Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (227)

Search Parameters:
Keywords = transition metal nitrides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 - 1 Aug 2025
Viewed by 303
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

17 pages, 4098 KiB  
Article
The Influence of the Annealing Process on the Mechanical Properties of Chromium Nitride Thin Films
by Elena Chițanu, Iulian Iordache, Mirela Maria Codescu, Virgil Emanuel Marinescu, Gabriela Beatrice Sbârcea, Delia Pătroi, Leila Zevri and Alexandra Cristiana Nadolu
Materials 2025, 18(15), 3605; https://doi.org/10.3390/ma18153605 - 31 Jul 2025
Viewed by 187
Abstract
In recent years, significant attention has been directed toward the development of coating materials capable of tailoring surface properties for various functional applications. Transition metal nitrides, in particular, have garnered interest due to their superior physical and chemical properties, including high hardness, excellent [...] Read more.
In recent years, significant attention has been directed toward the development of coating materials capable of tailoring surface properties for various functional applications. Transition metal nitrides, in particular, have garnered interest due to their superior physical and chemical properties, including high hardness, excellent wear resistance, and strong corrosion resistance. In this study, a fabrication process for CrN-based thin films was developed by combining reactive direct current magnetron sputtering (dcMS) with post-deposition annealing in air. CrN coatings were deposited by reactive dcMS using different argon-nitrogen (Ar:N2) gas ratios (4:1, 3:1, 2:1, and 1:1), followed by annealing at 550 °C for 1.5 h in ambient air. XRD and EDS analysis revealed that this treatment results in the formation of a composite phase comprising CrN and Cr2O3. The resulting coating exhibited favorable mechanical and tribological properties, including a maximum hardness of 12 GPa, a low wear coefficient of 0.254 and a specific wear rate of 7.05 × 10−6 mm3/N·m, making it a strong candidate for advanced protective coating applications. Full article
Show Figures

Figure 1

32 pages, 2043 KiB  
Review
Review on Metal (-Oxide, -Nitride, -Oxy-Nitride) Thin Films: Fabrication Methods, Applications, and Future Characterization Methods
by Georgi Kotlarski, Daniela Stoeva, Dimitar Dechev, Nikolay Ivanov, Maria Ormanova, Valentin Mateev, Iliana Marinova and Stefan Valkov
Coatings 2025, 15(8), 869; https://doi.org/10.3390/coatings15080869 - 24 Jul 2025
Viewed by 487
Abstract
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for [...] Read more.
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for material modification and optimization. This can be achieved in many different ways, but one such approach is the application of surface thin films. They can be conductive (metallic), semi-conductive (metal-ceramic), or isolating (polymeric). Special emphasis is placed on applying semi-conductive thin films due to their unique properties, be it electrical, chemical, mechanical, or other. The particular thin films of interest are composite ones of the type of transition metal oxide (TMO) and transition metal nitride (TMN), due to their widespread configurations and applications. Regardless of the countless number of studies regarding the application of such films in the aforementioned industrial fields, some further possible investigations are necessary to find optimal solutions for modern problems in this topic. One such problem is the possibility of characterization of the applied thin films, not via textbook approaches, but through a simple, modern solution using their electrical properties. This can be achieved on the basis of measuring the films’ electrical impedance, since all different semi-conductive materials have different impedance values. However, this is a huge practical work that necessitates the collection of a large pool of data and needs to be based on well-established methods for both characterization and formation of the films. A thorough review on the topic of applying thin films using physical vapor deposition techniques (PVD) in the field of different modern applications, and the current results of such investigations are presented. Furthermore, current research regarding the possible methods for applying such films, and the specifics behind them, need to be summarized. Due to this, in the present work, the specifics of applying thin films using PVD methods and their expected structure and properties were evaluated. Special emphasis was paid to the electrical impedance spectroscopy (EIS) method, which is typically used for the investigation and characterization of electrical systems. This method has increased in popularity over the last few years, and its applicability in the characterization of electrical systems that include thin films formed using PVD methods was proven many times over. However, a still lingering question is the applicability of this method for backwards engineering of thin films. Currently, the EIS method is used in combination with traditional techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and others. There is, however, a potential to predict the structure and properties of thin films using purely a combination of EIS measurements and complex theoretical models. The current progress in the development of the EIS measurement method was described in the present work, and the trend is such that new theoretical models and new practical testing knowledge was obtained that help implement the method in the field of thin films characterization. Regardless of this progress, much more future work was found to be necessary, in particular, practical measurements (real data) of a large variety of films, in order to build the composition–structure–properties relationship. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

