Compressive Sensing for Multimodal Biomedical Signal: A Systematic Mapping and Literature Review
Abstract
1. Introduction
2. Methods
- A.
- Systematic Mapping Study (SMS) Method
- B.
- Systematic Literature Review (SLR) Method
3. Results
3.1. The SMS Result of RQ1, RQ2, and RQ3: Trend, Bibliometric and Topic Modelling
- Document 1: A, B, C
- Document 2: A, B, D
- Document 3: A, C
- Co-occurrence (A, B) = 2 (because they appear in Documents 1 and 2)
- Co-occurrence (A, C) = 2 (because they appear in Documents 1 and 3)
- Co-occurrence (B, C) = 1 (because they appear only in Document 1)
- Sij = Link strength between item i and j.
- Cij = Number of co-occurrences of items i and j (i.e., how many times they appear together).
- Wi = Total weight (e.g., total number of occurrences) of item i.
- Wj = Total weight (e.g., total number of occurrences) of item j.
3.2. The SLR Result of RQ1: Issue, Method, and Performance Metrics of CS
3.3. The SLR Result of RQ2: The Limitations and Potential Research of CS
3.4. The SLR Result of RQ3: Methods, Limitations, and Potential Gaps in Biomedical Signal Fusion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CS | Compressive Sensing or Compressed Sensing |
SMS | Systematic Mapping Study |
SLR | Systematic Literature Review |
DLR | Deep Reinforcement Learning |
EEG | Electroencephalogram |
ECG | Electrocardiogram |
PPG | Photoplethysmogram |
SCG | Seismocardiogram |
SNR | Signal-to-noise-ratios |
CASS | Compressive Adaptive Sense and Search |
KNN | K-Nearest Neighbors |
DT | Decision Tree |
SVM | Support Vector Machine |
WVSN | Wireless Vehicle Sensor Network |
WBSN | Wireless Body Sensor Network |
IoMT | Internet of Medical Things |
BSBL | Block Sparse Bayesian Learning |
OMP | Orthogonal Matching Pursuit |
SOMP | Simultaneous Orthogonal Matching Pursuit |
References
- Gravina, R.; Alinia, P.; Ghasemzadeh, H.; Fortino, G. Multi-Sensor Fusion in Body Sensor Networks: State-of-the-Art and Research Challenges. Inf. Fusion 2017, 35, 68–80. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q. Multi-Modal Bioelectrical Signal Fusion Analysis Based on Different Acquisition Devices and Scene Settings: Overview, Challenges, and Novel Orientation. Inf. Fusion 2022, 79, 229–247. [Google Scholar] [CrossRef]
- Muhammad, G.; Alshehri, F.; Karray, F.; El Saddik, A.; Alsulaiman, M.; Falk, T.H. A Comprehensive Survey on Multimodal Medical Signals Fusion for Smart Healthcare Systems. Inf. Fusion 2021, 76, 355–375. [Google Scholar] [CrossRef]
- Gurve, D.; Delisle-Rodriguez, D.; Bastos-Filho, T.; Krishnan, S. Trends in Compressive Sensing for EEG Signal Processing Applications. Sensors 2020, 20, 3703. [Google Scholar] [CrossRef] [PubMed]
- Izadi, V.; Shahri, P.K.; Ahani, H. A Compressed-Sensing-Based Compressor for ECG. Biomed. Eng. Lett. 2020, 10, 299–307. [Google Scholar] [CrossRef]
- Hassan, A.M.A.; Mohsen, S.; Abo-Zahhad, M.M. ECG Signals Compression Using Dynamic Compressive Sensing Technique toward IoT Applications. Multimed. Tools Appl. 2024, 83, 35709–35726. [Google Scholar] [CrossRef]
