Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,862)

Search Parameters:
Keywords = transformation challenges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2720 KB  
Article
Shale Oil T2 Spectrum Inversion Method Based on Autoencoder and Fourier Transform
by Jun Zhao, Shixiang Jiao, Li Bai, Bing Xie, Yan Chen, Zhenguan Wu and Shaomin Zhang
Geosciences 2025, 15(10), 387; https://doi.org/10.3390/geosciences15100387 (registering DOI) - 4 Oct 2025
Abstract
Accurate inversion of the T2 spectrum of shale oil reservoir fluids is crucial for reservoir evaluation. However, traditional nuclear magnetic resonance inversion methods face challenges in extracting features from multi-exponential decay signals. This study proposed an inversion method that combines autoencoder (AE) [...] Read more.
Accurate inversion of the T2 spectrum of shale oil reservoir fluids is crucial for reservoir evaluation. However, traditional nuclear magnetic resonance inversion methods face challenges in extracting features from multi-exponential decay signals. This study proposed an inversion method that combines autoencoder (AE) and Fourier transform, aiming to enhance the accuracy and stability of T2 spectrum estimation for shale oil reservoirs. The autoencoder is employed to automatically extract deep features from the echo train, while the Fourier transform is used to enhance frequency domain features of multi-exponential decay information. Furthermore, this paper designs a customized weighted loss function based on a self-attention mechanism to focus the model’s learning capability on peak regions, thereby mitigating the negative impact of zero-value regions on model training. Experimental results demonstrate significant improvements in inversion accuracy, noise resistance, and computational efficiency compared to traditional inversion methods. This research provides an efficient and reliable new approach for precise evaluation of the T2 spectrum in shale oil reservoirs. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

22 pages, 2031 KB  
Review
Compressive Sensing for Multimodal Biomedical Signal: A Systematic Mapping and Literature Review
by Anggunmeka Luhur Prasasti, Achmad Rizal, Bayu Erfianto and Said Ziani
Signals 2025, 6(4), 54; https://doi.org/10.3390/signals6040054 (registering DOI) - 4 Oct 2025
Abstract
This study investigated the transformative potential of Compressive Sensing (CS) for optimizing multimodal biomedical signal fusion in Wireless Body Sensor Networks (WBSN), specifically targeting challenges in data storage, power consumption, and transmission bandwidth. Through a Systematic Mapping Study (SMS) and Systematic Literature Review [...] Read more.
This study investigated the transformative potential of Compressive Sensing (CS) for optimizing multimodal biomedical signal fusion in Wireless Body Sensor Networks (WBSN), specifically targeting challenges in data storage, power consumption, and transmission bandwidth. Through a Systematic Mapping Study (SMS) and Systematic Literature Review (SLR) following the PRISMA protocol, significant advancements in adaptive CS algorithms and multimodal fusion have been achieved. However, this research also identified crucial gaps in computational efficiency, hardware scalability (particularly concerning the complex and often costly adaptive sensing hardware required for dynamic CS applications), and noise robustness for one-dimensional biomedical signals (e.g., ECG, EEG, PPG, and SCG). The findings strongly emphasize the potential of integrating CS with deep reinforcement learning and edge computing to develop energy-efficient, real-time healthcare monitoring systems, paving the way for future innovations in Internet of Medical Things (IoMT) applications. Full article
Show Figures