20 pages, 4241 KiB  
Article
Strontium-Doped Ti3C2Tx MXene Coatings on Titanium Surfaces: Synergistic Osteogenesis Enhancement and Antibacterial Activity Evaluation
by Yancheng Lai and Anchun Mo
Coatings 2025, 15(7), 847; https://doi.org/10.3390/coatings15070847 - 19 Jul 2025
Viewed by 385
Abstract
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations [...] Read more.
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations endow high hydrophilicity and bioactivity. The coating was fabricated via anodic electrophoretic deposition (40 V, 2 min) of Ti3C2Tx nanosheets, followed by SrCl2 immersion to incorporate Sr2+. The coating morphology, phase composition, chemistry, hydrophilicity, mechanical stability, and Sr2+ release were characterized. In vitro bioactivity was assessed with rat bone marrow mesenchymal stem cells (BMSCs)—with respect to viability, proliferation, migration, alkaline phosphatase (ALP) staining, and Alizarin Red S mineralization—while the antibacterial efficacy was evaluated against Staphylococcus aureus (S. aureus) via live/dead staining, colony-forming-unit enumeration, and AlamarBlue assays. The Sr-doped MXene coating formed a uniform lamellar structure, lowered the water-contact angle to ~69°, and sustained Sr2+ release (0.36–1.37 ppm). Compared to undoped MXene, MXene/Sr enhanced BMSC proliferation on day 5, migration by 51%, ALP activity and mineralization by 47%, and reduced S. aureus viability by 49% within 24 h. Greater BMSCs activity accelerates early bone integration, whereas rapid bacterial suppression mitigates peri-implant infection—two critical requirements for implant success. Sr-doped Ti3C2Tx MXene thus offers a simple, dual-function surface-engineering strategy for dental and orthopedic implants. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

12 pages, 2279 KiB  
Article
Electrostatic Self-Assembly of Heterostructured In2O3/Ti3C2Tx Nanocomposite for High-Selectivity NO2 Gas Sensing at Room Temperature
by Yongjing Guo, Zhengxin Zhang, Hangshuo Feng, Qingfu Dai, Qiuni Zhao, Zaihua Duan, Shenghui Guo, Li Yang, Ming Hou and Yi Xia
Chemosensors 2025, 13(7), 249; https://doi.org/10.3390/chemosensors13070249 - 10 Jul 2025
Viewed by 373
Abstract
Owing to high electrical conductivity, layered structure, and abundant surface functional groups, transition metal carbides/nitrides (MXenes) have received enormous interest in the field of gas sensors at room temperature. In this work, we synthesize a heterostructured nanocomposite with indium oxide (In2O [...] Read more.
Owing to high electrical conductivity, layered structure, and abundant surface functional groups, transition metal carbides/nitrides (MXenes) have received enormous interest in the field of gas sensors at room temperature. In this work, we synthesize a heterostructured nanocomposite with indium oxide (In2O3) decorated on titanium carbide (Ti3C2Tx) nanosheets by electrostatic self-assembly and develop it for high-selectivity NO2 gas sensing at room temperature. Self-assembly formation of multiple heterojunctions in the In2O3/Ti3C2Tx composite provide abundant NO2 gas adsorption sites and high electron transfer activity, which is conducive to improving the gas-sensing response of the In2O3/Ti3C2Tx gas sensor. Assisted by rich adsorption sites and hetero interface, the as-fabricated In2O3/Ti3C2Tx gas sensor exhibits the highest response to NO2 among various interference gases. Meanwhile, a detection limit of 0.3 ppm, and response/recovery time (197.62/93.84 s) is displayed at room temperature. Finally, a NO2 sensing mechanism of In2O3/Ti3C2Tx gas sensor is constructed based on PN heterojunction enhancement and molecular adsorption. This work not only expands the gas-sensing application of MXenes, but also demonstrates an avenue for the rational design and construction of NO2-sensing materials. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
Show Figures

