Ultrafiltration Harvesting of Microalgae Culture Cultivated in a WRRF: Long-Term Performance and Techno-Economic and Carbon Footprint Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Harvesting Pilot Plant
2.2. Instrumentation and Automation
2.3. Pilot Plant Operation and Monitoring
- i.
- Cross-flow velocity, CFV (m·s−1), is calculated as follows:
- ii.
- Permeate flow rate, Qp (L·h−1), was calculated hydraulically using LFT data from LIT-1, i.e., feed tank level variation (which is equivalent to CIP tank level variation):
- iii.
- Transmembrane flux, J (LMH), was calculated as follows:
- iv.
- Standardised transmembrane flux at 20 °C, J20 (LMH), is calculated as follows:
- v.
- Normalised transmembrane flux at 20 °C, J20:J20,0,
- vi.
- Membrane permeability standardised at 20 °C, K20 (LMH·bar−1) Equation (7):
- vii.
- Backflush flow rate, QBF (L·min−1), was calculated as follows:
- viii.
- Transmembrane pressure during backflushing (TMPBF) was calculated by Equation (9):
- ix.
- Harvested microalgae culture biomass, M_TSSHV (g), is calculated as follows:
- x.
- Harvesting rate HV_r (g TSS·m−2·h−1), was calculated as follows:
- xi.
- Concentration ratio r (Equation (12)):
2.4. Energy and Chemical Reagent Consumption
- i.
- The energy consumption ratio of the harvesting system (ECm_TSS, in kWh·tTSS−1) per tonne of harvested microalgae biomass (M_TSSHV, in t) (Equation (23));
- ii.
- The energy consumption ratio of the harvesting system (ECv_HV, in kWh·m−3) per treated volume of pre-concentrated microalgae culture, i.e., the initial volume of the feed tank (Vi, in m−3) (Equation (24));
- iii.
- The energy consumption ratio of the harvesting system (ECv_WRRF, kWh·m−3) per treated volume of water in the WRRF pilot plant (V_WRRF treated to generate Vi, in m−3) (Equation (25)):
2.5. GHG Estimation
3. Results
3.1. Filtration Performance
3.2. Techno-Economic and Carbon Footprint Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Glossary
ACF | Membrane cross-sectional area |
AD | Anaerobic digestion |
AF | Filtration area of the membranes |
AFT | Feed tank area |
AnMBR | Anaerobic membrane bioreactor |
CF-UF | Cross-flow ultrafiltration |
CFV | Cross-flow velocity |
CHP | Combined heat and power system |
CIP | Clean-in-place |
D | Cross-sectional diameter |
E | Energy balance calculation |
EC | Total energy consumption |
ECm_TSS | Energy consumption ratio of the harvesting system per harvested microalgae biomass |
ECv_HV | Energy consumption ratio of the harvesting system per treated volume of pre-concentrated microalgae culture |
ECv_WRRF | Energy consumption ratio of the harvesting system per treated volume of water in the WRRF |
EFCH4 | Methane losses emission factor |
EFelectricity | Specific emission factor of European power companies |
EFnatural_gas | Specific emission factor for fossil natural gas from the grid in Europe |
f | Friction factor |
FIT | Liquid flow rate transmitter |
g | Acceleration of gravity |
GHG | Greenhouse gas |
GHGdirect | Direct greenhouse gas emissions |
GHGindirect | Indirect greenhouse gas emissions |
GHGtotal | Total greenhouse gas emissions |
HRT | Hydraulic retention time |
HV_r | Harvesting rate |
ICA | Instrumentation, control, and automation |
J | Transmembrane flux |
J20 | 20 °C standardised transmembrane flux |
J20,0 | Initial 20°C standardised transmembrane flux at the inception of the entire experiment |
J20:J20,0 | Normalised transmembrane flux at 20 °C |
k | Internal roughness of the pipe |
K20 | 20 °C standardised permeability |
l | Length of the pipeline |
leq | Pressure drops due to accidents expressed as equivalent length |
L | Level |
LIT | Level-indicating transmitter |
LMH | Litter per square metre and hour |
LS | Level switch |