- Chen, C.; Pan, R.; Huang, H.; Zhang, Q.; Jiang, X.; Zhang, Y.; Zhao, J.; Li, Y. PSCS: A Physiological Sound Compression System Based on Compressive Sensing with Self-Adaptive Compression Ratio and Optimized DCT. In Proceedings of the 2024 IEEE International Symposium on Circuits and Systems (ISCAS), Singapore, 19–22 May 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Hua, J.; Zou, J.; Rao, J.; Yin, H.; Chen, J. ECG Signals Deep Compressive Sensing Framework Based on Multiscale Feature Fusion and SE Block. IEEE Access 2023, 11, 104359–104372. [Google Scholar] [CrossRef]
- Hua, J.; Rao, J.; Peng, Y.; Liu, J.; Tang, J. Deep Compressive Sensing on ECG Signals with Modified Inception Block and LSTM. Entropy 2022, 24, 1024. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, W.; Shen, Q. Adaptive Algorithm on Block-Compressive Sensing and Noisy Data Estimation. Electronics 2019, 8, 753. [Google Scholar] [CrossRef]
- Wang, Y.; Du, L.; Tang, G.; Ling, S. A Biometric Identification for Multi-Modal Biomedical Signals in Geriatric Care. Sensors 2024, 24, 6558. [Google Scholar] [CrossRef]
- Wang, S.; Celebi, M.E.; Zhang, Y.-D.; Yu, X.; Lu, S.; Yao, X.; Zhou, Q.; Martinez-Garcia, M.; Tian, Y.; Gorriz, J.M.; et al. Advances in Data Preprocessing for Biomedical Data Fusion: An Overview of the Methods, Challenges, and Prospects. Inf. Fusion 2021, 76, 376–421. [Google Scholar] [CrossRef]
- Duan, J.; Xiong, J.; Li, Y.; Ding, W. Deep Learning Based Multimodal Biomedical Data Fusion: An Overview and Comparative Review. Inf. Fusion 2024, 112, 102536. [Google Scholar] [CrossRef]
- Azam, K.S.F.; Ryabchykov, O.; Bocklitz, T. A Review on Data Fusion of Multidimensional Medical and Biomedical Data. Molecules 2022, 27, 7448. [Google Scholar] [CrossRef]
- Siirtola, P.; Tamminen, S.; Chandra, G.; Ihalapathirana, A.; Röning, J. Predicting Emotion with Biosignals: A Comparison of Classification and Regression Models for Estimating Valence and Arousal Level. Sensors 2022, 22, 1598. [Google Scholar] [CrossRef]
- Wang, Y.; Song, W.; Tao, W.; Liotta, A.; Yang, D.; Li, X.; Gao, S.; Sun, Y.; Ge, W.; Zhang, W.; et al. A Systematic Review on Affective Computing: Emotion Models, Databases, and Recent Advances. Inf. Fusion 2022, 83–84, 19–52. [Google Scholar] [CrossRef]
- Khan, H.; Sharma, T.; Soni, A.; Choudhary, M.; Islam, S. Analysis of Mental Health Based on the Dreams by Analyzing the Biomedical Signals of the Body. NeuroQuantology 2022, 20, 4204. [Google Scholar]
- Moon, K.S.; Lee, S.Q. A Wearable Multimodal Wireless Sensing System for Respiratory Monitoring and Analysis. Sensors 2023, 23, 6790. [Google Scholar] [CrossRef] [PubMed]
- Antaki, B.; Dalloul, A.H.; Miramirkhani, F. Intelligent Health Monitoring in 6G Networks: Machine Learning-Enhanced VLC-Based Medical Body Sensor Networks. Sensors 2025, 25, 3280. [Google Scholar] [CrossRef]
- Ancans, A.; Greitans, M.; Kagis, S. An Efficient Communication Protocol for Real-Time Body Sensor Data Acquisition and Feedback in Interactive Wearable Systems. J. Sens. Actuator Netw. 2025, 14, 4. [Google Scholar] [CrossRef]
- Matsuo, Y.; LeCun, Y.; Sahani, M.; Precup, D.; Silver, D.; Sugiyama, M.; Uchibe, E.; Morimoto, J. Deep Learning, Reinforcement Learning, and World Models. Neural Netw. 2022, 152, 267–275. [Google Scholar] [CrossRef]
- Chen, J.; Jia, J.; Deng, Y.; Wang, X.; Aghvami, A.A. Adaptive Compressive Sensing and Data Recovery for Periodical Monitoring Wireless Sensor Networks. Sensors 2018, 18, 3369. [Google Scholar] [CrossRef]