Figure 1

20 pages, 4646 KiB  
Review
Vanadium-Based MXenes: Types, Synthesis, and Recent Advances in Supercapacitor Applications
by Zhiwei Gao, Donghu Shi, Jiawei Xu, Te Hai, Yao Zhao, Meng Qin and Jian Li
Nanomaterials 2025, 15(13), 1038; https://doi.org/10.3390/nano15131038 - 4 Jul 2025
Viewed by 455
Abstract
Since the discovery of two-dimensional transition metal carbides and nitrides (MXenes), MXenes have attracted widespread research in the academic community due to their advantages, such as adjustable interlayer spacing, excellent hydrophilicity, conductivity, compositional diversity, and rich surface chemical composition. More than 100 different [...] Read more.
Since the discovery of two-dimensional transition metal carbides and nitrides (MXenes), MXenes have attracted widespread research in the academic community due to their advantages, such as adjustable interlayer spacing, excellent hydrophilicity, conductivity, compositional diversity, and rich surface chemical composition. More than 100 different MXene combinations can be calculated theoretically, but only more than 40 have been successfully synthesized through experiments. Among the many synthesized and reported MXene materials, vanadium-based carbide MXenes, represented by V2CTx and V4C3Tx, show excellent application prospects in energy storage and have become the focus of researchers. In this review, we mainly discuss the structure, characteristics, and preparation methods of vanadium-based MXene precursors in the MAX phase and their applications in supercapacitors. Finally, we propose the main challenges existing at the current stage of vanadium-based materials and their heterostructures and provide a perspective on future research directions. Full article
Show Figures

Figure 1

22 pages, 9227 KiB  
Review
Review: The Application of MXene in Thermal Energy Storage Materials for Efficient Solar Energy Utilization
by Han Sun, Yingai Jin and Firoz Alam
Materials 2025, 18(12), 2839; https://doi.org/10.3390/ma18122839 - 16 Jun 2025
Viewed by 473
Abstract
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of [...] Read more.
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of the growing interest in MXenes, there are relatively few studies on their applications in phase-change materials for enhancing thermal conductivity and weak photo-responsiveness between 0 °C and 150 °C. Thus, this study aims to provide a current overview of recent developments, to examine how MXenes are made, and to outline the combined effects of different processes that can convert light into heat. This study illustrates the mechanisms that include enhanced broadband photon harvesting through localized surface plasmon resonance, electron–phonon coupling-mediated nonradiative relaxation, and interlayer phonon transport that optimizes thermal diffusion pathways. This study emphasizes that MXene-engineered 3D thermal networks can greatly improve energy storage and heat conversion, solving important problems with phase-change materials (PCMs), like poor heat conductivity and low responsiveness to light. This study also highlights the real-world issues of making MXene-based materials on a large scale, and suggests future research directions for using them in smart thermal management systems and solar thermal grid technologies. Full article
Show Figures

