Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,530)

Search Parameters:
Keywords = trajectory design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3125 KiB  
Article
Classification of Complex Power Quality Disturbances Based on Lissajous Trajectory and Lightweight DenseNet
by Xi Zhang, Jianyong Zheng, Fei Mei and Huiyu Miao
Appl. Sci. 2025, 15(14), 8021; https://doi.org/10.3390/app15148021 - 18 Jul 2025
Abstract
With the increase in the penetration rate of distributed sources and loads, the sensor monitoring data is increasing dramatically. Power grid maintenance services require a rapid response in power quality data analysis. To achieve a rapid response and highly accurate classification of power [...] Read more.
With the increase in the penetration rate of distributed sources and loads, the sensor monitoring data is increasing dramatically. Power grid maintenance services require a rapid response in power quality data analysis. To achieve a rapid response and highly accurate classification of power quality disturbances (PQDs), this paper proposes an efficient classification algorithm for PQDs based on Lissajous trajectory (LT) and a lightweight DenseNet, which utilizes the concept of Lissajous curves to construct an ideal reference signal and combines it with the original PQD signal to synthesize a feature trajectory with a distinctive shape. Meanwhile, to enhance the ability and efficiency of capturing trajectory features, a lightweight L-DenseNet skeleton model is designed, and its feature extraction capability is further improved by integrating an attention mechanism with L-DenseNet. Finally, the LT image is input into the fusion model for training, and PQD classification is achieved using the optimally trained model. The experimental results demonstrate that, compared with current mainstream PQD classification methods, the proposed algorithm not only achieves superior disturbance classification accuracy and noise robustness but also significantly improves response speed in PQD classification tasks through its concise visualization conversion process and lightweight model design. Full article
Show Figures

Figure 1

27 pages, 5242 KiB  
Article
Development of a Compliant Pediatric Upper-Limb Training Robot Using Series Elastic Actuators
by Jhon Rodriguez-Torres, Paola Niño-Suarez and Mauricio Mauledoux
Actuators 2025, 14(7), 353; https://doi.org/10.3390/act14070353 - 18 Jul 2025
Abstract
Series elastic actuators (SEAs) represent a key technological solution to enhance safety, performance, and adaptability in robotic devices for physical training. Their ability to decouple the rigid actuator’s mechanical impedance from the load, combined with passive absorption of external disturbances, makes them particularly [...] Read more.
Series elastic actuators (SEAs) represent a key technological solution to enhance safety, performance, and adaptability in robotic devices for physical training. Their ability to decouple the rigid actuator’s mechanical impedance from the load, combined with passive absorption of external disturbances, makes them particularly suitable for pediatric applications. In children aged 2 to 5 years—where motor control is still developing and movements can be unpredictable or unstructured—SEAs provide a compliant mechanical response that ensures user protection and enables safe physical interaction. This study explores the role of SEAs as a central component for imparting compliance and backdrivability in robotic systems designed for upper-limb training. A dynamic model is proposed, incorporating interaction with the user’s limb, along with a computed torque control strategy featuring integral action. The system’s performance is validated through simulations and experimental tests, demonstrating stable trajectory tracking, disturbance absorption, and effective impedance decoupling. The results support the use of SEAs as a foundational technology for developing safe adaptive robotic solutions in pediatric contexts capable of responding flexibly to user variability and promoting secure interaction in early motor development environments. Full article
Show Figures