MBG | Gross production of raw biogas, expressed as methane mass |
MBM | Biomethane production, expressed as methane mass |
M_Cl | Sodium hypochlorite reagent mass used in chemical cleaning |
M_TSSHV | Harvested microalgae culture biomass |
MPBR | Membrane photobioreactor |
MV | Valve |
NaOClCv_WRRF | Sodium hypochlorite reagent consumption ratio per m3 treated in the WRRF |
OPEXEC+Cl | Operating costs for energy consumption and sodium hypochlorite for the CF–UF pilot plant per m3 treated in the WRRF |
p.e. | Population equivalent |
PG | Pressure gauge |
Pj | Pressure at point j |
P-j | Pump number j |
PLC | Programmable logic controller |
QBG | Gross production of raw biogas, expressed as primary energy |
QBM | Biomethane production, expressed as primary energy |
Qdemand | Total thermal energy demand |
Qj | Flow rate for pump or stream j |
Qrecovered | Heat recovered by the biogas valorisation system |
QTOT | Heat required by the anaerobic co-digestion process |
r | Concentration ratio |
SCADA | Supervisory control and data acquisition software |
SOV | On/off solenoid valve |
SRT | Solids retention time |
T | Temperature |
TMP | Transmembrane pressure |
TSS | Total suspended solids |
TSSf | Final TSS concentration for an operation cycle |
TSSi | Initial TSS concentration for an operation cycle |
TT | Temperature transmitter |
v | Velocity |
V_HV | Final volume in the retentate tank for an operation cycle |
V_WRRF | Volume of water treated in the WRRF to generate V_HV |
V_WRRFCC | Volume of water treated in the WRRF since the last chemical cleaning |
Vi | Initial volume in the feed tank for an operation cycle |
wa,d | Mass fractional content in dry solids in green microalgae biomass |
Wdemand | Total electrical energy demand |
WP,j | Power required for pump j |
Wrecovered | Electricity recovered by the biogas valorisation system |
WRRF | Water resource recovery facility |
xw | Water mass content of wet green microalgae biomass |
Zj | Elevation of point j |
ΔLj | Variation in level j |
Δt | Variation in time |
Maximum microalgae volume fraction in the culture | |
Φw,a | Microalgae volume fraction in the culture |
ηpump_j | Efficiency of pump j |
φupgrading | Efficiency of the upgrading process |
μ | Viscosity |
ρ | Density |
References
- Walker, N.L.; Williams, A.P.; Styles, D. Pitfalls in international benchmarking of energy intensity across wastewater treatment utilities. J. Environ. Manag. 2021, 300, 113613. [Google Scholar] [CrossRef] [PubMed]
- Foglia, A.; González-Camejo, J.; Radini, S.; Sgroi, M.; Li, K.; Eusebi, A.L.; Fatone, F. Transforming wastewater treatment plants into reclaimed water facilities in water-unbalanced regions. An overview of possibilities and recommendations focusing on the Italian case. J. Clean. Prod. 2023, 410, 137264. [Google Scholar] [CrossRef]
- European Comission. Proposal for a Directive of the European Parliament and of the Council Concerning Urban Wastewater Treatment. 2022. Available online: https://environment.ec.europa.eu/publications/proposal-revised-urban-wastewater-treatment-directive_en (accessed on 23 October 2023).
- Yuan, S.; Lei, W.; Cen, Y.; Liu, Q.; Liu, J.; Fu, J.; Han, Y. Economic analysis of global microalgae biomass energy potential. Sci. Total Environ. 2023, 899, 165596. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Thaher, M.; Abdulquadir, M.; Faisal, M.; Mehariya, S.; Al-Najjar, M.A.A.; Al-Jabri, H.; Das, P. Utilization of Microalgae for Urban Wastewater Treatment and Valorization of Treated Wastewater and Biomass for Biofertilizer Applications. Sustainability 2023, 15, 16019. [Google Scholar] [CrossRef]