Figure 1

24 pages, 637 KB  
Article
ZDBERTa: Advancing Zero-Day Cyberattack Detection in Internet of Vehicle with Zero-Shot Learning
by Amal Mirza, Sobia Arshad, Muhammad Haroon Yousaf and Muhammad Awais Azam
Computers 2025, 14(10), 424; https://doi.org/10.3390/computers14100424 - 3 Oct 2025
Abstract
The Internet of Vehicles (IoV) is becoming increasingly vulnerable to zero-day (ZD) cyberattacks, which often bypass conventional intrusion detection systems. To mitigate this challenge, this study proposes Zero-Day Bidirectional Encoder Representations from Transformers approach (ZDBERTa), a zero-shot learning (ZSL)-based framework for ZD attack [...] Read more.
The Internet of Vehicles (IoV) is becoming increasingly vulnerable to zero-day (ZD) cyberattacks, which often bypass conventional intrusion detection systems. To mitigate this challenge, this study proposes Zero-Day Bidirectional Encoder Representations from Transformers approach (ZDBERTa), a zero-shot learning (ZSL)-based framework for ZD attack detection, evaluated on the CICIoV2024 dataset. Unlike conventional AI models, ZSL enables the classification of attack types not previously encountered during the training phase. Two dataset variants are formed: Variant 1, created through synthetic traffic generation using a mixture of pattern-based, crossover, and mutation techniques, and Variant 2, augmented with a Generative Adversarial Network (GAN). To replicate realistic zero-day conditions, denial-of-service (DoS) attacks were omitted during training and introduced only at testing. The proposed ZDBERTa incorporates a Byte-Pair Encoding (BPE) tokenizer, a multi-layer transformer encoder, and a classification head for prediction, enabling the model to capture semantic patterns and identify previously unseen threats. The experimental results demonstrate that ZDBERTa achieves 86.677% accuracy on Variant 1, highlighting the complexity of zero-day detection, while performance significantly improves to 99.315% on Variant 2, underscoring the effectiveness of GAN-based augmentation. To the best of our knowledge, this is the first research to explore ZD detection within CICIoV2024, contributing a novel direction toward resilient IoV cybersecurity. Full article
Show Figures

Figure 1

17 pages, 2215 KB  
Article
Fault Location of Generator Stator with Single-Phase High-Resistance Grounding Fault Based on Signal Injection
by Binghui Lei, Yifei Wang, Zongzhen Yang, Lijiang Ma, Xinzhi Yang, Yanxun Guo, Shuai Xu and Zhiping Cheng
Sensors 2025, 25(19), 6132; https://doi.org/10.3390/s25196132 - 3 Oct 2025
Abstract
This paper proposes a novel method for locating single-phase grounding faults in generator stator windings with high resistance, which are typically challenging to locate due to weak fault characteristics. The method utilizes an active voltage injection technique combined with traveling wave reflection analysis, [...] Read more.
This paper proposes a novel method for locating single-phase grounding faults in generator stator windings with high resistance, which are typically challenging to locate due to weak fault characteristics. The method utilizes an active voltage injection technique combined with traveling wave reflection analysis, singular value decomposition (SVD) denoising, and discrete wavelet transform (DWT). A DC voltage signal is then injected into the stator winding, and the voltage and current signals at both terminals are collected. These signals undergo denoising using SVD, followed by DWT, to identify the arrival time of the traveling waves. Fault location is determined based on the reflection and refraction of these waves within the winding. Simulation results demonstrate that this method achieves high accuracy in fault location, even with fault resistances up to 5000 Ω. The method offers a reliable and effective solution for locating high-resistance faults in generator stator windings without requiring winding parameters, demonstrating strong potential for practical applications. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

18 pages, 776 KB  
Article
A Hybrid Neural Network for Efficient Rectilinear Steiner Minimum Tree Construction
by Zhigang Li, Xinxin Zhang, Zhiwei Tan, Chunyu Peng, Xiulong Wu and Ming Zhu
Electronics 2025, 14(19), 3931; https://doi.org/10.3390/electronics14193931 - 3 Oct 2025
Abstract
Efficient routing optimization remains a pivotal challenge in Electronic Design Automation (EDA), as it profoundly influences circuit performance, power consumption, and manufacturing cost. The Rectilinear Steiner Minimum Tree (RSMT) problem plays a crucial role in this process by minimizing the routing length through [...] Read more.
Efficient routing optimization remains a pivotal challenge in Electronic Design Automation (EDA), as it profoundly influences circuit performance, power consumption, and manufacturing cost. The Rectilinear Steiner Minimum Tree (RSMT) problem plays a crucial role in this process by minimizing the routing length through the introduction of Steiner points. This paper proposes a reinforcement learning-driven RSMT construction model that incorporates a novel Selective Kernel Transformer Network (SKTNet) encoder to enhance feature representation. SKTNet integrates a Selective Kernel Convolution (SKConv) and an improved Macaron Transformer to improve multi-scale feature extraction and global topology modeling. Additionally, Self-Critical Sequence Training (SCST) is employed to optimize the policy by leveraging a greedy-decoded baseline sequence for the advantage computation. Experimental results demonstrate superior performance over state-of-the-art methods in wirelength optimization. Ablation studies further validate the contribution of this model, highlighting its effectiveness and scalability for routing. Full article
Show Figures

