Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = transmembrane flux of water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3429 KiB  
Article
Membrane Fouling Control and Treatment Performance Using Coagulation–Tubular Ceramic Membrane with Concentrate Recycling
by Yawei Xie, Yichen Fang, Dashan Chen, Jiahang Wei, Chengyue Fan, Xiwang Zhu and Hongyuan Liu
Membranes 2025, 15(8), 225; https://doi.org/10.3390/membranes15080225 - 27 Jul 2025
Viewed by 302
Abstract
A comparative study was conducted to investigate membrane fouling control and treatment performance using natural surface water as the feed source. The evaluated processes included: (1) direct filtration–tubular ceramic membrane (DF-TCM, control); (2) coagulation–tubular ceramic membrane (C-TCM); and (3) coagulation–tubular ceramic membrane with [...] Read more.
A comparative study was conducted to investigate membrane fouling control and treatment performance using natural surface water as the feed source. The evaluated processes included: (1) direct filtration–tubular ceramic membrane (DF-TCM, control); (2) coagulation–tubular ceramic membrane (C-TCM); and (3) coagulation–tubular ceramic membrane with concentrate recycling (C-TCM-CR). Experimental results demonstrated that under constant flux operation at 75 L/(m2·h) for 8 h, the C-TCM-CR process reduced the transmembrane pressure (TMP) increase by 83% and 35% compared to DF-TCM and C-TCM, respectively. Floc size distribution analysis and cake layer characterization revealed that the C-TCM-CR process enhanced coagulation efficiency and formed high-porosity cake layers on membrane surfaces, thereby mitigating fouling development. Notably, the coagulation-assisted processes demonstrated improved organic matter removal, with 13%, 10%, and 10% enhancement in CODMn, UV254, and medium molecular weight organics (2000–10,000 Da) removal compared to DF-TCM, along with a moderate enhancement in fluorescent substances removal efficiency. All three processes achieved over 99% turbidity removal efficiency, as the ceramic membranes demonstrate excellent filtration performance. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

23 pages, 3520 KiB  
Article
Intrinsic Performances of Reverse Osmosis and Nanofiltration Membranes for the Recovery and Concentration of Multicomponent Mixtures of Volatile Fatty Acids: A Semi-Pilot Study
by Omar Atiq, Gonzalo Agustin Martinez, Lorenzo Bertin and Serena Bandini
Membranes 2025, 15(8), 221; https://doi.org/10.3390/membranes15080221 - 23 Jul 2025
Viewed by 388
Abstract
This study presents data from Reverse Osmosis (RO) and Nanofiltration (NF) spiral-wound polyamide modules tested in a semi-pilot plant with multicomponent mixtures of Volatile Fatty Acids (VFAs) comprising acetic, propionic, butyric, valeric, and hexanoic acids. A robust method combining film theory and dissociation [...] Read more.
This study presents data from Reverse Osmosis (RO) and Nanofiltration (NF) spiral-wound polyamide modules tested in a semi-pilot plant with multicomponent mixtures of Volatile Fatty Acids (VFAs) comprising acetic, propionic, butyric, valeric, and hexanoic acids. A robust method combining film theory and dissociation equilibria was developed to estimate interfacial concentrations, enabling accurate analysis of concentration polarization, real rejection, and effective transmembrane driving force. Concentration polarization strongly affects NF membranes, resulting in real rejections up to 20% higher than apparent values, while its effect is negligible for RO membranes. NF rejections show marked sensitivity to pH and VFA feed concentration: at 20 g/L and highest flux, acetic acid real rejection increases from 80% to 91% as pH rises from 6 to 9. At pH 7, rejections decline with feed concentration, with acetic acid dropping from 55% at 20 g/L to 32% at 63 g/L, at the same flux. These changes correlate with the molecular weight of the acids. Conversely, RO rejections are marginally affected by pH and not influenced by concentration due to dominant steric exclusion. Membrane permeabilities remain unaffected by VFAs and align with pure water values. The data analysis framework is effective and applicable across a wide range of conditions and membranes. Full article
Show Figures