Figure 1

13 pages, 1703 KiB  
Article
Effect of Gas Velocity on Thickness Uniformity of TiNxOy Thin Film in Atomic Layer Deposition Process
by Ji Won Jang, Nu Ri Kim and Sang Jeen Hong
Coatings 2025, 15(6), 707; https://doi.org/10.3390/coatings15060707 - 12 Jun 2025
Viewed by 678
Abstract
Atomic layer deposition (ALD) has emerged as an essential technique, enabling the deposition of titanium nitride (TiN), which is renowned for its exceptional metal diffusion barrier properties. Improving within-wafer uniformity has become increasingly important to actively transition from lab-scale process development to wafer [...] Read more.
Atomic layer deposition (ALD) has emerged as an essential technique, enabling the deposition of titanium nitride (TiN), which is renowned for its exceptional metal diffusion barrier properties. Improving within-wafer uniformity has become increasingly important to actively transition from lab-scale process development to wafer manufacturing. We considered the effect of gas velocity on thickness uniformity through computational fluid dynamics (CFD) simulations. Gas velocity was controlled by varying equipment design parameters, and it was confirmed that the resulting reduction in velocity improved both velocity and thickness uniformity. To validate the simulation results, an ALD reactor was experimentally performed under the same design and process conditions. The measured thickness of the deposited films confirmed an improvement in thickness uniformity, and the cause of the thickness reduction was further investigated. This study demonstrates that controlling gas velocity prov ides valuable insights into improving thickness uniformity in the ALD reactor. It confirms the effectiveness of simulations in overcoming the limitations associated with considering various process and equipment variables, which can be time-consuming and costly. Furthermore, it emphasizes the importance of integrating flow dynamic simulations with process evaluations to contribute to the advancement of semiconductor manufacturing technologies. Full article
(This article belongs to the Special Issue Semiconductor Thin Films and Coatings)
Show Figures

Graphical abstract

27 pages, 3956 KiB  
Review
Advances in MXene-Based Electrochemical Sensors for Multiplexed Detection in Biofluids
by Meiqing Yang, Congkai Xie and Haozi Lu
Int. J. Mol. Sci. 2025, 26(11), 5368; https://doi.org/10.3390/ijms26115368 - 3 Jun 2025
Viewed by 764
Abstract
Detection of multiple analytes in biofluids is of significance for early disease diagnosis, effective treatment monitoring, and accurate prognostic assessment. Electrochemical sensors have emerged as a promising tool for the multiplexed detection of biofluids due to their low cost, high sensitivity, and rapid [...] Read more.
Detection of multiple analytes in biofluids is of significance for early disease diagnosis, effective treatment monitoring, and accurate prognostic assessment. Electrochemical sensors have emerged as a promising tool for the multiplexed detection of biofluids due to their low cost, high sensitivity, and rapid response. Two-dimensional transition metal carbon/nitride MXene, which has the advantages of a large specific surface area, good electrical conductivity, and abundant surface functional groups, has received increasing attention in the electrochemical sensing field. This paper systematically reviews the advances of MXene-based electrochemical sensors for multiplexed detection in biofluids, emphasizing the design of MXene-based electrode materials as well as the strategies for distinguishing multiple signals during simultaneous electrochemical analysis. In addition, this paper critically analyzes the existing challenges of MXene-based electrochemical sensors for multiplexed detection of biofluids and proposes future development directions for this field. The ultimate goal is to improve biofluid multiplexed detection technology for clinical medical applications. Full article
(This article belongs to the Special Issue Molecular Recognition and Biosensing)
Show Figures