Figure 1

26 pages, 1191 KB  
Systematic Review
The Use of Multimedia in the Teaching and Learning Process of Higher Education: A Systematic Review
by Evelina Staneviciene and Gintarė Žekienė
Sustainability 2025, 17(19), 8859; https://doi.org/10.3390/su17198859 - 3 Oct 2025
Abstract
The integration of multimedia technologies is transforming teaching and learning in higher education, offering innovative ways to improve student engagement and learning outcomes. Although numerous studies investigate the impact of multimedia, there is still a clear need for a synthesis that brings together [...] Read more.
The integration of multimedia technologies is transforming teaching and learning in higher education, offering innovative ways to improve student engagement and learning outcomes. Although numerous studies investigate the impact of multimedia, there is still a clear need for a synthesis that brings together the latest evidence from a variety of disciplines and contexts. To address this need, this systematic review aims to summarize the empirical evidence and provide a clearer understanding of how multimedia is applied in higher education, to outline how educators can effectively design and the implications for curriculum design. This article focuses on three key research questions: (1) How does the integration of multimedia in higher education classrooms influence student engagement and learning outcomes? (2) How does the use of multimedia affect the development of specific skills? (3) What are the challenges and opportunities to integrate multimedia technologies into higher education? Relevant studies were systematically retrieved and screened from major academic databases, including ScienceDirect, Web of Science, IEEE Xplore, Wiley Online Library, Springer, Taylor & Francis, and Google Scholar. In total, 48 studies were selected from these sources for detailed analysis. The findings showed that multimedia tools enhance student engagement, motivation, and performance when integrated with clear pedagogical strategies. In addition, multimedia helps to develop skills such as creativity, digital literacy, and independent learning. However, challenges such as technical limitations, uneven infrastructure, and the need for ongoing teacher training remain significant difficulties in fully exploiting the benefits in higher education. Addressing these challenges requires coordinated institutional support, investment in professional development, and careful alignment of multimedia tools with pedagogical goals. Full article
(This article belongs to the Special Issue Digital Teaching and Development in Sustainable Higher Education)
Show Figures

Figure 1

28 pages, 650 KB  
Systematic Review
Systematic Review of Optimization Methodologies for Smart Home Energy Management Systems
by Abayomi A. Adebiyi and Mathew Habyarimana
Energies 2025, 18(19), 5262; https://doi.org/10.3390/en18195262 - 3 Oct 2025
Abstract
Power systems are undergoing a transformative transition as consumers seek greater participation in managing electricity systems. This shift has given rise to the concept of “prosumers,” individuals who both consume and produce electricity, primarily through renewable energy sources. While renewables offer undeniable environmental [...] Read more.
Power systems are undergoing a transformative transition as consumers seek greater participation in managing electricity systems. This shift has given rise to the concept of “prosumers,” individuals who both consume and produce electricity, primarily through renewable energy sources. While renewables offer undeniable environmental benefits, they also introduce significant energy management challenges. One major concern is the variability in energy consumption patterns within households, which can lead to inefficiencies. Also, improper energy management can result in economic losses due to unbalanced energy control or inefficient systems. Home Energy Management Systems (HEMSs) have emerged as a promising solution to address these challenges. A well-designed HEMS enables users to achieve greater efficiency in managing their energy consumption, optimizing asset usage while ensuring cost savings and system reliability. This paper presents a comprehensive systematic review of optimization techniques applied to HEMS development between 2019 and 2024, focusing on key technical and computational factors influencing their advancement. The review categorizes optimization techniques into two main groups: conventional methods, emerging techniques, and machine learning methods. By analyzing recent developments, this study provides an integrated perspective on the evolving role of HEMSs in modern power systems, highlighting trends that enhance the efficiency and effectiveness of energy management in smart grids. Unifying taxonomy of HEMSs (2019–2024) and integrating mathematical, heuristic/metaheuristic, and ML/DRL approaches across horizons, controllability, and uncertainty, we assess algorithmic complexity versus tractability, benchmark comparative evidence (cost, PAR, runtime), and highlight deployment gaps (privacy, cybersecurity, AMI/HAN, and explainability), offering a novel synthesis for AI-enabled HEMS. Full article
(This article belongs to the Special Issue Advanced Application of Mathematical Methods in Energy Systems)
Show Figures