Figure 1

19 pages, 4963 KiB  
Article
Fouling Mitigation of Silicon Carbide Membranes by Pre-Deposited Dynamic Membranes for the Separation of Oil-in-Water Emulsions
by Xin Wu, Minfeng Fang and Guanghui Li
Membranes 2025, 15(7), 195; https://doi.org/10.3390/membranes15070195 - 30 Jun 2025
Viewed by 504
Abstract
Membrane fouling poses a significant challenge in the widespread adoption and cost-effective operation of membrane technology. Among different strategies to mitigate fouling, dynamic membrane (DM) technology has emerged as a promising one for effective control and mitigation of membrane fouling. Silicon carbide (SiC) [...] Read more.
Membrane fouling poses a significant challenge in the widespread adoption and cost-effective operation of membrane technology. Among different strategies to mitigate fouling, dynamic membrane (DM) technology has emerged as a promising one for effective control and mitigation of membrane fouling. Silicon carbide (SiC) membranes have attracted considerable attention as membrane materials due to their remarkable advantages, yet membrane fouling is still inevitable in challenging separation tasks, such as oil-in-water (O/W) emulsion separation, and thus effective mitigation of membrane fouling is essential to maximize their economic viability. This study investigates the use of pre-deposited oxide DMs to mitigate the fouling of SiC membranes during the separation of O/W emulsions. Among five screened oxides (Fe2O3, SiO2, TiO2, ZrO2, Al2O3), SiO2 emerged as the most effective DM material due to its favorable combination of particle size, negative surface charge, hydrophilicity, and underwater oleophobicity, leading to minimized oil droplet adhesion via electrostatic repulsion to DM surfaces and enhanced antifouling performance. Parameter optimization in dead-end mode revealed a DM deposition amount of 300 g/m2, a transmembrane pressure (TMP) of 0.25 bar, and a backwashing pressure of 2 bar as ideal conditions, achieving stable oil rejection (~93%) and high pure water flux recovery ratios (FRR, >90%). Cross-flow filtration outperformed dead-end mode, maintaining normalized permeate fluxes of ~0.4–0.5 (cf. ~0.2 in dead-end) and slower FRR decline, attributed to reduced concentration polarization and enhanced DM stability under tangential flow. Optimal cross-flow conditions included a DM preparation time of 20 min, a TMP of 0.25 bar, and a flow velocity of 0.34 m/s. The results establish SiO2-based DMs as a cost-effective strategy to enhance SiC membrane longevity and efficiency in O/W emulsion separation. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

13 pages, 7635 KiB  
Article
Vacuum-Assembled ZIF-67/SiO2–PEI Thin-Film Nanocomposite Membrane with Ultrahigh Permeance for Textile Wastewater Treatment
by Li Xiao, Jinyu Liu, Fan Zhang, Feng Qin, Yikai Wang, Zikang Qin, Yahui Yang, Zhongde Dai, Junfeng Zheng and Bo Tang
Polymers 2025, 17(13), 1741; https://doi.org/10.3390/polym17131741 - 22 Jun 2025
Viewed by 550
Abstract
High permeance combined with high salt/dye separation efficiency is a prerequisite for achieving zero-liquid-discharge treatment of saline textile wastewater by membrane technology. Thin-film nanocomposite (TFN) membranes incorporating porous nanoparticles offer a promising route to overcome the permeability–selectivity trade-off of conventional polymer membranes. In [...] Read more.
High permeance combined with high salt/dye separation efficiency is a prerequisite for achieving zero-liquid-discharge treatment of saline textile wastewater by membrane technology. Thin-film nanocomposite (TFN) membranes incorporating porous nanoparticles offer a promising route to overcome the permeability–selectivity trade-off of conventional polymer membranes. In this study, a vacuum-assisted method was used to co-blend ZIF-67 and SiO2 nanoparticles, while branched polyethyleneimine (PEI) served as a cross-linking bridge, resulting in a high-performance TFN membrane for salt/dye separation. Acting as a molecular connector, PEI coordinated with ZIF-67 through metal–amine complexation and simultaneously formed hydrogen bonds with surface hydroxyl groups on SiO2, thereby linking ZIF-67 and SiO2. The resulting membrane exhibited good hydrophilicity and excellent dye separation performance (water flux = 359.8 L m−2 h−1 bar−1; Congo Red rejection = 99.2%) as well as outstanding selectivity in dye/salt mixtures (Congo Red/MgCl2 selectivity of 1094). The optimal ZIF@SiO2-PEI membrane maintained stable dye rejection over a wide range of trans-membrane pressures, initial concentrations, and pH values. These results reveal the huge potential of applying the ZIF@SiO2-PEI TFN membranes for resource recovery in sustainable textile wastewater systems. Full article
Show Figures