- Olabi, A.G.; Shehata, N.; Sayed, E.T.; Rodriguez, C.; Anyanwu, R.C.; Russell, C.; Abdelkareem, M.A. Role of microalgae in achieving sustainable development goals and circular economy. Sci. Total Environ. 2023, 854, 158689. [Google Scholar] [CrossRef] [PubMed]
- Shilton, A. Pond Treatment Technology; IWA Publishing: London, UK, 2006. [Google Scholar] [CrossRef]
- Reynolds, C.S. The Ecology of Phytoplankton (Ecology, Biodiversity and Conservation); Cambridge University Press: Cambridge, UK, 2006; ISBN 9780511542145. [Google Scholar]
- Solovchenko, A.E.; Ismagulova, T.T.; Lukyanov, A.A.; Vasilieva, S.G.; Konyukhov, I.V.; Pogosyan, S.I.; Lobakova, E.S.; Gorelova, O.A. Luxury phosphorus uptake in microalgae. J. Appl. Phycol. 2019, 31, 2755–2770. [Google Scholar] [CrossRef]
- Acién Fernández, F.G.; Gómez-Serrano, C.; Fernández-Sevilla, J.M. Recovery of Nutrients from Wastewaters Using Microalgae. Front. Sustain. Food Syst. 2018, 2, 59. [Google Scholar] [CrossRef]
- Nagarajan, D.; Lee, D.-J.; Chen, C.-Y.; Chang, J.-S. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresour. Technol. 2020, 302, 122817. [Google Scholar] [CrossRef]
- Arbib, Z.; de Godos, I.; Ruiz, J.; Perales, J.A. Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Sci. Total Environ. 2017, 589, 66–72. [Google Scholar] [CrossRef]
- García-Galán, M.J.; Gutiérrez, R.; Uggetti, E.; Matamoros, V.; García, J.; Ferrer, I. Use of full-scale hybrid horizontal tubular photobioreactors to process agricultural runoff. Biosyst. Eng. 2018, 166, 138–149. [Google Scholar] [CrossRef]
- Rossi, S.; Mantovani, M.; Marazzi, F.; Bellucci, M.; Casagli, F.; Mezzanotte, V.; Ficara, E. Microalgal cultivation on digestate: Process efficiency and economics. Chem. Eng. J. 2023, 460, 141753. [Google Scholar] [CrossRef]
- Xu, X.; Gu, X.; Wang, Z.; Shatner, W.; Wang, Z. Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renew. Sustain. Energy Rev. 2019, 110, 65–82. [Google Scholar] [CrossRef]
- Oruganti, R.K.; Biji, A.P.; Lanuyanger, T.; Show, P.L.; Sriariyanun, M.; Upadhyayula, V.K.; Gadhamshetty, V.; Bhattacharyya, D. Artificial intelligence and machine learning tools for high-performance microalgal wastewater treatment and algal biorefinery: A critical review. Sci. Total Environ. 2023, 876, 162797. [Google Scholar] [CrossRef] [PubMed]
- Clagnan, E.; Dell’Orto, M.; Štěrbová, K.; Grivalský, T.; Manoel, J.A.C.; Masojídek, J.; D’Imporzano, G.; Acién-Fernández, F.G.; Adani, F. Impact of photobioreactor design on microalgae-bacteria communities grown on wastewater: Differences between thin-layer cascade and thin-layer raceway ponds. Bioresour. Technol. 2023, 374, 128781. [Google Scholar] [CrossRef] [PubMed]
- De Vree, J.H.; Bosma, R.; Janssen, M.; Barbosa, M.J.; Wijffels, R.H. Comparison of four outdoor pilot-scale photobioreactors. Biotechnol. Biofuels 2015, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Morales-Amaral, M.d.M.; Gómez-Serrano, C.; Acién, F.G.; Fernández-Sevilla, J.M.; Molina-Grima, E. Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Res. 2015, 12, 99–108. [Google Scholar] [CrossRef]
- Luo, Y.; Le-Clech, P.; Henderson, R.K. Assessment of membrane photobioreactor (MPBR) performance parameters and operating conditions. Water Res. 2018, 138, 169–180. [Google Scholar] [CrossRef]
- Zhao, Z.; Muylaert, K.; Vankelecom, I.F.J. Applying membrane technology in microalgae industry: A comprehensive review. Renew. Sustain. Energy Rev. 2023, 172, 113041. [Google Scholar] [CrossRef]
- Gao, F.; Peng, Y.-Y.; Li, C.; Cui, W.; Yang, Z.-H.; Zeng, G.-M. Coupled nutrient removal from secondary effluent and algal biomass production in membrane photobioreactor (MPBR): Effect of HRT and long-term operation. Chem. Eng. J. 2018, 335, 169–175. [Google Scholar] [CrossRef]