Graphical abstract

33 pages, 4056 KiB  
Review
Sustainable Anodes for Direct Methanol Fuel Cells: Advancing Beyond Platinum Scarcity with Low-Pt Alloys and Non-Pt Systems
by Liangdong Zhao and Yankun Jiang
Sustainability 2025, 17(11), 5086; https://doi.org/10.3390/su17115086 - 1 Jun 2025
Viewed by 674
Abstract
Direct methanol fuel cells (DMFCs) represent a promising pathway for energy conversion, yet their reliance on platinum-group metal (PGM)-based anode catalysts poses critical sustainability challenges, which stem from finite mineral reserves, environmentally detrimental extraction processes, and prohibitive lifecycle costs. Current anode catalysts for [...] Read more.
Direct methanol fuel cells (DMFCs) represent a promising pathway for energy conversion, yet their reliance on platinum-group metal (PGM)-based anode catalysts poses critical sustainability challenges, which stem from finite mineral reserves, environmentally detrimental extraction processes, and prohibitive lifecycle costs. Current anode catalysts for DMFCs are dominated by platinum materials; therefore, this review systematically evaluates the following three emerging eco-efficient design paradigms using platinum materials as a starting point: (1) the atomic-level optimization of low-Pt alloy surfaces to maximize catalytic efficiency per metal atom, (2) Earth-abundant transition metal compounds (e.g., nitrides and sulfides) and coordination-tunable metal–organic frameworks as viable PGM-free alternatives, and (3) mechanically robust carbon architectures with engineered topological defects that enhance catalyst stability through covalent metal–carbon interactions. Through comparative analysis with pure Pt benchmarks, we critically examine how these strategic material innovations collectively mitigate CO intermediate poisoning risks and improve electrochemical durability. Such fundamental advances in catalyst design not only address immediate technical barriers, but also establish essential material foundations for the development of DMFC technologies compatible with circular economy frameworks and United Nations Sustainable Development Goal 7 targets. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

29 pages, 4463 KiB  
Review
Magnetic 2D Transition-Metal-Based Nanomaterials in Biomedicine: Opportunities and Challenges in Cancer Therapy
by Sunčica Sukur and Václav Ranc
Materials 2025, 18(11), 2570; https://doi.org/10.3390/ma18112570 - 30 May 2025
Viewed by 626
Abstract
Severe systemic toxicity and poor targeting efficiency remain major limitations of traditional chemotherapy, emphasising the need for smarter drug delivery systems. Magnetic 2D transition-metal-based nanomaterials offer a promising approach, as they can be designed to combine high drug loading, precise targeting, and controlled [...] Read more.
Severe systemic toxicity and poor targeting efficiency remain major limitations of traditional chemotherapy, emphasising the need for smarter drug delivery systems. Magnetic 2D transition-metal-based nanomaterials offer a promising approach, as they can be designed to combine high drug loading, precise targeting, and controlled release. The key material classes—transition metal dichalcogenides, transition metal carbides/nitrides, transition metal oxides, and metal–organic frameworks—share important physicochemical properties. These include high surface-to-volume ratios, tuneable functionalities, and efficient intracellular uptake. Incorporating magnetic nanoparticles into these 2D structures broadens their potential beyond drug delivery, through enabling multimodal therapeutic strategies such as hyperthermia induction, real-time imaging, and photothermal or photodynamic therapy. This review outlines the potential of magnetic 2D transition-metal-based nanomaterials for biomedical applications by evaluating their therapeutic performance and biological response. In parallel, it offers a critical analysis of how differences in physicochemical properties influence their potential for specific cancer treatment applications, highlighting the most promising uses of each in bionanomedicine. Full article
(This article belongs to the Special Issue Biomaterials for Drug Delivery in Cancer Treatment)
Show Figures