Graphical abstract

23 pages, 1533 KiB  
Article
Oil and Water Recovery from Palm Oil Mill Effluent: A Comparative Study of PVDF and α-Al2O3 Ultrafiltration Membranes
by Saqr A. A. Al-Muraisy, Jiamin Wu, Mingliang Chen, Begüm Tanis, Sebastiaan G. J. Heijman, Shahrul bin Ismail, Jules B. van Lier and Ralph E. F. Lindeboom
Membranes 2025, 15(6), 176; https://doi.org/10.3390/membranes15060176 - 10 Jun 2025
Viewed by 1033
Abstract
Recovering oil and water from palm oil mill effluent reduces environmental pollution and promotes sustainable practices. An effective method to achieve this is ultrafiltration (UF), which uses semi-permeable membranes to separate oil, solids, and other contaminants from wastewater under pressure. To assess the [...] Read more.
Recovering oil and water from palm oil mill effluent reduces environmental pollution and promotes sustainable practices. An effective method to achieve this is ultrafiltration (UF), which uses semi-permeable membranes to separate oil, solids, and other contaminants from wastewater under pressure. To assess the most effective recovery method, an experimental comparison was conducted between PVDF and α-Al2O3 UF membranes at constant permeate of 20–50 LMH for PVDF and 20–70 LMH for α-Al2O3 membranes. Both membranes achieved 99.8% chemical oxygen demand (COD) rejection, with oil concentration factor (Fo) of 186.8% and 253.0%, and water recovery (Rw) of 46.6% and 60.5%, respectively. The permeate water quality was superior to the Malaysian discharge standards, and the fat, oil, and grease (FOG) content was suitable for phase separation processes. The optimal permeate fluxes, with stable transmembrane pressures (TMP), were observed at 40 LMH (PVDF) and 60 LMH (α-Al2O3). Total resistance (Rt) values were 1.30 × 1012 m−1 (PVDF) and 1.59 × 1012 m−1 (α-Al2O3). The ratio of irreversible to total resistances (Rir/Rt) was 0.02 (PVDF) and 0.06 (α-Al2O3), indicating minimal irreversible fouling. Overall, the α-Al2O3 membrane demonstrated superior performance in oil and water recovery with more stable operation compared to the PVDF membrane. UF membrane technology emerges as an efficient technique for recovering oil and water compared to conventional methods. Full article
Show Figures

