a contactless approach enables easy replacement and improves reliability and longevity in harsh environments. A technical challenge is the need for an efficient contactless solution to enable the IoT node to get energy from the battery. This work elaborates an efficient wireless connection between the battery and IoT node, which ensures robustness in harsh environments. In addition, it examines the sustainability aspects of this approach. The WPT system is applied in two IoT node applications: polling-based and interrupt-based systems. The proposed solution achieves a transmitter-to-receiver efficiency of 72% and has an additional environmental impact of 2.34 kgCO2eq. However, its key advantage is the ease of battery replacement, which could significantly reduce the expected long-term environmental impact. Full article
(This article belongs to the Special Issue Wireless Power Transfer Systems: Design and Implementation)
Show Figures

Figure 1

14 pages, 716 KB  
Article
Spectral Transmittance of Daily Disposable Contact Lenses: Variability in Ultraviolet Blocking
by Arief Abdurrazaq Dharma, Sachiko Kaidzu, Yoshihisa Ishiba, Tsutomu Okuno and Masaki Tanito
Materials 2025, 18(20), 4784; https://doi.org/10.3390/ma18204784 - 20 Oct 2025
Viewed by 450
Abstract
Ultraviolet radiation (UVR) is a well-established risk factor for ocular diseases; however, the ultraviolet-blocking properties of daily disposable contact lenses remain insufficiently characterized. This study evaluated thirteen commercially available lenses to determine their spectral transmittance across UV-B, UV-A, and visible light ranges using [...] Read more.
Ultraviolet radiation (UVR) is a well-established risk factor for ocular diseases; however, the ultraviolet-blocking properties of daily disposable contact lenses remain insufficiently characterized. This study evaluated thirteen commercially available lenses to determine their spectral transmittance across UV-B, UV-A, and visible light ranges using a UV–visible spectrophotometer. The oxygen permeability, central thickness, water content, and FDA material classification of each lens were documented, and oxygen transmissibility was subsequently calculated. A generalized linear mixed model (GLMM) was applied to identify predictors of spectral transmittance. All lenses demonstrated high visible light transmittance (>88%), but exhibited substantial variation in UV attenuation. While several lenses effectively blocked most UV radiation, others transmitted more than 70%. The analysis revealed that lens power was the most consistent predictor of spectral transmittance, with higher minus powers associated with reduced UV-blocking efficacy. Moisture content and material classification also influenced UV protection but had minimal effect on visible light transmission. In conclusion, daily disposable contact lenses vary considerably in their UV-blocking capabilities, and although lens power cannot be altered, consideration of material composition and UV transmittance properties may assist in selecting lenses that provide optimal ocular protection. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

15 pages, 577 KB  
Article
Optimal Feedback Rate Analysis in Downlink Multi-User Multi-Antenna Systems with One-Bit ADC Receivers over Randomly Modeled Dense Cellular Networks
by Moonsik Min, Sungmin Lee and Tae-Kyoung Kim
Mathematics 2025, 13(20), 3312; https://doi.org/10.3390/math13203312 - 17 Oct 2025
Viewed by 243
Abstract
Stochastic geometry provides a powerful analytical framework for evaluating interference-limited cellular networks with randomly deployed base stations (BSs). While prior studies have examined limited channel state information at the transmitter (CSIT) and low-resolution analog-to-digital converters (ADCs) separately, their joint impact in multi-user multiple-input [...] Read more.
Stochastic geometry provides a powerful analytical framework for evaluating interference-limited cellular networks with randomly deployed base stations (BSs). While prior studies have examined limited channel state information at the transmitter (CSIT) and low-resolution analog-to-digital converters (ADCs) separately, their joint impact in multi-user multiple-input multiple-output (MIMO) systems remains largely unexplored. This paper investigates a downlink cellular network in which BSs are distributed according to a homogeneous Poisson point process (PPP), employing zero-forcing beamforming (ZFBF) with limited feedback, and receivers are equipped with one-bit ADCs. We derive a tractable approximation for the achievable spectral efficiency that explicitly accounts for both the quantization error from limited feedback and the receiver distortion caused by coarse ADCs. Based on this approximation, we determine the optimal feedback rate that maximizes the net spectral efficiency. Our analysis reveals that the optimal number of feedback bits scales logarithmically with the channel coherence time but its absolute value decreases due to coarse quantization. Simulation results validate the accuracy of the proposed approximation and confirm the predicted scaling behavior, demonstrating its effectiveness for interference-limited multi-user MIMO networks. Full article
Show Figures

Figure 1

Back to TopTop