Figure 1

18 pages, 9419 KiB  
Article
STNet: Prediction of Underwater Sound Speed Profiles with an Advanced Semi-Transformer Neural Network
by Wei Huang, Junpeng Lu, Jiajun Lu, Yanan Wu, Hao Zhang and Tianhe Xu
J. Mar. Sci. Eng. 2025, 13(7), 1370; https://doi.org/10.3390/jmse13071370 - 18 Jul 2025
Abstract
The real-time acquisition of an accurate underwater sound velocity profile (SSP) is crucial for tracking the propagation trajectory of underwater acoustic signals, making it play a key role in ocean communication positioning. SSPs can be directly measured by instruments or inverted leveraging sound [...] Read more.
The real-time acquisition of an accurate underwater sound velocity profile (SSP) is crucial for tracking the propagation trajectory of underwater acoustic signals, making it play a key role in ocean communication positioning. SSPs can be directly measured by instruments or inverted leveraging sound field data. Although measurement techniques provide a good accuracy, they are constrained by limited spatial coverage and require a substantial time investment. The inversion method based on the real-time measurement of acoustic field data improves operational efficiency but loses the accuracy of SSP estimation and suffers from limited spatial applicability due to its stringent requirements for ocean observation infrastructures. To achieve accurate long-term ocean SSP estimation independent of real-time underwater data measurements, we propose a semi-transformer neural network (STNet) specifically designed for simulating sound velocity distribution patterns from the perspective of time series prediction. The proposed network architecture incorporates an optimized self-attention mechanism to effectively capture long-range temporal dependencies within historical sound velocity time-series data, facilitating an accurate estimation of current SSPs or prediction of future SSPs. Through the architectural optimization of the transformer framework and integration of a time encoding mechanism, STNet could effectively improve computational efficiency. For long-term forecasting (using the Pacific Ocean as a case study), STNet achieved an annual average RMSE of 0.5811 m/s, outperforming the best baseline model, H-LSTM, by 26%. In short-term forecasting for the South China Sea, STNet further reduced the RMSE to 0.1385 m/s, demonstrating a 51% improvement over H-LSTM. Comparative experimental results revealed that STNet outperformed state-of-the-art models in predictive accuracy and maintained good computational efficiency, demonstrating its potential for enabling accurate long-term full-depth ocean SSP forecasting. Full article
Show Figures

Figure 1

15 pages, 656 KiB  
Article
Green Technology Game and Data-Driven Parameter Identification in the Digital Economy
by Xiaofeng Li and Qun Zhao
Mathematics 2025, 13(14), 2302; https://doi.org/10.3390/math13142302 - 18 Jul 2025
Abstract
The digital economy presents multiple challenges to the promotion of green technologies, including behavioral uncertainty among firms, heterogeneous technological choices, and disparities in policy incentive strength. This study develops a tripartite evolutionary game model encompassing government, production enterprises, and technology suppliers to systematically [...] Read more.
The digital economy presents multiple challenges to the promotion of green technologies, including behavioral uncertainty among firms, heterogeneous technological choices, and disparities in policy incentive strength. This study develops a tripartite evolutionary game model encompassing government, production enterprises, and technology suppliers to systematically explore the strategic evolution mechanisms underlying green technology adoption. A three-dimensional nonlinear dynamic system is constructed using replicator dynamics, and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is applied to identify key cost and benefit parameters for firms. Simulation results exhibit a strong match between the estimated parameters and simulated data, highlighting the model’s identifiability and explanatory capacity. In addition, the stability of eight pure strategy equilibrium points is examined through Jacobian analysis, revealing the evolutionary trajectories and local stability features across various strategic configurations. These findings offer theoretical guidance for optimizing green policy design and identifying behavioral pathways, while establishing a foundation for data-driven modeling of dynamic evolutionary processes. Full article
(This article belongs to the Special Issue Dynamic Analysis and Decision-Making in Complex Networks)
Show Figures

Figure 1

22 pages, 6177 KiB  
Article
Support-Vector-Regression-Based Kinematics Solution and Finite-Time Tracking Control Framework for Uncertain Gough–Stewart Platform
by Xuedong Jing and Wenjia Yu
Electronics 2025, 14(14), 2872; https://doi.org/10.3390/electronics14142872 - 18 Jul 2025
Abstract
This paper addresses the trajectory tracking control problem of a six-degree-of-freedom Gough–Stewart Platform (GSP) by proposing a control strategy that combines a sliding mode (SM) controller with a rapid forward kinematics solution algorithm. The study first develops an efficient forward kinematics method that [...] Read more.
This paper addresses the trajectory tracking control problem of a six-degree-of-freedom Gough–Stewart Platform (GSP) by proposing a control strategy that combines a sliding mode (SM) controller with a rapid forward kinematics solution algorithm. The study first develops an efficient forward kinematics method that integrates Support Vector Regression (SVR) with the Levenberg–Marquardt algorithm, effectively resolving issues related to multiple solutions and local optima encountered in traditional iterative approaches. Subsequently, a SM controller based on the GSP’s dynamic model is designed to achieve high-precision trajectory tracking. The proposed control strategy’s robustness and effectiveness are validated through simulation experiments, demonstrating superior performance in the presence of model discrepancies and external disturbances. Comparative analysis with traditional PD controllers and linear SM controllers shows that the proposed method offers significant advantages in both tracking accuracy and control response speed. This research provides a novel solution for high-precision control in GSP applications. Full article
Show Figures