- Zeng, H.; Yu, Y.; Liu, G.; Wu, Y. A Robust Method Based on Deep Learning for Compressive Spectrum Sensing. Sensors 2025, 25, 2187. [Google Scholar] [CrossRef]
- Kumar, S.S.; Ramachandran, P. Review on Compressive Sensing Algorithms for ECG Signal for IoT Based Deep Learning Framework. Appl. Sci. 2022, 12, 8368. [Google Scholar] [CrossRef]
- Tedja, B.; Al Musadieq, M.; Kusumawati, A. Systematic Literature Review Using PRISMA: Exploring the Influence of Service Quality and Perceived Value on Satisfaction and Intention to Continue Relationship. Future Bus. J. 2024, 10, 39. [Google Scholar] [CrossRef]
- Hapsari, G.I.; Munadi, R.; Erfianto, B.; Irawati, I.D. Future Research and Trends in Ultra-Wideband Indoor Tag Localization. IEEE Access 2025, 13, 21827–21836. [Google Scholar] [CrossRef]
- Wang, J.; Zakaria, S.A. Design Application and Evolution of 3D Visualization Technology in Architectural Heritage Conservation: A CiteSpace-Based Knowledge Mapping and Systematic Review (2005–2024). Buildings 2025, 15, 1854. [Google Scholar] [CrossRef]
- Salama, M.; Bahsoon, R.; Bencomo, N. Managing Trade-offs in Self-Adaptive Software Architectures: A Systematic Mapping Study. In Managing Trade-Offs in Adaptable Software Architectures; Mistrik, I., Ali, N., Kazman, R., Grundy, J., Schmerl, B., Eds.; Morgan Kaufmann: Cambridge, MA, USA, 2017; pp. 249–297. [Google Scholar] [CrossRef]
- Werneck, H.; Silva, N.; Viana, M.; Pereira, A.C.M.; Mourão, F.; Rocha, L. Points of Interest Recommendations: Methods, Evaluation, and Future Directions. Inf. Syst. 2021, 101, 101789. [Google Scholar] [CrossRef]
- Hosseini, M.; Shahri, A.; Phalp, K.; Taylor, J.; Ali, R. Crowdsourcing: A Taxonomy and Systematic Mapping Study. Comput. Sci. Rev. 2015, 17, 43–69. [Google Scholar] [CrossRef]
- Carrera-Rivera, A.; Ochoa, W.; Larrinaga, F.; Lasa, G. How-to Conduct a Systematic Literature Review: A Quick Guide for Computer Science Research. MethodsX 2022, 9, 101895. [Google Scholar] [CrossRef] [PubMed]
- Machchhar, R.J.; Toller, C.N.K.; Bertoni, A.; Bertoni, M. Data-Driven Value Creation in Smart Product-Service System Design: State-of-the-Art and Research Directions. Comput. Ind. 2022, 137, 103606. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- He, L.; Han, D.; Zhou, X.; Qu, Z. The Voice of Drug Consumers: Online Textual Review Analysis Using Structural Topic Model. Int. J. Environ. Res. Public Health 2020, 17, 3648. [Google Scholar] [CrossRef]
- Yin, R.; Tian, R.; Wu, J.; Gan, F. Exploring the Factors Associated with Mental Health Attitude in China: A Structural Topic Modeling Approach. Int. J. Environ. Res. Public Health 2022, 19, 12579. [Google Scholar] [CrossRef]
- Lee, D.J.; Shields, E.A. Compressive Hyperspectral Imaging Using Total Variation Minimization. In Proceedings of the SPIE International Society for Optical Engineering, San Diego, CA, USA, 19–23 August 2018; Volume 10768, p. 1076804. [Google Scholar] [CrossRef]
- Pant, J.K.; Krishnan, S. Compressive Sensing of Foot Gait Signals and Its Application for the Estimation of Clinically Relevant Time Series. IEEE Trans. Biomed. Eng. 2016, 63, 1401–1415. [Google Scholar] [CrossRef]
- Thanki, R.; Dwivedi, V.; Borisagar, K. Hybrid Compression Method Using Compressive Sensing (CS) Theory for Various Biometric Data and Biomedical Data. Adv. Intell. Syst. Comput. 2018, 671, 1–13. [Google Scholar] [CrossRef]