- Alkarawi, M.A.S.; Caldwell, G.S.; Lee, J.G.M. Continuous harvesting of microalgae biomass using foam flotation. Algal Res. 2018, 36, 125–138. [Google Scholar] [CrossRef]
- Liu, Z.; Hao, N.; Hou, Y.; Wang, Q.; Liu, Q.; Yan, S.; Chen, F.; Zhao, L. Technologies for harvesting the microalgae for industrial applications: Current trends and perspectives. Bioresour. Technol. 2023, 387, 129631. [Google Scholar] [CrossRef] [PubMed]
- Giménez, J.B.; Bouzas, A.; Carrere, H.; Steyer, J.-P.; Ferrer, J.; Seco, A. Assessment of cross-flow filtration as microalgae harvesting technique prior to anaerobic digestion: Evaluation of biomass integrity and energy demand. Bioresour. Technol. 2018, 269, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Khan, S.; Thaher, M.; AbdulQuadir, M.; Hoekman, S.K.; Al-Jabri, H. Effect of harvesting methods on the energy requirement of Tetraselmis sp. biomass production and biocrude yield and quality. Bioresour. Technol. 2019, 284, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, M.; Lv, T.; Chen, H.J.; Chika, A.O.; Xiang, C.L.; Guo, M.X.; Wu, M.H.; Li, J.J.; Jia, L.S. Energy-producing electro-flocculation for harvest of Dunaliella salina. Bioresour. Technol. 2017, 241, 1022–1026. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Shin, H.; Moon, M.; Ryu, B.-G.; Han, J.-I.; Yang, J.-W.; Chang, Y.K. Evaluation of various harvesting methods for high-density microalgae, Aurantiochytrium sp. KRS101. Bioresour. Technol. 2015, 198, 828–835. [Google Scholar] [CrossRef]
- Mahesh, R.; Naira, V.R.; Maiti, S.K. Concomitant production of fatty acid methyl ester (biodiesel) and exopolysaccharides using efficient harvesting technology in flat panel photobioreactor with special sparging system via Scenedesmus abundans. Bioresour. Technol. 2019, 278, 231–241. [Google Scholar] [CrossRef]
- Lv, J.; Zhao, F.; Feng, J.; Liu, Q.; Nan, F.; Xie, S. Extraction of extracellular polymeric substances (EPS) from a newly isolated self-flocculating microalga Neocystis mucosa SX with different methods. Algal Res. 2019, 40, 101479. [Google Scholar] [CrossRef]
- Chen, Z.; Shao, S.; He, Y.; Luo, Q.; Zheng, M.; Zheng, M.; Chen, B.; Wang, M. Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1. Bioresour. Technol. 2020, 302, 122806. [Google Scholar] [CrossRef]
- Banu, J.R.; Preethi; Kavitha, S.; Gunasekaran, M.; Kumar, G. Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour. Technol. 2020, 302, 122822. [Google Scholar] [CrossRef]
- Sulewski, P.; Ignaciuk, W.; Szymańska, M.; Wąs, A. Development of the Biomethane Market in Europe. Energies 2023, 16, 2001. [Google Scholar] [CrossRef]
- Baroni, G.; Yap, K.Y.; Webley, P.A.; Scales, P.J.; Martin, G.J. The effect of nitrogen depletion on the cell size, shape, density and gravitational settling of Nannochloropsis salina, Chlorella sp. (marine) and Haematococcus pluvialis. Algal Res. 2019, 39, 101454. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, S.; Yang, L.; Chu, H.; Peng, B.-Y.; Xiao, S.; Wang, Y.; Zhou, X.; Zhang, Y. Microalgal wastewater recycling: Suitability of harvesting methods and influence on growth mechanisms. Sci. Total Environ. 2023, 859, 160237. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Qv, M.; Liu, D.; Tang, C.; Wang, W.; Wu, Q.; Yin, Z.; Zhu, L. Structural insights into mechanisms of rapid harvesting of microalgae with pH regulation by magnetic chitosan composites: A study based on E-DLVO model and component fluorescence analysis. Chem. Eng. J. 2023, 456, 141071. [Google Scholar] [CrossRef]