Graphical abstract

15 pages, 5927 KiB  
Article
Fabrication of Composite Membrane by Constructing Helical Carbon Nanotubes in Ceramic Support Channels for Efficient Emulsion Separation
by Kai Yuan, Rizhi Chen and Yiqing Zeng
Membranes 2025, 15(5), 150; https://doi.org/10.3390/membranes15050150 - 15 May 2025
Viewed by 627
Abstract
Membrane technology has emerged as an effective solution for the purification of oily wastewater, particularly in the separation of oil-in-water (O/W) emulsions. However, challenges, such as membrane fouling and the development of robust ceramic membranes with superior stability, continue to limit their widespread [...] Read more.
Membrane technology has emerged as an effective solution for the purification of oily wastewater, particularly in the separation of oil-in-water (O/W) emulsions. However, challenges, such as membrane fouling and the development of robust ceramic membranes with superior stability, continue to limit their widespread application. In this work, helical carbon nanotubes (HCNTs) with interlocking structures were grown in ceramic support channels through the airflow-induced chemical vapor deposition (CVD) method to fabricate membrane material with high hydrophilicity and underwater oleophobicity. The influence of CVD parameters on the growth of HCNTs and the membrane separation performance for O/W emulsions were studied systematically. The optimal HCNTs-SiC composite membrane was prepared at 600 °C, featuring a pore size of 0.95 μm and flux of 229.29 L·m−2·h−1. This membrane demonstrated exceptional purification efficiency (99.99%) for a 500 ppm O/W emulsion, along with a stable flux of 32.48 L·m−2·h−1 under a transmembrane pressure (TMP) of 1.5 bar. Furthermore, the unique membrane structure and surface heterogeneity contributed to its long service life and excellent recovery capability. This work provides a novel strategy for designing high-performance ceramic membranes for oil–water separation, offering potential solutions to current limitations in membrane technology. Full article
(This article belongs to the Special Issue Emerging Superwetting Membranes: New Advances in Water Treatment)
Show Figures

Figure 1

19 pages, 6030 KiB  
Article
Modeling and Experimental Verification of In-House Built Portable Ultrafiltration (PUF) System to Maintain Water Quality
by Azman Ariffin, Ahmad Khairi Abdul Wahab and Mohd Azlan Hussain
Processes 2024, 12(12), 2926; https://doi.org/10.3390/pr12122926 - 20 Dec 2024
Viewed by 998
Abstract
At present, over 2.6 billion people live without access to a continuous water supply, and nearly 900 million people do not obtain drinking water from reliable sources. To solve these problems, one of this study’s goals is to come up with a water-supply [...] Read more.
At present, over 2.6 billion people live without access to a continuous water supply, and nearly 900 million people do not obtain drinking water from reliable sources. To solve these problems, one of this study’s goals is to come up with a water-supply system that uses a simple, inexpensive, portable ultrafiltration (PUF) unit. To determine the effectiveness of the portable system, water-quality analysis has been carried out to determine if the system produces filtered water from various sources of water, reaching drinking-water standards. A simple model of the system using Darcy’s Law was also obtained to predict permeate flux and transmembrane pressure (TMP). Initially, simulation was performed using nominal values taken from the literature for four (4) parameters, i.e., membrane hydraulic resistance, initial rapid fouling constant, mass transfer coefficient, and foulant bulk concentration. By minimizing the error between the model with these nominal values and experimental values, an improved model with updated parameters was obtained using the Evolutionary Programming (EP) approach. With the updated model, the average error between the model and the experiment was reduced from 32% to 9%. This was further validated with new data taken from the experiment. This improved model with the updated parameter was then used to predict the TMP and compared with the experimental value. Contrasting the optimized model with the existing model indicates that the optimized model predicts membrane performance better, leading to a competent and reliable model for the purification of water using a PUF system built in-house. Full article
(This article belongs to the Special Issue Industrial Applications of Modeling Tools)
Show Figures