Figure 1

11 pages, 1461 KiB  
Article
Global–Local Cooperative Optimization in Photonic Inverse Design Algorithms
by Mingzhe Li, Tong Wang, Yi Zhang, Yulin Shen, Jie Yang, Ke Zhang, Dehui Pan and Ming Xin
Photonics 2025, 12(7), 725; https://doi.org/10.3390/photonics12070725 - 17 Jul 2025
Abstract
We developed the Global–Local Integrated Topology inverse design algorithm (denoted as the GLINT algorithm), which employs a trajectory-based optimization strategy with waveguide–substrate material-flipping structural modifications, enabling the direct optimization of discrete waveguide–substrate binary structures. Compared to the conventional Direct Binary Search (DBS), the [...] Read more.
We developed the Global–Local Integrated Topology inverse design algorithm (denoted as the GLINT algorithm), which employs a trajectory-based optimization strategy with waveguide–substrate material-flipping structural modifications, enabling the direct optimization of discrete waveguide–substrate binary structures. Compared to the conventional Direct Binary Search (DBS), the GLINT algorithm not only significantly enhances computational efficiency through its global search–local refinement framework but also achieves a superior 20 nm × 20 nm optimization resolution while maintaining its optimization speed—substantially advancing the design capability. Utilizing this algorithm, we designed and experimentally demonstrated a 3.5 µm × 3.5 µm dual-port wavelength division multiplexer (WDM), achieving a minimum crosstalk of −11.3 dB and a 2 µm × 2 µm 90-degree bending waveguide exhibiting a 0.31–0.52 dB insertion loss over the 1528–1600 nm wavelength range, both fabricated on silicon-on-insulator (SOI) wafers. Additionally, a 4.5 µm × 4.5 µm three-port WDM structure was also designed and simulated, demonstrating crosstalk as low as −36.5 dB. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

17 pages, 4432 KiB  
Article
Wheeled Permanent Magnet Climbing Robot for Weld Defect Detection on Hydraulic Steel Gates
by Kaiming Lv, Zhengjun Liu, Hao Zhang, Honggang Jia, Yuanping Mao, Yi Zhang and Guijun Bi
Appl. Sci. 2025, 15(14), 7948; https://doi.org/10.3390/app15147948 - 17 Jul 2025
Abstract
In response to the challenges associated with weld treatment during the on-site corrosion protection of hydraulic steel gates, this paper proposes a method utilizing a magnetic adsorption climbing robot to perform corrosion protection operations. Firstly, a magnetic adsorption climbing robot with a multi-wheel [...] Read more.
In response to the challenges associated with weld treatment during the on-site corrosion protection of hydraulic steel gates, this paper proposes a method utilizing a magnetic adsorption climbing robot to perform corrosion protection operations. Firstly, a magnetic adsorption climbing robot with a multi-wheel independent drive configuration is proposed as a mobile platform. The robot body consists of six joint modules, with the two middle joints featuring adjustable suspension. The joints are connected in series via an EtherCAT bus communication system. Secondly, the kinematic model of the climbing robot is analyzed and a PID trajectory tracking control method is designed, based on the kinematic model and trajectory deviation information collected by the vision system. Subsequently, the proposed kinematic model and trajectory tracking control method are validated through Python3 simulation and actual operation tests on a curved trajectory, demonstrating the rationality of the designed PID controller and control parameters. Finally, an intelligent software system for weld defect detection based on computer vision is developed. This system is demonstrated to conduct defect detection on images of the current weld position using a trained model. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