- De Morais, E.G.; Sampaio, I.C.F.; Gonzalez-Flo, E.; Ferrer, I.; Uggetti, E.; García, J. Microalgae harvesting for wastewater treatment and resources recovery: A review. New Biotechnol. 2023, 78, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Visigalli, S.; Cascino, F.C.; Mantovani, M.; Mezzanotte, V.; Parati, K.; Canziani, R.; Turolla, A.; Ficara, E. Metal-based flocculation to harvest microalgae: A look beyond separation efficiency. Sci. Total Environ. 2021, 799, 149395. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, D.; Ferreira, A.; Quelhas, P.; Schulze, P.S.; Gouveia, L. Nannochloropsis oceanica harvested using electrocoagulation with alternative electrodes—An innovative approach on potential biomass applications. Bioresour. Technol. 2022, 344, 126222. [Google Scholar] [CrossRef] [PubMed]
- Coward, T.; Lee, J.G.; Caldwell, G.S. Harvesting microalgae by CTAB-aided foam flotation increases lipid recovery and improves fatty acid methyl ester characteristics. Biomass Bioenergy 2014, 67, 354–362. [Google Scholar] [CrossRef]
- Japar, A.S.; Azis, N.M.; Takriff, M.s.; Haiza, M.Y.N.; Yasin, M.H.M. Application of Different Techniques to Harvest Microalgae. Trans. Sci. Technol. 2017, 4, 98–108. [Google Scholar]
- Razzak, S.A.; Ali, S.A.M.; Hossain, M.M.; Delasa, H. Biological CO2 fixation with production of microalgae in wastewater—A review. Renew. Sustain. Energy Rev. 2017, 76, 379–390. [Google Scholar] [CrossRef]
- Fasaei, F.; Bitter, J.; Slegers, P.; van Boxtel, A. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res. 2018, 31, 347–362. [Google Scholar] [CrossRef]
- Gerardo, M.L.; Oatley-Radcliffe, D.L.; Lovitt, R.W. Minimizing the Energy Requirement of Dewatering Scenedesmus sp. by Microfiltration: Performance, Costs, and Feasibility. Environ. Sci. Technol. 2014, 48, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yao, L.; Maleki, E.; Liao, B.-Q.; Lin, H. Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges. Algal Res. 2022, 44, 101686. [Google Scholar] [CrossRef]
- Wang, L.; Pan, B.; Gao, Y.; Li, C.; Ye, J.; Yang, L.; Chen, Y.; Hu, Q.; Zhang, X. Efficient membrane microalgal harvesting: Pilot-scale performance and techno-economic analysis. J. Clean. Prod. 2019, 218, 83–95. [Google Scholar] [CrossRef]
- Hwang, T.; Park, S.-J.; Oh, Y.-K.; Rashid, N.; Han, J.-I. Harvesting of Chlorella sp. KR-1 using a cross-flow membrane filtration system equipped with an anti-fouling membrane. Bioresour. Technol. 2013, 139, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Elcik, H.; Cakmakci, M.; Ozkaya, B. The fouling effects of microalgal cells on crossflow membrane filtration. J. Membr. Sci. 2016, 499, 116–125. [Google Scholar] [CrossRef]
- Monte, J.; Sá, M.; Galinha, C.F.; Costa, L.; Hoekstra, H.; Brazinha, C.; Crespo, J.G. Harvesting of Dunaliella salina by membrane filtration at pilot scale. Sep. Purif. Technol. 2018, 190, 252–260. [Google Scholar] [CrossRef]
- Mo, W.; Soh, L.; Werber, J.R.; Elimelech, M.; Zimmerman, J.B. Application of membrane dewatering for algal biofuel. Algal Res. 2015, 11, 1–12. [Google Scholar] [CrossRef]
- Bilad, M.; Discart, V.; Vandamme, D.; Foubert, I.; Muylaert, K.; Vankelecom, I.F. Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: Filtration performance and energy consumption. Bioresour. Technol. 2013, 138, 329–338. [Google Scholar] [CrossRef]
- De Baerdemaeker, T.; Lemmens, B.; Dotremont, C.; Fret, J.; Roef, L.; Goiris, K.; Diels, L. Benchmark study on algae harvesting with backwashable submerged flat panel membranes. Bioresour. Technol. 2013, 129, 582–591. [Google Scholar] [CrossRef]
- Bhave, R.; Kuritz, T.; Powell, L.; Adcock, D. Membrane-Based Energy Efficient Dewatering of Microalgae in Biofuels Production and Recovery of Value Added Co-Products. Environ. Sci. Technol. 2012, 46, 5599–5606. [Google Scholar] [CrossRef]
- González-Camejo, J.; Andreola, C.; Maceratesi, V.; Toscano, G.; Eusebi, A.L.; Fatone, F. Biorefineries to improve water and resource recovery in the seafood-processing industry. In Advanced Technologies in Wastewater Treatment: Food Processing Industry; Elsevier: Amsterdam, The Netherlands, 2023; pp. 127–154. [Google Scholar] [CrossRef]