Figure 1

20 pages, 2421 KiB  
Review
Aquaporins in Biliary Function: Pathophysiological Implications and Therapeutic Targeting
by Mohamad Khalil, Patrizia Gena, Agostino Di Ciaula, Piero Portincasa and Giuseppe Calamita
Int. J. Mol. Sci. 2024, 25(22), 12133; https://doi.org/10.3390/ijms252212133 - 12 Nov 2024
Cited by 3 | Viewed by 1650
Abstract
Aquaporins (AQPs) are transmembrane proteins permeable to water and a series of small solutes. AQPs play a key role in pathways of hepatobiliary secretion at the level of the liver, bile ducts, and gallbladder. AQP8 and -9 are pivotal in facilitating the osmotic [...] Read more.
Aquaporins (AQPs) are transmembrane proteins permeable to water and a series of small solutes. AQPs play a key role in pathways of hepatobiliary secretion at the level of the liver, bile ducts, and gallbladder. AQP8 and -9 are pivotal in facilitating the osmotic water movement of hepatic bile, which is composed of 95% water. In the biliary tract, AQP1 and -4 are involved in the rearrangement of bile composition by mechanisms of reabsorption/secretion of water. In the gallbladder, AQP1 and -8 are also involved in trans-epithelial bidirectional water flow with the ultimate goal of bile concentration. Pathophysiologically, AQPs have been indicated as players in several hepatobiliary disorders, including cholestatic diseases and cholesterol cholelithiasis. Research on AQP function and the modulation of AQP expression is in progress, with the identification of potent and homolog-specific compounds modulating the expression or inhibiting these membrane channels with promising pharmacological developments. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to hepatobiliary function. Full article
(This article belongs to the Special Issue New Insights into Aquaporins: 2nd Edition)
Show Figures

Figure 1

30 pages, 6040 KiB  
Article
A Novel Modeling Optimization Approach for a Seven-Channel Titania Ceramic Membrane in an Oily Wastewater Filtration System Based on Experimentation, Full Factorial Design, and Machine Learning
by Mohamed Echakouri, Amr Henni and Amgad Salama
Membranes 2024, 14(9), 199; https://doi.org/10.3390/membranes14090199 - 20 Sep 2024
Viewed by 1940
Abstract
This comprehensive study looks at how operational conditions affect the performance of a novel seven-channel titania ceramic ultrafiltration membrane for the treatment of produced water. A full factorial design experiment (23) was conducted to study the effect of the cross-flow operating [...] Read more.
This comprehensive study looks at how operational conditions affect the performance of a novel seven-channel titania ceramic ultrafiltration membrane for the treatment of produced water. A full factorial design experiment (23) was conducted to study the effect of the cross-flow operating factors on the membrane permeate flux decline and the overall permeate volume. Eleven experimental runs were performed for three important process operating variables: transmembrane pressure (TMP), crossflow velocity (CFV), and filtration time (FT). Steady final membrane fluxes and permeate volumes were recorded for each experimental run. Under the optimized conditions (1.5 bar, 1 m/s, and 2 h), the membrane performance index demonstrated an oil rejection rate of 99%, a flux of 297 L/m2·h (LMH), a 38% overall initial flux decline, and a total permeate volume of 8.14 L. The regression models used for the steady-state membrane permeate flux decline and overall permeate volume led to the highest goodness of fit to the experimental data with a correlation coefficient of 0.999. A Multiple Linear Regression method and an Artificial Neural Network approach were also employed to model the experimental membrane permeate flux decline and analyze the impact of the operating conditions on membrane performance. The predictions of the Gaussian regression and the Levenberg–Marquardt backpropagation method were validated with a determination coefficient of 99% and a Mean Square Error of 0.07. Full article
(This article belongs to the Special Issue Ceramic Membranes for Removal of Emerging Pollutants)
Show Figures