27 pages, 68526 KiB  
Article
Design and Evaluation of a Novel Actuated End Effector for Selective Broccoli Harvesting in Dense Planting Conditions
by Zhiyu Zuo, Yue Xue, Sheng Gao, Shenghe Zhang, Qingqing Dai, Guoxin Ma and Hanping Mao
Agriculture 2025, 15(14), 1537; https://doi.org/10.3390/agriculture15141537 - 16 Jul 2025
Viewed by 63
Abstract
The commercialization of selective broccoli harvesters, a critical response to agricultural labor shortages, is hampered by end effectors with large operational envelopes and poor adaptability to complex field conditions. To address these limitations, this study developed and evaluated a novel end-effector with an [...] Read more.
The commercialization of selective broccoli harvesters, a critical response to agricultural labor shortages, is hampered by end effectors with large operational envelopes and poor adaptability to complex field conditions. To address these limitations, this study developed and evaluated a novel end-effector with an integrated transverse cutting mechanism and a foldable grasping cavity. Unlike conventional fixed cylindrical cavities, our design utilizes actuated grasping arms and a mechanical linkage system to significantly reduce the operational footprint and enhance maneuverability. Key design parameters were optimized based on broccoli morphological data and experimental measurements of the maximum stem cutting force. Furthermore, dynamic simulations were employed to validate the operational trajectory and ensure interference-free motion. Field tests demonstrated an operational success rate of 93.33% and a cutting success rate of 92.86%. The end effector successfully operated in dense planting environments, effectively avoiding interference with adjacent broccoli heads. This research provides a robust and promising solution that advances the automation of broccoli harvesting, paving the way for the commercial adoption of robotic harvesting technologies. Full article
Show Figures

Figure 1

14 pages, 985 KiB  
Article
Forefoot Centre of Pressure Patterns in Black Male African Recreational Runners with Pes Planus
by Jodie Dickson, Glen James Paton and Yaasirah Mohomed Choonara
J. Funct. Morphol. Kinesiol. 2025, 10(3), 273; https://doi.org/10.3390/jfmk10030273 - 16 Jul 2025
Viewed by 60
Abstract
Background: Pes planus is a condition where the arch of the foot collapses, resulting in the entire sole contacting the ground. The biomechanical implications of pes planus on gait have been widely studied; however, research specific to Black African populations, particularly recreational runners, [...] Read more.
Background: Pes planus is a condition where the arch of the foot collapses, resulting in the entire sole contacting the ground. The biomechanical implications of pes planus on gait have been widely studied; however, research specific to Black African populations, particularly recreational runners, is scarce. Aim: This study aimed to describe the forefoot centre of pressure (CoP) trajectory during the barefoot gait cycle among Black African recreational runners with pes planus. Methods: A prospective explorative and quantitative study design was employed. Participants included Black African male recreational runners aged 18 to 45 years diagnosed with pes planus. A Freemed™ 6050 force plate was used to collect gait data. Statistical analysis included cross-tabulations to identify patterns. Results: This study included 104 male participants across seven weight categories, with the majority in the 70-to-79 kg range (34.6%, n = 36). Most participants with pes planus showed a neutral foot posture (74.0%, n = 77) on the foot posture index 6 (FPI-6) scale. Flexible pes planus (94.2%, n = 98) was much more common than rigid pes planus (5.8%, n = 6). Lateral displacement of the CoP was observed in the right forefoot (90.4%, n = 94) and left forefoot (57.7%, n = 60). Load distribution patterns differed between feet, with the right foot favouring the medial heel, arch, and metatarsal heads, while the left foot favoured the lateral heel, medial heel, and lateral arch. No statistical significance was found in the cross-tabulations, but notable lateral CoP displacement in the forefoot was observed. Conclusions: The findings challenge the traditional view of pes planus causing overpronation and highlight the need for clinicians to reconsider standard diagnostic and management approaches. Further research is needed to explore the implications of these findings for injury prevention and management in this population. Full article
(This article belongs to the Special Issue Biomechanical Analysis in Physical Activity and Sports—2nd Edition)
Show Figures