Figure 1

12 pages, 912 KB  
Article
A Randomized Controlled Trial of ABCD-IN-BARS Drone-Assisted Emergency Assessments
by Chun Kit Jacky Chan, Fabian Ling Ngai Tung, Shuk Yin Joey Ho, Jeff Yip, Zoe Tsui and Alice Yip
Drones 2025, 9(10), 687; https://doi.org/10.3390/drones9100687 - 3 Oct 2025
Abstract
Emergency medical services confront significant challenges in delivering timely patient assessments within geographically isolated or disaster-impacted regions. While drones (unmanned aircraft systems, UAS) show transformative potential in healthcare, standardized protocols for drone-assisted patient evaluations remain underdeveloped. This study introduces the ABCD-IN-BARS protocol, a [...] Read more.
Emergency medical services confront significant challenges in delivering timely patient assessments within geographically isolated or disaster-impacted regions. While drones (unmanned aircraft systems, UAS) show transformative potential in healthcare, standardized protocols for drone-assisted patient evaluations remain underdeveloped. This study introduces the ABCD-IN-BARS protocol, a 9-step telemedicine checklist integrating patient-assisted maneuvers and drone technology to systematize remote emergency assessments. A wait-list randomized controlled trial with 68 first-aid-trained volunteers evaluated the protocol’s feasibility. Participants underwent web-based modules and in-person simulations and were randomized into immediate training or waitlist control groups. The ABCD-IN-BARS protocol was developed via a content validity approach, incorporating expert-rated items from the telemedicine literature. Outcomes included time-to-assessment, provider confidence (Modified Cooper–Harper Scale), measured at baseline, post-training, and 3-month follow-up. Ethical approval and informed consent were obtained. Most of the participants can complete the assessment with a cue card within 4 min. A mixed-design repeated measures ANOVA assessed the effects of Time (baseline, post-test, 3-month follow-up within subject) on assessment durations. Assessment times improved significantly over three time points (p = 0.008), improving with standardized protocols, while patterns were similar across groups (p = 0.101), reflecting skill retention at 3 months and not affected by injury or not. Protocol adherence in simulated injury identification increased from 63.3% pre-training to 100% post-training. Provider confidence remained high (MCH scores: 2.4–2.7/10), and Technology Acceptance Model (TAM) ratings emphasized strong Perceived Usefulness (PU2: M = 4.48) despite moderate ease-of-use challenges (EU2: M = 4.03). Qualitative feedback highlighted workflow benefits but noted challenges in drone maneuvering. The ABCD-IN-BARS protocol effectively standardizes drone-assisted emergency assessments, demonstrating retained proficiency and high usability. While sensory limitations persist, its modular design and alignment with ABCDE principles offer a scalable solution for prehospital care in underserved regions. Further multicenter validation is needed to generalize findings. Full article
Show Figures

Figure 1

24 pages, 1024 KB  
Review
Artificial Intelligence in Glioma Diagnosis: A Narrative Review of Radiomics and Deep Learning for Tumor Classification and Molecular Profiling Across Positron Emission Tomography and Magnetic Resonance Imaging
by Rafail C. Christodoulou, Rafael Pitsillos, Platon S. Papageorgiou, Vasileia Petrou, Georgios Vamvouras, Ludwing Rivera, Sokratis G. Papageorgiou, Elena E. Solomou and Michalis F. Georgiou
Eng 2025, 6(10), 262; https://doi.org/10.3390/eng6100262 - 3 Oct 2025
Abstract
Background: This narrative review summarizes recent progress in artificial intelligence (AI), especially radiomics and deep learning, for non-invasive diagnosis and molecular profiling of gliomas. Methodology: A thorough literature search was conducted on PubMed, Scopus, and Embase for studies published from January [...] Read more.
Background: This narrative review summarizes recent progress in artificial intelligence (AI), especially radiomics and deep learning, for non-invasive diagnosis and molecular profiling of gliomas. Methodology: A thorough literature search was conducted on PubMed, Scopus, and Embase for studies published from January 2020 to July 2025, focusing on clinical and technical research. In key areas, these studies examine AI models’ predictive capabilities with multi-parametric Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). Results: The domains identified in the literature include the advancement of radiomic models for tumor grading and biomarker prediction, such as Isocitrate Dehydrogenase (IDH) mutation, O6-methylguanine-dna methyltransferase (MGMT) promoter methylation, and 1p/19q codeletion. The growing use of convolutional neural networks (CNNs) and generative adversarial networks (GANs) in tumor segmentation, classification, and prognosis was also a significant topic discussed in the literature. Deep learning (DL) methods are evaluated against traditional radiomics regarding feature extraction, scalability, and robustness to imaging protocol differences across institutions. Conclusions: This review analyzes emerging efforts to combine clinical, imaging, and histology data within hybrid or transformer-based AI systems to enhance diagnostic accuracy. Significant findings include the application of DL to predict cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletion and chemokine CCL2 expression. These highlight the expanding capabilities of imaging-based genomic inference and the importance of clinical data in multimodal fusion. Challenges such as data harmonization, model interpretability, and external validation still need to be addressed. Full article
Show Figures