- Zheng, Y.; Guo, X.; Jiang, H.; Zhou, B. An Innovative Multi-Level Singular Value Decomposition and Compressed Sensing Based Framework for Noise Removal from Heart Sounds. Biomed. Signal Process. Control 2017, 38, 34–43. [Google Scholar] [CrossRef]
- Ambrosanio, M.; Kosmas, P.; Pascazio, V. Exploiting Wavelet Decomposition to Enhance Sparse Recovery in Microwave Imaging. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 1607–1610. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J.; Sun, S.; Su, J.; Li, Q.; Lyu, Z. Atrial fibrillation detection from compressed ecg measurements for wireless body sensor network. ACM Trans. Internet Technol. 2024. [Google Scholar] [CrossRef]
- Craven, D.; McGinley, B.; Kilmartin, L.; Glavin, M.; Jones, E. Compressed sensing for bioelectric signals: A review. IEEE J. Biomed. Health Inform. 2015, 19, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Emara, H.M.; El-Shafai, W.; Algarni, A.D.; Soliman, N.F.; Abd El-Samie, F.E. A hybrid compressive sensing and classification approach for dynamic storage management of vital biomedical signals. IEEE Access 2023, 11, 10823–10836. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Liu, S.; Zhang, Y.; Zhang, J. Self-supervised scalable deep compressed sensing. Int. J. Comput. Vis. 2025, 133, 688–723. [Google Scholar] [CrossRef]
- Polanía, L.F.; Plaza, R.I. Compressed sensing ECG using restricted Boltzmann machines. Biomed. Signal Process. Control 2018, 45, 237–245. [Google Scholar] [CrossRef]
- Bertsimas, D.; Johnson, N.A.G. Compressed sensing: A discrete optimization approach. Mach. Learn. 2024, 113, 6725–6764. [Google Scholar] [CrossRef]
- Ndaoud, M.; Tsybakov, A.B. Optimal variable selection and adaptive noisy compressed sensing. IEEE Trans. Inf. Theory 2020, 66, 2517–2532. [Google Scholar] [CrossRef]
- Nakos, V.; Shi, X.; Woodruff, D.P.; Zhang, H. Improved Algorithms for Adaptive Compressed Sensing. arXiv 2018, arXiv:1804.09673. [Google Scholar] [CrossRef]
- Hadi, M.A.; Alshebeili, S.; Jamil, K.; El-Samie, F.E.A. Compressive sensing applied to radar systems: An overview. Signal Image Video Process. 2015, 9, 25–39. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, B.; Jiao, Z.; Mao, S. Adaptive compressive sensing based sample scheduling mechanism for wireless sensor networks. Pervasive Mob. Comput. 2015, 22, 113–125. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Chen, J. Adaptive rate block compressive sensing based on statistical characteristics estimation. IEEE Trans. Image Process. 2022, 31, 734–747. [Google Scholar] [CrossRef]
- Fayed, S.; Youssef, S.M.; El-Helw, A.; Patwary, M.; Moniri, M. Adaptive compressive sensing for target tracking within wireless visual sensor networks-based surveillance applications. Multimedia Tools Appl. 2016, 75, 6347–6371. [Google Scholar] [CrossRef]
- Davenport, M.A.; Massimino, A.K.; Needell, D.; Woolf, T. Constrained adaptive sensing. IEEE Trans. Signal Process. 2016, 64, 5437–5449. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Xu, K.; Ren, F.; Yu, H. Data-driven sampling matrix Boolean optimization for energy-efficient biomedical signal acquisition by compressive sensing. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 255–265. [Google Scholar] [CrossRef]