Figure 1

21 pages, 3556 KiB  
Review
Aquaporin Modulation by Cations, a Review
by Robin Mom, Vincent Mocquet, Daniel Auguin and Stéphane Réty
Curr. Issues Mol. Biol. 2024, 46(8), 7955-7975; https://doi.org/10.3390/cimb46080470 - 24 Jul 2024
Viewed by 2647
Abstract
Aquaporins (AQPs) are transmembrane channels initially discovered for their role in water flux facilitation through biological membranes. Over the years, a much more complex and subtle picture of these channels appeared, highlighting many other solutes accommodated by AQPs and a dense regulatory network [...] Read more.
Aquaporins (AQPs) are transmembrane channels initially discovered for their role in water flux facilitation through biological membranes. Over the years, a much more complex and subtle picture of these channels appeared, highlighting many other solutes accommodated by AQPs and a dense regulatory network finely tuning cell membranes’ water permeability. At the intersection between several transduction pathways (e.g., cell volume regulation, calcium signaling, potassium cycling, etc.), this wide and ancient protein family is considered an important therapeutic target for cancer treatment and many other pathophysiologies. However, a precise and isoform-specific modulation of these channels function is still challenging. Among the modulators of AQPs functions, cations have been shown to play a significant contribution, starting with mercury being historically associated with the inhibition of AQPs since their discovery. While the comprehension of AQPs modulation by cations has improved, a unifying molecular mechanism integrating all current knowledge is still lacking. In an effort to extract general trends, we reviewed all known modulations of AQPs by cations to capture a first glimpse of this regulatory network. We paid particular attention to the associated molecular mechanisms and pinpointed the residues involved in cation binding and in conformational changes tied up to the modulation of the channel function. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2024)
Show Figures

Figure 1

21 pages, 1410 KiB  
Article
Ultrafiltration Harvesting of Microalgae Culture Cultivated in a WRRF: Long-Term Performance and Techno-Economic and Carbon Footprint Assessment
by Juan Francisco Mora-Sánchez, Josué González-Camejo, Guillermo Noriega-Hevia, Aurora Seco and María Victoria Ruano
Sustainability 2024, 16(1), 369; https://doi.org/10.3390/su16010369 - 31 Dec 2023
Cited by 2 | Viewed by 2572
Abstract
A cross-flow ultrafiltration harvesting system for a pre-concentrated microalgae culture was tested in an innovative anaerobic-based WRRF. The microalgae culture was cultivated in a membrane photobioreactor fed with effluent from an anaerobic membrane bioreactor treating sewage. These harvested microalgae biomasses were then anaerobically [...] Read more.
A cross-flow ultrafiltration harvesting system for a pre-concentrated microalgae culture was tested in an innovative anaerobic-based WRRF. The microalgae culture was cultivated in a membrane photobioreactor fed with effluent from an anaerobic membrane bioreactor treating sewage. These harvested microalgae biomasses were then anaerobically co-digested with primary and secondary sludge from the water line. Depending on the needs of this anaerobic co-digestion, the filtration harvesting process was evaluated intermittently over a period of 212 days for different operating conditions, mainly the total amount of microalgae biomass harvested and the desired final total solids concentration (up to 15.9 g·L−1 with an average of 9.7 g·L−1). Concentration ratios of 15–27 were obtained with average transmembrane fluxes ranging from 5 to 28 L·m−2·h−1. Regarding membrane cleaning, both backflushing and chemical cleaning resulted in transmembrane flux recoveries that were, on average, 21% higher than those achieved with backflushing alone. The carbon footprint assessment shows promising results, as the GHG emissions associated with the cross-flow ultrafiltration harvesting process could be less than the emissions savings associated with the energy recovered from biogas production from the anaerobic valorisation of the harvested microalgae. Full article
(This article belongs to the Special Issue Microalgae-Based Wastewater Treatment Processes and Biorefineries)
Show Figures