Graphical abstract

65 pages, 11913 KiB  
Review
MXenes and MXene-Based Composites: Preparation, Characteristics, Theoretical Investigations, and Application in Developing Sulfur Cathodes, Lithium Anodes, and Functional Separators for Lithium–Sulfur Batteries
by Narasimharao Kitchamsetti, Hyuksu Han and Sungwook Mhin
Batteries 2025, 11(6), 206; https://doi.org/10.3390/batteries11060206 - 23 May 2025
Viewed by 1406
Abstract
Lithium–sulfur batteries (LSBs) are favorable candidates for advanced energy storage, boasting a remarkable theoretical energy density of 2600 Wh kg−1. Moreover, several challenges hinder their practical implementation, including sulfur’s intrinsic electrical insulation, the shuttle effect of lithium polysulfides (LiPSs), sluggish redox [...] Read more.
Lithium–sulfur batteries (LSBs) are favorable candidates for advanced energy storage, boasting a remarkable theoretical energy density of 2600 Wh kg−1. Moreover, several challenges hinder their practical implementation, including sulfur’s intrinsic electrical insulation, the shuttle effect of lithium polysulfides (LiPSs), sluggish redox kinetics of Li2S2/Li2S, and the uncontrolled growth of Li dendrites. These issues pose significant obstacles to the commercialization of LSBs. A viable strategy to address these challenges involves using MXene materials, 2D transition metal carbides, and nitrides (TMCs/TMNs) as hosts, functional separators, or interlayers. MXenes offer exceptional electronic conductivity, adjustable structural properties, and abundant polar functional groups, enabling strong interactions with both S cathodes and Li anodes. Despite their advantages, current MXene synthesis methods predominantly rely on acid etching, which is associated with environmental concerns, low production efficiency, and limited structural versatility, restricting their potential in LSBs. This review provides a comprehensive overview of traditional and environmentally sustainable MXene synthesis techniques, emphasizing their applications in developing S cathodes, Li anodes, and functional separators for LSBs. Additionally, it discusses the challenges and outlines future directions for advancing MXene-based solutions in LSBs technology. Full article
Show Figures

Graphical abstract

25 pages, 4545 KiB  
Article
Steam-Assisted Ammonolysis of MoO2 as a Synthetic Pathway to Oxygenated δ-MoN
by Shobhit Pandey, Elise A. Goldfine, Shriya Sinha, Chi Zhang, Jill K. Wenderott, Lucien Kaczmarczyk, Ksawery Dabrowiecki, Vinayak P. Dravid, Gabriela B. González and Sossina M. Haile
Materials 2025, 18(10), 2340; https://doi.org/10.3390/ma18102340 - 17 May 2025
Cited by 1 | Viewed by 535
Abstract
A common route for the synthesis of molybdenum nitrides is through the temperature-programmed reaction of molybdenum oxides with NH3, or ammonolysis. In this work, the role of precursor phase, gas phase chemistry (impact of H2O), and temperature profile on [...] Read more.
A common route for the synthesis of molybdenum nitrides is through the temperature-programmed reaction of molybdenum oxides with NH3, or ammonolysis. In this work, the role of precursor phase, gas phase chemistry (impact of H2O), and temperature profile on the reaction outcome (700 °C) was examined, which resulted in varying amounts of MoO2, H2MoO5, and the nitride phases—cubic γ (nominally Mo2N) and hexagonal δ (nominally MoN). The phase fraction of the δ phase increased with precursor in the sequence MoO2 > MoO3 > H2MoO5. Steam in the reaction gas also favored the production of δ over γ, but with too much steam, MoO2 was obtained in the product. Synthesis conditions for obtaining nearly phase-pure δ were identified: MoO2 as the precursor, 2% H2O in the gas stream, and a moderate heating rate (3 °C/min). In situ X-ray diffraction provided insights into the reaction pathway. Extensive physico-chemical analysis of the δ phase, including synchrotron X-ray and neutron diffraction, electron microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and prompt gamma activation analysis, revealed its stoichiometry to be MoO0.108(8)N0.892(8)H0.012(5), indicating non-trivial oxygen incorporation. The presence of N/O ordering and an impurity phase Mo5N6 were also revealed, detectable only by neutron diffraction. Notably, a computationally predicted MoON phase (doi: 10.1103/PhysRevLett.123.236402), of interest due to its potential to display a metal-insulator transition, did not appear under any reaction condition examined. Full article
(This article belongs to the Special Issue Neutron Scattering in Materials)
Show Figures