- Cai, H.; Qu, Z.; Li, Z.; Zhang, Y.; Hu, X.; Hu, B. Feature-level fusion approaches based on multimodal EEG data for depression recognition. Inf. Fusion 2020, 59, 127–138. [Google Scholar] [CrossRef]
- Li, J.; Ma, J.; Omisore, O.M.; Liu, Y.; Tang, H.; Ao, P.; Yan, Y.; Wang, L.; Nie, Z. Noninvasive blood glucose monitoring using spatiotemporal ECG and PPG feature fusion and weight-based Choquet integral multimodel approach. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 3521–3535. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, X.; Feng, L.; Ling, B.W.-K.; Han, L.; Zhang, H. rU-Net, multi-scale feature fusion and transfer learning: Unlocking the potential of cuffless blood pressure monitoring with PPG and ECG. IEEE J. Biomed. Health Inform. 2025, 29, 346–357. [Google Scholar] [CrossRef]
- Ming, Y.; Wu, D.; Wang, Y.-K.; Shi, Y.; Lin, C.-T. EEG-based drowsiness estimation for driving safety using deep Q-learning. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 5, 505–516. [Google Scholar]
- Machidon, A.L.; Pejović, V. Deep learning for compressive sensing: A ubiquitous systems perspective. Artif. Intell. Rev. 2023, 56, 3619–3658. [Google Scholar] [CrossRef]
- Yamaç, M.; Akpinar, U.; Sahin, E.; Kiranyaz, S.; Gabbouj, M. Generalized tensor summation compressive sensing network (GTSNET): An easy to learn compressive sensing operation. IEEE Trans. Image Process. 2023, 32, 5637–5652. [Google Scholar] [CrossRef] [PubMed]
- Marmenone, N.; Moya, P.; Ledesma, A.; Pérez, J.; Fornés, S.; Iribarren, O. Compressive Sensing-Based Brain Network Characterization from EEG Signals for Alzheimer’s Disease and Mild Cognitive Impairment. Sensors 2023, 23, 2185. [Google Scholar] [CrossRef]
- Moeabite, F.; Kachenoura, A.; Gougeon, M.; Attal, Y.; Naccache, L.; Naccache, P.; Pélégrini-Issac, M. Assessing the Compressibility of EEG Signals to Discriminate Brain States. Entropy 2021, 23, 1374. [Google Scholar] [CrossRef]
- Kalliannan, B.K.; Ganesan, N.; Arjunan, T. Low-power hardware implementation for multi-channel EEG acquisition using distributed compressive sensing. Biomed. Signal Process. Control 2023, 85, 104928. [Google Scholar] [CrossRef]
- Lee, H.; Lee, H.; Kim, Y. A Novel Automatic Sleep Stage Classification Based on Single-Channel EEG Using Compressive Sensing and Sparse Representation. Sensors 2021, 21, 5236. [Google Scholar] [CrossRef]
- Abahusain, K.O.; Mohammed, Y.; Almashary, M.; Al-Sharif, M.A.; Hamza, B.A. Optimized Compressive Sensing for Wireless Epilepsy Seizure Detection with Reduced Energy Consumption in Wearable EEG Devices. Sensors 2023, 23, 7306. [Google Scholar]
- Sheng, J.; Xiao, Z.; Zhang, X.; Yan, H. Optimized Measurement Matrix Design for Compressed Sensing-Based Wireless Body Area Networks. Sensors 2020, 20, 2397. [Google Scholar] [CrossRef]
- AlZubi, A.A.; Al-Qurran, Z.M.; Alqudah, A.M.; Althunibat, T.A.; Almobaideen, W.M. Machine Learning Techniques for Emotion Detection Using Physiological Signals. IEEE Trans. Biomed. Eng. 2018, 65, 2450–2463. [Google Scholar]
- Lee, G.; Kim, S.; Lee, K. Wearable Heart Rate Monitoring Using ECG and PPG Signals. Sensors 2019, 19, 2339. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Y.; Liu, X.; Fan, X.; Ren, Y.; Yuan, T. Multimodal Feature Fusion for Sleep Apnea Detection Using EEG and ECG. J. Med. Syst. 2020, 44, 148. [Google Scholar]