Figure 1

23 pages, 6065 KiB  
Article
Evaluation of Organic and Inorganic Foulant Interaction Using Modified Fouling Models in Constant Flux Dead-End Operation with Microfiltration Membranes
by Muhammad Qasim, Ali Akbar, Imtiaz Afzal Khan, Mumtaz Ali, Eui-Jong Lee and Kang Hoon Lee
Membranes 2023, 13(11), 853; https://doi.org/10.3390/membranes13110853 - 25 Oct 2023
Cited by 4 | Viewed by 2089
Abstract
The goal of this study was to elucidate the interaction of complex feed solutions under modified membrane fouling models for constant flux operation. The polyvinylidene fluoride membrane (PVDF) was tested for three types of solutions containing inorganic foulants (Al, Mn, and Fe), organic [...] Read more.
The goal of this study was to elucidate the interaction of complex feed solutions under modified membrane fouling models for constant flux operation. The polyvinylidene fluoride membrane (PVDF) was tested for three types of solutions containing inorganic foulants (Al, Mn, and Fe), organic foulants, and suspended solids at 0.5 mM Ca2+ ionic strength. The membrane’s performance was evaluated by measuring the increase in transmembrane pressure (TMP) during two different filtration scenarios: continuous filtration lasting 1 h and cyclic filtration lasting 12 min, with 3 min backwashing cycles included. Statistical analysis (linear regression results (R2), p-value) was used to verify the fouling model propagation along with the determination of the contributing constant of each fouling model. An increasing TMP percentage of 164–302%, 155–300%, and 208–378% for S1 (HA + Ca2+), S2 (inorganics + kaolin + Ca2+), and S3 (HA + inorganics + kaolin + Ca2+) was recorded for 1 h filtration, respectively. Furthermore, a five percent increase in irreversible resistance was noted for the S3 solution due to the strong adsorption potential of foulants for the PVDF membrane caused by the electrostatic and hydration forces of foulants. In addition to that, the participation equation elucidated the contribution of the fouling model and confirmed that complete blocking and cake layer contribution were dominant for the S1 and S3 solutions, while standard blocking was dominant for the S2 solution with a high significance ratio. Moreover, R2 and cyclic filtration analysis also confirmed the propagation of these fouling models. The statistical confirmation and regression results analysis of the modified model gave comparative results and satisfied the filtration mechanism and can be used for the constant flux dead filtration analysis of water treatment. Full article
Show Figures

Figure 1

29 pages, 2156 KiB  
Review
A Review on Membrane Fouling Prediction Using Artificial Neural Networks (ANNs)
by Waad H. Abuwatfa, Nour AlSawaftah, Naif Darwish, William G. Pitt and Ghaleb A. Husseini
Membranes 2023, 13(7), 685; https://doi.org/10.3390/membranes13070685 - 24 Jul 2023
Cited by 41 | Viewed by 7435
Abstract
Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane’s external and internal [...] Read more.
Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane’s external and internal surface, which reduces the permeate flux and increases the needed transmembrane pressure. Various factors affect membrane fouling, including feed water quality, membrane characteristics, operating conditions, and cleaning protocols. Several models have been developed to predict membrane fouling in pressure-driven processes. These models can be divided into traditional empirical, mechanistic, and artificial intelligence (AI)-based models. Artificial neural networks (ANNs) are powerful tools for nonlinear mapping and prediction, and they can capture complex relationships between input and output variables. In membrane fouling prediction, ANNs can be trained using historical data to predict the fouling rate or other fouling-related parameters based on the process parameters. This review addresses the pertinent literature about using ANNs for membrane fouling prediction. Specifically, complementing other existing reviews that focus on mathematical models or broad AI-based simulations, the present review focuses on the use of AI-based fouling prediction models, namely, artificial neural networks (ANNs) and their derivatives, to provide deeper insights into the strengths, weaknesses, potential, and areas of improvement associated with such models for membrane fouling prediction. Full article
Show Figures