Figure 1

81 pages, 20686 KiB  
Review
A Review on Multifunctional Polymer–MXene Hybrid Materials for Electronic Applications
by Fatemeh Morshedi Dehaghi, Mohammad Aberoumand and Uttandaraman Sundararaj
Molecules 2025, 30(9), 1955; https://doi.org/10.3390/molecules30091955 - 28 Apr 2025
Cited by 1 | Viewed by 1665
Abstract
MXenes, a family of two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides, have emerged as a promising class of nanomaterials for interdisciplinary applications due to their unique physiochemical properties. The large surface area, excellent electrical conductivity, superior mechanical properties, and abundant possible functional [...] Read more.
MXenes, a family of two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides, have emerged as a promising class of nanomaterials for interdisciplinary applications due to their unique physiochemical properties. The large surface area, excellent electrical conductivity, superior mechanical properties, and abundant possible functional groups make this layered nanomaterial an ideal candidate for multifunctional hybrid materials for electronic applications. This review highlights recent progress in MXene-based hybrid materials, focusing on their electrical, dielectric, and electromagnetic interference (EMI) shielding properties, with an emphasis on the development of multifunctionality required for advanced electronic devices. The review explores the multifunctional nature of MXene-based polymer nanocomposites and hybrid materials, covering the coexistence of a diverse range of properties, including sensory capabilities, electromagnetic interference shielding, energy storage, and the Joule heating phenomenon. Finally, the future outlook and key challenges are summarized, offering insights to guide future research aimed at improving the performance and functionality of MXene–polymer nanocomposites. Full article
(This article belongs to the Special Issue The Way Forward in MXenes Materials)
Show Figures

Graphical abstract

14 pages, 4138 KiB  
Article
First-Principles Study on the CO2 Reduction Reaction (CO2RR) Performance of h-BN-Based Single-Atom Catalysts Modified with Transition Metals
by Xiansheng Yu, Can Zhao, Qiaoyue Chen, Lai Wei, Xucai Zhao, Lili Zhang, Liqian Wu and Yineng Huang
Nanomaterials 2025, 15(8), 628; https://doi.org/10.3390/nano15080628 - 20 Apr 2025
Cited by 1 | Viewed by 677
Abstract
The reasonable design of low-cost, high-activity single-atom catalysts (SACs) is crucial for achieving highly efficient electrochemical CO2RR. In this study, we systematically explore, using density functional theory (DFT), the performance of transition metal (TM = Mn, Fe, Co, Ni, Cu, Zn)-doped [...] Read more.
The reasonable design of low-cost, high-activity single-atom catalysts (SACs) is crucial for achieving highly efficient electrochemical CO2RR. In this study, we systematically explore, using density functional theory (DFT), the performance of transition metal (TM = Mn, Fe, Co, Ni, Cu, Zn)-doped defect-type hexagonal boron nitride (h-BN) SACs TM@B−1N (B vacancy) and TM@BN−1 (N vacancy) in both CO2RR and the hydrogen evolution reaction (HER). Integrated crystal orbital Hamiltonian population (ICOHP) analysis reveals that these catalysts weaken the sp orbital hybridization of CO2, which promotes the formation of radical-state intermediates and significantly reduces the energy barrier for the hydrogenation reaction. Therefore, these theoretical calculations indicate that the Mn, Fe, Co@B−1N, and Co@BN−1 systems demonstrate excellent CO2 chemical adsorption properties. In the CO2RR pathway, Mn@B−1N exhibits the lowest limiting potential (UL = −0.524 V), and its higher d-band center (−0.334 eV), which aligns optimally with the adsorbate orbitals, highlights its excellent catalytic activity. Notably, Co@BN−1 exhibits the highest activity in HER, while UL is −0.217 V. Furthermore, comparative analysis reveals that Mn@B−1N shows 16.4 times higher selectivity for CO2RR than for HER. This study provides a theoretical framework for designing bifunctional SACs with selective reaction pathways. Mn@B−1N shows considerable potential for selective CO2 conversion, while Co@BN−1 demonstrates promising prospects for efficient hydrogen production. Full article
(This article belongs to the Special Issue Semiconductor-Based Nanomaterials for Catalytic Applications)
Show Figures

Figure 1

Back to TopTop