Figure 1

24 pages, 3808 KB  
Article
Study of Soliton Solutions, Bifurcation, Quasi-Periodic, and Chaotic Behaviour in the Fractional Coupled Schrödinger Equation
by Manal Alharbi, Adel Elmandouh and Mamdouh Elbrolosy
Mathematics 2025, 13(19), 3174; https://doi.org/10.3390/math13193174 - 3 Oct 2025
Abstract
This study presents a qualitative analysis of the fractional coupled nonlinear Schrödinger equation (FCNSE) to obtain its complete set of solutions. An appropriate wave transformation is applied to reduce the FCNSE to a fourth-order dynamical system. Due to its non-Hamiltonian nature, this system [...] Read more.
This study presents a qualitative analysis of the fractional coupled nonlinear Schrödinger equation (FCNSE) to obtain its complete set of solutions. An appropriate wave transformation is applied to reduce the FCNSE to a fourth-order dynamical system. Due to its non-Hamiltonian nature, this system poses significant analytical challenges. To overcome this complexity, the dynamical behavior is examined within a specific phase–space subspace, where the system simplifies to a two-dimensional, single-degree-of-freedom Hamiltonian system. The qualitative theory of planar dynamical systems is then employed to characterize the corresponding phase portraits. Bifurcation analysis identifies the physical parameter conditions that give rise to super-periodic, periodic, and solitary wave solutions. These solutions are derived analytically and illustrated graphically to highlight the influence of the fractional derivative order on their spatial and temporal evolution. Furthermore, when an external generalized periodic force is introduced, the model exhibits quasi-periodic behavior followed by chaotic dynamics. Both configurations are depicted through 3D and 2D phase portraits in addition to the time-series graphs. The presence of chaos is quantitatively verified by calculating the Lyapunov exponents. Numerical simulations demonstrate that the system’s behavior is highly sensitive to variations in the frequency and amplitude of the external force. Full article
Show Figures