- Segredo-Morales, E.; González-Martín, C.; Vera, L.; González, E. Performance of a novel rotating membrane photobioreactor based on indigenous microalgae-bacteria consortia for wastewater reclamation. J. Ind. Eng. Chem. 2023, 119, 586–597. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Q.; Sommerfeld, M.; Puruhito, E.; Chen, Y. Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour. Technol. 2010, 101, 5297–5304. [Google Scholar] [CrossRef] [PubMed]
- Seco, A.; Aparicio, S.; González-Camejo, J.; Jiménez-Benítez, A.; Mateo, O.; Mora-Sánchez, J.F.; Noriega-Hevia, G.; Sanchis-Perucho, P.; Serna-García, R.; Zamorano-López, N.; et al. Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Sci. Technol. 2018, 78, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- González-Camejo, J.; Aparicio, S.; Jiménez-Benítez, A.; Pachés, M.; Ruano, M.; Borrás, L.; Barat, R.; Seco, A. Improving membrane photobioreactor performance by reducing light path: Operating conditions and key performance indicators. Water Res. 2020, 172, 115518. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, S.; González-Camejo, J.; Seco, A.; Borrás, L.; Robles, Á.; Ferrer, J. Integrated microalgae-bacteria modelling: Application to an outdoor membrane photobioreactor (MPBR). Sci. Total Environ. 2023, 884, 163669. [Google Scholar] [CrossRef] [PubMed]
- Mora-Sánchez, J.F.; Serna-García, R.; Bouzas, A.; Seco, A.; Ruano, M.V. Anaerobic Membrane Bioreactor for Microalgae and Primary Sludge Co-Digestion at Pilot Scale: Instrumentation, Control and Automation Implementation, and Performance Assessment. Water 2023, 15, 3225. [Google Scholar] [CrossRef]
- APHA; American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA: Washington, DC, USA, 2012. [Google Scholar]
- Cheryan, M. Ultrafiltration and Microfiltration, 2nd ed.; CRC Press LLC: Boca Raton, FL, USA, 1998. [Google Scholar]
- González-Camejo, J.; Barat, R.; Aguado, D.; Ferrer, J. Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Res. 2020, 169, 115238. [Google Scholar] [CrossRef]
- Rossi, S.; Sforza, E.; Pastore, M.; Bellucci, M.; Casagli, F.; Marazzi, F.; Ficara, E. Photo-respirometry to shed light on microal-gae-bacteria consortia—A review. Rev. Environ. Sci. Biotechnol. 2020, 19, 43–72. [Google Scholar] [CrossRef]
- Judd, S.; Judd, C. Chapter 3—Design. In The MBR Book; Elsevier Science: Oxford, UK, 2006; pp. 123–162. ISBN 9781856174817. [Google Scholar] [CrossRef]
- Tena, F.O.; Ranglová, K.; Kubač, D.; Steinweg, C.; Thomson, C.; Masojidek, J.; Posten, C. Characterization of an aerated submerged hollow fiber ultrafiltration device for efficient microalgae harvesting. Eng. Life Sci. 2021, 21, 607–622. [Google Scholar] [CrossRef]
- Souliès, A.; Pruvost, J.; Legrand, J.; Castelain, C.; Burghelea, T.I. Rheological properties of suspensions of the green microalga Chlorella vulgaris at various volume fractions. Rheol. Acta 2013, 52, 589–605. [Google Scholar] [CrossRef]
- Kestin, J.; Sokolov, M.; Wakeham, W.A. Viscosity of liquid water in the range −8 °C to 150 °C. J. Phys. Chem. Ref. Data 1978, 7, 941–948. [Google Scholar] [CrossRef]
- Ministry of Industry and Tourism. Net Price of Electricity for Domestic Use and Industrial Use: Madrid, Spain. 2023. Available online: https://www.mincotur.gob.es/es-es/IndicadoresyEstadisticas/BoletinEstadistico/Energ%C3%ADa%20y%20emisiones/4_12.pdf (accessed on 23 October 2023). (In Spanish).
- Bunzl. Floquet Aqua: Sant Boi Llobregat, Spain. 2023. Available online: https://www.bunzlspain.com/hipoclorito-sodico-floquet-aqua-150g.html (accessed on 23 October 2023). (In Spanish).