Figure 1

14 pages, 3200 KiB  
Article
Decoration of β-Cyclodextrin and Tuning Active Layer Chemistry Leading to Nanofiltration Membranes for Desalination and Wastewater Decontamination
by Umair Baig, Shehzada Muhammad Sajid Jillani and Abdul Waheed
Membranes 2023, 13(5), 528; https://doi.org/10.3390/membranes13050528 - 19 May 2023
Cited by 5 | Viewed by 2717
Abstract
Given the huge potential of thin film composite (TFC) nanofiltration (NF) membranes for desalination and micro-pollutant removal, two different sets of six NF membranes were synthesized. The molecular structure of the polyamide active layer was tuned by using two different cross-linkers, terephthaloyl chloride [...] Read more.
Given the huge potential of thin film composite (TFC) nanofiltration (NF) membranes for desalination and micro-pollutant removal, two different sets of six NF membranes were synthesized. The molecular structure of the polyamide active layer was tuned by using two different cross-linkers, terephthaloyl chloride (TPC) and trimesoyl chloride (TMC), reacted with tetra-amine solution containing β-Cyclodextrin (BCD). To further tune the structure of the active layers, the time duration of interfacial polymerization (IP) was varied from 1 to 3 min. The membranes were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA), attenuated total reflectance Fourier transform infra-red (ATR-FTIR) spectroscopy, elemental mapping and energy dispersive (EDX) analysis. The six fabricated membranes were tested for their ability to reject divalent and monovalent ions followed by rejection of micro-pollutants (pharmaceuticals). Consequently, terephthaloyl chloride turned out to be the most effective crosslinker for the fabrication of membrane active layer with tetra-amine in the presence of β-Cyclodextrin using interfacial polymerization reaction for 1 min. The membrane fabricated using TPC crosslinker (BCD-TA-TPC@PSf) showed higher % rejection for divalent ions (Na2SO4 = 93%; MgSO4 = 92%; MgCl2 = 91%; CaCl2 = 84%) and micro-pollutants (Caffeine = 88%; Sulfamethoxazole = 90%; Amitriptyline HCl = 92%; Loperamide HCl = 94%) compared to the membrane fabricated using TMC crosslinker (BCD-TA-TMC@PSf). For the BCD-TA-TPC@PSf membrane, the flux was increased from 8 LMH (L/m2.h) to 36 LMH as the transmembrane pressure was increased from 5 bar to 25 bar. Full article
(This article belongs to the Section Polymeric Membranes)
Show Figures

Figure 1

10 pages, 1819 KiB  
Article
Finned Tubular Air Gap Membrane Distillation
by Zhiqiang Wu and Fei Guo
Membranes 2023, 13(5), 498; https://doi.org/10.3390/membranes13050498 - 8 May 2023
Cited by 6 | Viewed by 2012
Abstract
Finned tubular air gap membrane distillation is a new membrane distillation method, and its functional performance, characterization parameters, finned tube structures, and other studies have clear academic and practical application value. Therefore, the tubular air gap membrane distillation experiment modules composed of PTFE [...] Read more.
Finned tubular air gap membrane distillation is a new membrane distillation method, and its functional performance, characterization parameters, finned tube structures, and other studies have clear academic and practical application value. Therefore, the tubular air gap membrane distillation experiment modules composed of PTFE membrane and finned tubes were constructed in this work, and three representative air gap structures, including tapered finned tube, flat finned tube, and expanded finned tube, were designed. Membrane distillation experiments were carried out in the form of water cooling and air cooling, and the influences of air gap structures, temperature, concentration, and flow rate on the transmembrane flux were analyzed. The good water-treatment ability of the finned tubular air gap membrane distillation model and the applicability of air cooling for the finned tubular air gap membrane distillation structure were verified. The membrane distillation test results show that with the tapered finned tubular air gap structure, the finned tubular air gap membrane distillation has the best performance. The maximum transmembrane flux of the finned tubular air gap membrane distillation could reach 16.3 kg/m2/h. Strengthening the convection heat transfer between air and fin tube could increase the transmembrane flux and improve the efficiency coefficient. The efficiency coefficient (σ) could reach 0.19 under the condition of air cooling. Compared with the conventional air gap membrane distillation configuration, air cooling configuration for air gap membrane distillation is an effective way to simplify the system design and offers a potential way for the practical applications of membrane distillation on an industrial scale. Full article
(This article belongs to the Special Issue Advances in Membrane Distillation)
Show Figures

Figure 1

Back to TopTop