- Wang, Z.; Deng, Y.; Gu, D.; Wang, Z. HOG-based feature extraction for medical image analysis. Med. Image Anal. 2017, 36, 12–22. [Google Scholar]
- Chen, J.; Li, S.; Wang, Y.; Li, Y.; Liu, Z. Late Fusion of EEG and EMG for Sleep Disorder Detection. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019; pp. 1968–1973. [Google Scholar] [CrossRef]
- Penzel, T.; Kesper, K.; Schrading, L.; Jerrentrup, A.; Becker, H.F.; Glos, M. Multimodal biosignal analysis for respiratory monitoring. Physiol. Meas. 2020, 41, 05TR01. [Google Scholar]
Research Question | Question |
---|---|
RQ1 | What are the issues, methods, and performance metrics of CS? |
RQ2 | What are the limitations of existing methods in CS? |
RQ3 | What are the issues of CS metrics method in biomedical signal fusion? |
Topic No. | Representative Keywords | Mean Proportion (%) | Trend (Slope Value) | Confidence Interval (Lower Bound–Upper Bound) | Interpretation (Trending Up/Down/Stagnant) |
---|---|---|---|---|---|
1 | compressive, sensing, imaging, ECG, array, wearable, SVM, realtime, sensors, detection | ~12.0% | 0.00019 | ~(0.105–0.135) | Stagnant |
2 | sensing, ECG, compressive, acquisition, adaptive, simulation, toolbox, kwave, photoacoustic, imaging | ~7.0% | −0.00347 | ~(0.040–0.105) | Trending Down |
3 | image, processing, sensing, signal, data, reconstruction, compressive, biomedical, MRI, transform | ~4.5% | 0.00287 | ~(0.025–0.075) | Trending Up |
4 | compressed, sensing, learning, ECG, signal, dictionary, body, EEG, reconstruction, compressive | ~34.0% | −0.00120 | ~(0.300–0.370) | Stagnant |
5 | imaging, resonance, magnetic, sensing, compressed, MRI, compressive, greedy, gradient, biomedical | ~5.5% | −0.00112 | ~(0.045–0.070) | Trending Down |
6 | compressive, sensing, image, MRI, sampling, classification, inverse, compressed, reconstruction, random | ~8.5% | 0.00100 | ~(0.065–0.110) | Trending Up |
7 | pursuit, compressed, matching, orthogonal, sensing, algorithm, ratio, wavelet, signal, electrocardiogram | ~12.0% | −0.00003 | ~(0.110–0.135) | Stagnant |
8 | sensing, compressive, reconstruction, tomography, sensor, power, image, compressed, energy, deep | ~5.5% | −0.00054 | ~(0.045–0.065) | Stagnant |
9 | sensing, images, compressed, compressive, clustering, motion, matrix, device, spelling, onebit | ~4.5% | 0.00034 | ~(0.030–0.060) | Stagnant |
10 | neural, deep, network, signal, convolutional, sensing, compressed, biomedical, learning, imaging | ~5.5% | 0.00196 | ~(0.035–0.090) | Trending Up |
No. | Issue Group | Reference Number | Methods Used |
---|---|---|---|
1 | Physiological Signal Compression (ECG, EEG, etc.) | [5,6,7,8,9,42,43,44,45,46,47] |
|
2 | Adaptive Compressive Sensing | [10,22,48,49,50,51,52,53,54,55] |
|
3 | Multimodal Signal Fusion for Healthcare | [3,56,57,58] |
|
4 | Deep Learning for Biomedical Signal Analysis | [59,60,61] |
No. Issue | Performance Metrics |
---|---|
1 | |
2 | |
3 | |
4 |
Limitations | Potential Research |
---|---|
|
|
|
|
|
|
|
|
No. Issue | Methods | Limitations | Potential Gaps |
---|---|---|---|
1 | Feature-level fusion with linear and non-linear feature extraction from EEG signals (neutral, negative, positive audio stimuli), using genetic algorithm for feature weighting and classifiers (KNN, DT, SVM) [56] |
|
|