- Parravicini, V.; Nielsen, P.H.; Thornberg, D.; Pistocchi, A. Evaluation of greenhouse gas emissions from the European urban wastewater sector, and options for their reduction. Sci. Total Environ. 2022, 838, 156322. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, O. Environmental Technology Assessment of Natural Gas Compared to Biogas. In Natural Gas; Potocnik, P., Ed.; InTechOpen: London, UK, 2010; pp. 127–146. [Google Scholar]
- Greses, S. Anaerobic Degradation of Microalgae from the Effluent Treatment of a Submerged Anaerobic Membrane Reactor. Ph.D. Thesis, Universitat de València, Valencia, Spain, 2017. (In Spanish). [Google Scholar]
- Brémond, U.; Bertrandias, A.; de Buyer, R.; Latrille, E.; Jimenez, J.; Escudié, R.; Steyer, J.-P.; Bernet, N.; Carrere, H. Recirculation of solid digestate to enhance energy efficiency of biogas plants: Strategies, conditions and impacts. Energy Convers. Manag. 2021, 231, 113759. [Google Scholar] [CrossRef]
- Muller, O.; Bricker, P.; Laurin, B.; Mouton, L. Climate Change and Electricity, European Carbon Factor, Benchmarking of CO2 Emissions by Europe’s Largest Electricity Utilities, 21st ed.; INIS-FR--22-0804; International Atomic Energy Agency: Vienna, Austria, 2022. [Google Scholar]
- Bright Biomethane. Purepac Grand. Enschede, the Netherlands. 2023. Available online: https://www.brightbiomethane.com/ (accessed on 28 June 2023).
- Méndez, L.; García, D.; Perez, E.; Blanco, S.; Muñoz, R. Photosynthetic upgrading of biogas from anaerobic digestion of mixed sludge in an outdoors algal-bacterial photobioreactor at pilot scale. J. Water Process Eng. 2022, 48, 102891. [Google Scholar] [CrossRef]
- Du, X.; Shi, Y.; Jegatheesan, V.; Haq, I.U. A Review on the Mechanism, Impacts and Control Methods of Membrane Fouling in MBR System. Membranes 2020, 10, 24. [Google Scholar] [CrossRef]
- Chen, M.; Chen, Y.; Zhang, Q. A Review of Energy Consumption in the Acquisition of Bio-Feedstock for Microalgae Biofuel Production. Sustainability 2021, 13, 8873. [Google Scholar] [CrossRef]
- Wei, C.; Xu, Y.; Xu, L.; Liu, J.; Chen, H. Comparative life-cycle assessment of various harvesting strategies for biogas production from microalgae: Energy conversion characteristics and greenhouse gas emissions. Energy Convers. Manag. 2023, 289, 117188. [Google Scholar] [CrossRef]
- Brentner, L.B.; Eckelman, M.J.; Zimmerman, J.B. Combinatorial Life Cycle Assessment to Inform Process Design of Industrial Production of Algal Biodiesel. Environ. Sci. Technol. 2011, 45, 7060–7067. [Google Scholar] [CrossRef]
Technology | Advantages | Disadvantages | References |
---|---|---|---|
Sedimentation | Simple. Low CAPEX and OPEX. | Poor settling capacity. Low effluent quality. Low biomass concentration. Biomass losses. Time consuming. | [23,34,35] |
Coagulation–Flocculation | Proper settling rate. Proper effluent quality. Effective as a pre-concentrating step. | High doses of chemical reagents. Possible photosynthesis inhibition from metallic flocculants. Metal presence in harvested biomass. Poor effluent quality for reuse. | [27,34,35,36,37,38] |
Electroflocculation | Flocculants are not required. | Metal presence in harvested biomass. Emerging technology (low TRL). | [24,27,39] |
Magnetic flocculation | Fast, scalable, and efficient. Natural polymers can be added to coat magnetic particles. | Low efficiency for small particles. Low magnetic capacity lifetime. Emerging technology (low TRL). | [24,36,37] |
Bioflocculation | Toxic chemicals are not required. Prevention of microalgae contamination. Bioflocculants are produced from biomass. Genetic engineering can enhance bioflocculant production. | Factors affecting bioflocculant release remain unclear. Emerging technology (low TRL). | [24,37] |