Figure 1

38 pages, 2485 KB  
Review
Research Progress of Deep Learning-Based Artificial Intelligence Technology in Pest and Disease Detection and Control
by Yu Wu, Li Chen, Ning Yang and Zongbao Sun
Agriculture 2025, 15(19), 2077; https://doi.org/10.3390/agriculture15192077 - 3 Oct 2025
Abstract
With the rapid advancement of artificial intelligence technology, the widespread application of deep learning in computer vision is driving the transformation of agricultural pest detection and control toward greater intelligence and precision. This paper systematically reviews the evolution of agricultural pest detection and [...] Read more.
With the rapid advancement of artificial intelligence technology, the widespread application of deep learning in computer vision is driving the transformation of agricultural pest detection and control toward greater intelligence and precision. This paper systematically reviews the evolution of agricultural pest detection and control technologies, with a special focus on the effectiveness of deep-learning-based image recognition methods for pest identification, as well as their integrated applications in drone-based remote sensing, spectral imaging, and Internet of Things sensor systems. Through multimodal data fusion and dynamic prediction, artificial intelligence has significantly improved the response times and accuracy of pest monitoring. On the control side, the development of intelligent prediction and early-warning systems, precision pesticide-application technologies, and smart equipment has advanced the goals of eco-friendly pest management and ecological regulation. However, challenges such as high data-annotation costs, limited model generalization, and constrained computing power on edge devices remain. Moving forward, further exploration of cutting-edge approaches such as self-supervised learning, federated learning, and digital twins will be essential to build more efficient and reliable intelligent control systems, providing robust technical support for sustainable agricultural development. Full article
32 pages, 4829 KB  
Article
Dynamic Energy-Aware Anchor Optimization for Contact-Based Indoor Localization in MANETs
by Manuel Jesús-Azabal, Meichun Zheng and Vasco N. G. J. Soares
Information 2025, 16(10), 855; https://doi.org/10.3390/info16100855 - 3 Oct 2025
Abstract
Indoor positioning remains a recurrent and significant challenge in research. Unlike outdoor environments, where the Global Positioning System (GPS) provides reliable location information, indoor scenarios lack direct line-of-sight to satellites or cellular towers, rendering GPS inoperative and requiring alternative positioning techniques. Despite numerous [...] Read more.
Indoor positioning remains a recurrent and significant challenge in research. Unlike outdoor environments, where the Global Positioning System (GPS) provides reliable location information, indoor scenarios lack direct line-of-sight to satellites or cellular towers, rendering GPS inoperative and requiring alternative positioning techniques. Despite numerous approaches, indoor contexts with resource limitations, energy constraints, or physical restrictions continue to suffer from unreliable localization. Many existing methods employ a fixed number of reference anchors, which sets a hard balance between localization accuracy and energy consumption, forcing designers to choose between precise location data and battery life. As a response to this challenge, this paper proposes an energy-aware indoor positioning strategy based on Mobile Ad Hoc Networks (MANETs). The core principle is a self-adaptive control loop that continuously monitors the network’s positioning accuracy. Based on this real-time feedback, the system dynamically adjusts the number of active anchors, increasing them only when accuracy degrades and reducing them to save energy once stability is achieved. The method dynamically estimates relative coordinates by analyzing node encounters and contact durations, from which relative distances are inferred. Generalized Multidimensional Scaling (GMDS) is applied to construct a relative spatial map of the network, which is then transformed into absolute coordinates using reference nodes, known as anchors. The proposal is evaluated in a realistic simulated indoor MANET, assessing positioning accuracy, adaptation dynamics, anchor sensitivity, and energy usage. Results show that the adaptive mechanism achieves higher accuracy than fixed-anchor configurations in most cases, while significantly reducing the average number of required anchors and their associated energy footprint. This makes it suitable for infrastructure-poor, resource-constrained indoor environments where both accuracy and energy efficiency are critical. Full article
25 pages, 9362 KB  
Review
In Situ Raman Spectroscopy Reveals Structural Evolution and Key Intermediates on Cu-Based Catalysts for Electrochemical CO2 Reduction
by Jinchao Zhang, Honglin Gao, Zhen Wang, Haiyang Gao, Li Che, Kunqi Xiao and Aiyi Dong
Nanomaterials 2025, 15(19), 1517; https://doi.org/10.3390/nano15191517 - 3 Oct 2025
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is a key technology for achieving carbon neutrality and efficient utilization of renewable energy, capable of converting CO2 into high-value-added carbon-based fuels and chemicals. Copper (Cu)-based catalysts have attracted significant attention due to their [...] Read more.
Electrochemical CO2 reduction reaction (CO2RR) is a key technology for achieving carbon neutrality and efficient utilization of renewable energy, capable of converting CO2 into high-value-added carbon-based fuels and chemicals. Copper (Cu)-based catalysts have attracted significant attention due to their unique performance in generating multi-carbon (C2+) products such as ethylene and ethanol; however, there are still many controversies regarding their complex reaction mechanisms, active sites, and the dynamic evolution of intermediates. In situ Raman spectroscopy, with its high surface sensitivity, applicability in aqueous environments, and precise detection of molecular vibration modes, has become a powerful tool for studying the structural evolution of Cu catalysts and key reaction intermediates during CO2RR. This article reviews the principles of electrochemical in situ Raman spectroscopy and its latest developments in the study of CO2RR on Cu-based catalysts, focusing on its applications in monitoring the dynamic structural changes of the catalyst surface (such as Cu+, Cu0, and Cu2+ oxide species) and identifying key reaction intermediates (such as *CO, *OCCO(*O=C-C=O), *COOH, etc.). Numerous studies have shown that Cu-based oxide precursors undergo rapid reduction and surface reconstruction under CO2RR conditions, resulting in metallic Cu nanoclusters with unique crystal facets and particle size distributions. These oxide-derived active sites are considered crucial for achieving high selectivity toward C2+ products. Time-resolved Raman spectroscopy and surface-enhanced Raman scattering (SERS) techniques have further revealed the dynamic characteristics of local pH changes at the electrode/electrolyte interface and the adsorption behavior of intermediates, providing molecular-level insights into the mechanisms of selectivity control in CO2RR. However, technical challenges such as weak signal intensity, laser-induced damage, and background fluorescence interference, and opportunities such as coupling high-precision confocal Raman technology with in situ X-ray absorption spectroscopy or synchrotron radiation Fourier transform infrared spectroscopy in researching the mechanisms of CO2RR are also put forward. Full article
Show Figures