2 | Multimodal signal fusion categorized by signal type (physiological, medical imaging) and fusion techniques (feature-based, decision-based) for smart healthcare systems [3] |
|
|
3 | Spatiotemporal ECG and PPG feature fusion with three-level fusion: signal pooling, temporal and spatial feature extraction using numerical analysis and ResNets, and multi-model fusion with weighted Choquet integral [57] |
|
|
4 | rU-Net architecture combining U-Net and ResNet with Short-Time Fourier Transform (STFT), multi-head attention, and transfer learning for ECG and PPG-based blood pressure monitoring [58] |
|
|
Optimization Focus Area | Method/Algorithm | Advantages | Disadvantages |
---|---|---|---|
Data Storage | CS for biosignal volume reduction [62,63] | Reduces massive data storage requirements (e.g., terabytes for 1000 neuron reconstruction). Enables long-term data analysis without significant information loss. | Reconstruction quality is dependent on signal sparsity, which is not always met in EEG signals. Reconstruction process can be time-consuming, especially for real-time applications. |
Computation | BSBL, OMP, SOMP (for complexity reduction) [64,65] | Reduces computational load, enabling implementation on resource-constrained devices. BSBL and OMP provide accurate reconstruction with lower complexity compared to L1-norm methods. | Greedy algorithms like OMP can be less accurate for non-fully sparse EEG signals. BSBL implementation requires complex parameter adjustments for optimal results. |
Transmission | CS for reducing transmitted data in wireless systems [66,67] | Reduces bandwidth requirements, crucial for long-term wireless devices. Saves battery power, extending the lifespan of wireless EEG devices. | Random matrices like Gaussian require energy-intensive operations, making them not ideal for simple hardware. Transmission quality depends on the sensing matrix design and the reconstruction algorithm |
Fusion Strategy/Level | Biomedical Signal Application | Advantages | Limitations |
---|---|---|---|
Early Fusion/Data Level (Raw data from multiple modalities are combined before feature extraction or modelling.) [3,68,69] |
|
|
|
Intermediate Fusion/Feature Level (Features extracted from each modality are combined before decision-making.) [3,70,71] |
|
|
|
Late Fusion/Decision Level (Decisions or scores from individual modality models are combined for final output.) [3,72,73] |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasasti, A.L.; Rizal, A.; Erfianto, B.; Ziani, S. Compressive Sensing for Multimodal Biomedical Signal: A Systematic Mapping and Literature Review. Signals 2025, 6, 54. https://doi.org/10.3390/signals6040054
Prasasti AL, Rizal A, Erfianto B, Ziani S. Compressive Sensing for Multimodal Biomedical Signal: A Systematic Mapping and Literature Review. Signals. 2025; 6(4):54. https://doi.org/10.3390/signals6040054
Chicago/Turabian StylePrasasti, Anggunmeka Luhur, Achmad Rizal, Bayu Erfianto, and Said Ziani. 2025. "Compressive Sensing for Multimodal Biomedical Signal: A Systematic Mapping and Literature Review" Signals 6, no. 4: 54. https://doi.org/10.3390/signals6040054
APA StylePrasasti, A. L., Rizal, A., Erfianto, B., & Ziani, S. (2025). Compressive Sensing for Multimodal Biomedical Signal: A Systematic Mapping and Literature Review. Signals, 6(4), 54. https://doi.org/10.3390/signals6040054