Flotation | Low CAPEX. Low HRT. High cost-effective method. Small footprint. Possible disruption of microalgae (pro for anaerobic valorisation). | The use of reagents can imply extra costs. Possible disruption of microalgae (disadvantage if the integrity of biomass is needed). | [23,37,40] |
Centrifugation | Quick and simple. Most algal cell types can be harvested. Can be used as a second-step harvesting process. | High energy demand. High CAPEX. Shear stress on microalgae. Low EPS removal. | [24,37,41,42,43] |
Filtration | High effluent quality. Small footprint. Can be combined with pre-harvesting steps. Moderate to high biomass concentration. Depending on the technology and configuration employed, it can ensure the integrity of the microalgae or promote the hydrolysis of the microalgae. | Membrane fouling and clogging. Membrane productivity in terms of CAPEX and OPEX. High energy requirements. | [21,24,25,44,45,46,47,48,49] |
Parameter | Unit | Mean ± SD |
---|---|---|
Temperature | °C | 22 ± 6 |
Inlet gauge pressure (P1) | bar | 2.11 ± 0.04 |
Outlet gauge pressure (P2) | bar | 0.48 ± 0.02 |
Transmembrane pressure (TMP) | bar | 1.25 ± 0.02 |
Initial volume in the feed tank (Vi) | L | 450 ± 65 |
Initial TSS in the feed tank (TSSi) | g·L−1 | 0.50 ± 0.12 |
Parameter | Unit | Mean ± SD |
---|---|---|
TSSf | g·L−1 | 9.7 ± 1.7 |
CFV | m·s−1 | 1.2 ± 0.3 |
J20 | LMH | 16 ± 8 |
Normalised flux (J20:J20,0) | - | 0.49 ± 0.23 |
K20 | LMH·bar−1 | 13 ± 6 |
TMPBF | bar | 1.21 ± 0.08 |
QBF | L·min−1 | 31 ± 8 |
HV_r | g·m−2·h−1 | 9 ± 3 |
r | - | 21 ± 6 |
Cycle duration | h | 25 ± 9 |
Parameter | Acronym | Unit | Mean ± SD |
---|---|---|---|
Energy consumption ratio per harvested algal biomass | ECm_TSS | kWh·kg−1 | 1.51 ± 0.64 |
Energy consumption ratio per treated volume of pre-concentrated microalgae culture | ECv_HV | kWh·m−3 | 0.76 ± 0.32 |
Energy consumption ratio per total treated volume in the WRRF | ECv_WRRF | kWh·m−3 | 0.39 ± 0.16 |
Sodium hypochlorite consumption per total treated volume in the WRRF | NaOClCV_WRRF | g Cl·m−3 | 0.97 ± 0.39 |
Operating expenses of energy and sodium hypochlorite per total treated volume in the WRRF | OPEXEC+Cl | EUR·m−3 | 0.082 ± 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Sánchez, J.F.; González-Camejo, J.; Noriega-Hevia, G.; Seco, A.; Ruano, M.V. Ultrafiltration Harvesting of Microalgae Culture Cultivated in a WRRF: Long-Term Performance and Techno-Economic and Carbon Footprint Assessment. Sustainability 2024, 16, 369. https://doi.org/10.3390/su16010369
Mora-Sánchez JF, González-Camejo J, Noriega-Hevia G, Seco A, Ruano MV. Ultrafiltration Harvesting of Microalgae Culture Cultivated in a WRRF: Long-Term Performance and Techno-Economic and Carbon Footprint Assessment. Sustainability. 2024; 16(1):369. https://doi.org/10.3390/su16010369
Chicago/Turabian StyleMora-Sánchez, Juan Francisco, Josué González-Camejo, Guillermo Noriega-Hevia, Aurora Seco, and María Victoria Ruano. 2024. "Ultrafiltration Harvesting of Microalgae Culture Cultivated in a WRRF: Long-Term Performance and Techno-Economic and Carbon Footprint Assessment" Sustainability 16, no. 1: 369. https://doi.org/10.3390/su16010369
APA StyleMora-Sánchez, J. F., González-Camejo, J., Noriega-Hevia, G., Seco, A., & Ruano, M. V. (2024). Ultrafiltration Harvesting of Microalgae Culture Cultivated in a WRRF: Long-Term Performance and Techno-Economic and Carbon Footprint Assessment. Sustainability, 16(1), 369. https://doi.org/10.3390/su16010369