Figure 1

16 pages, 1827 KB  
Article
Preparation and Properties of Micron Near-Spherical Alumina Powders from Hydratable Alumina with Ammonium Fluoroborate
by Yi Wei, Jie Xu, Jie Jiang, Tairong Lu and Zuohua Liu
Materials 2025, 18(19), 4589; https://doi.org/10.3390/ma18194589 - 2 Oct 2025
Abstract
Micron-sized near-spherical α-Al2O3 powders are widely used as thermal fillers due to their high thermal conductivity, high packing density, good flowability, and low cost. During the high-temperature calcination, the resulting α-Al2O3 powders often exhibit an aggregated worm-like [...] Read more.
Micron-sized near-spherical α-Al2O3 powders are widely used as thermal fillers due to their high thermal conductivity, high packing density, good flowability, and low cost. During the high-temperature calcination, the resulting α-Al2O3 powders often exhibit an aggregated worm-like morphology owing to limitations in solid-state mass transfer. Researchers have employed various mineralizers to regulate the morphology of α-Al2O3 powders; however, the preparation of micron-sized highly spherical α-Al2O3 powders via solid-state calcination is still a great challenge. In this work, micron-sized near-spherical α-Al2O3 powders were synthesized through high-temperature calcination using hydratable alumina (ρ-Al2O3) as precursor with water-soluble mineralizer ammonium fluoroborate (NH4BF4). ρ-Al2O3 can undergo a hydration reaction with water to form AlO(OH) and Al(OH)3 intermediates, serving as an excellent precursor. With the addition of 0.1 wt% NH4BF4, the product exhibits an optimal near-spherical morphology. Excessive addition (>0.2wt%), however, significantly promotes the transformation of α-Al2O3 from a near-spherical to a plate-like structure. Further studies reveal that the introduction of NH4BF4 not only modulates the crystal morphology but also effectively reduces the content of sodium impurities in the powder through a high-temperature volatilization mechanism, thereby enhancing the thermal conductivity of the powder. It is shown that the thermal conductivity of the micron-sized α-Al2O3/ epoxy resin composites reaches 1.329 ± 0.009 W/(m·K), which is 7.4 times that of pure epoxy resin. Full article
(This article belongs to the Section Metals and Alloys)
16 pages, 1400 KB  
Article
Research on the SOH of Lithium Batteries Based on the TCN–Transformer–BiLSTM Hybrid Model
by Shaojian Han, Zhenyang Su, Xingyuan Peng, Liyong Wang and Xiaojie Li
Coatings 2025, 15(10), 1149; https://doi.org/10.3390/coatings15101149 - 2 Oct 2025
Abstract
Lithium-ion batteries are widely used in energy storage and power systems due to their high energy density, long cycle life, and stability. Accurate prediction of the state of health (SOH) of batteries is critical to ensuring their safe and reliable operation. However, the [...] Read more.
Lithium-ion batteries are widely used in energy storage and power systems due to their high energy density, long cycle life, and stability. Accurate prediction of the state of health (SOH) of batteries is critical to ensuring their safe and reliable operation. However, the prediction task remains challenging due to various complex factors. This paper proposes a hybrid TCN–Transformer–BiLSTM prediction model for battery SOH estimation. The model is first validated using the NASA public dataset, followed by further verification with dynamic operating condition simulation experimental data. Health features correlated with SOH are identified through Pearson analysis, and comparisons are conducted with existing LSTM, GRU, and BiLSTM methods. Experimental results demonstrate that the proposed model achieves outstanding performance across multiple datasets, with root mean square error (RMSE) values consistently below 2% and even below 1% in specific cases. Furthermore, the model maintains high prediction accuracy even when trained with only 50% of the data. Full article
Back to TopTop