Figure 1

16 pages, 2981 KiB  
Article
Beyond MIND and Mediterranean Diets: Designing a Diet to Optimize Parkinson’s Disease Outcomes
by Laurie K. Mischley and Magdalena Murawska
Nutrients 2025, 17(14), 2330; https://doi.org/10.3390/nu17142330 - 16 Jul 2025
Viewed by 496
Abstract
Background: A growing body of evidence suggests that diet can modify Parkinson’s disease (PD) outcomes, although there is disagreement about what should be included and excluded in such a diet. Existing evidence suggests that adherence to the MIND and Mediterranean (MEDI) diets [...] Read more.
Background: A growing body of evidence suggests that diet can modify Parkinson’s disease (PD) outcomes, although there is disagreement about what should be included and excluded in such a diet. Existing evidence suggests that adherence to the MIND and Mediterranean (MEDI) diets are associated with reduced PD symptoms, but only a few variables from the adherence scales are responsible for the statistically observed improvement. Objectives: The goal was to use patient-reported outcomes in a large cohort to identify the foods and dietary patterns (PRO diet) most strongly associated with the fewest PD symptoms over time, and to develop a composite adherence scale to enable comparisons between MEDI, MIND, and PRO. Methods: Data were obtained from the prospective longitudinal natural history study and from Modifiable Variables in Parkinsonism (MVP)—a study designed to identify behaviors associated with patient-reported outcomes (PRO-PD). Upon the completion of the binary and food frequency data collection, using various predictive models and considering congruence with historical data, the PRO diet was created via an iterative process. Our goal was to create a new scale and compare its performance to the existing MIND and MEDI scores. The comparison was made at baseline, using the regression models for PRO-PD and the different scales as the predictors. The models were compared via the Akaike Information Criterion (AIC). To examine whether baseline adherence levels predicted subsequent symptom trajectories, the baseline PRO diet adherence and subsequent slope of progression were evaluated. Results: Data from 2290 individuals with PD were available for this analysis. The Mediterranean and MIND diets showed almost identical effects. For both the diets, the effect they had on non-motor symptoms was about twice the effect on motor symptoms. The slopes for the total PRO-PD for MEDI, MIND, and PRO-21 were −64.20467, −64.04220, and −28.61995, respectively. The AIC value differences were substantial (>2), indicating meaningful improvements in the model fit for total PRO-PD, as follows: MEDI: 28,897.24, MIND: 28,793.08, and PRO-21: 27,500.71. The subset of individuals who were most adherent to the PRO-21 diet at baseline had the slowest subsequent progression, as measured by a 43% reduced PRO-PD slope, compared to the less adherent groups. Conclusions: The PRO-21 outperformed the MIND and MEDI diets in the model fit, overcoming the ceiling effects and showing orders of magnitude and superior explanatory power for variance in PD outcomes, despite the smaller per-unit effect sizes. However, its rigorous demands may introduce barriers related to cost, feasibility, and sustainability, underscoring the need for future intervention trials to assess real-world feasibility, adherence, side effects, and clinical impact. Full article
Show Figures

Graphical abstract

14 pages, 1235 KiB  
Proceeding Paper
Quadrotor Trajectory Tracking Under Wind Disturbance Using Backstepping Control Based on Different Optimization Techniques
by Imam Barket Ghiloubi, Latifa Abdou, Oussama Lahmar and Abdel Hakim Drid
Eng. Proc. 2025, 87(1), 93; https://doi.org/10.3390/engproc2025087093 - 16 Jul 2025
Viewed by 99
Abstract
Enhancing quadrotor control to improve both precision and responsiveness is essential for expanding their deployment in complex and dynamic environments. These aerial vehicles are widely used in applications, such as aerial mapping, delivery, disaster response, and defense, where maintaining stability and accuracy is [...] Read more.
Enhancing quadrotor control to improve both precision and responsiveness is essential for expanding their deployment in complex and dynamic environments. These aerial vehicles are widely used in applications, such as aerial mapping, delivery, disaster response, and defense, where maintaining stability and accuracy is critical, especially under external disturbances like wind. This paper makes three key contributions. First, it develops a nonlinear mathematical model of a quadrotor and designs a backstepping controller for trajectory tracking. Second, the controller’s parameters are optimized using three nature-inspired algorithms: Gray Wolf Optimization (GWO), Particle Swarm Optimization (PSO), and the Flower Pollination Algorithm (FPA), enabling performance comparisons in terms of their tracking precision and control effort. Third, the robustness of the best-performing optimized controller is evaluated by applying wind disturbances at the simulation level, modeled as external forces acting along the x-axis and summed with the control input. The simulation results highlight the comparative efficiency of the optimization methods and demonstrate the robustness of the selected controller in maintaining stability and accuracy under wind-induced perturbations. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

42 pages, 6065 KiB  
Review
Digital Alchemy: The Rise of Machine and Deep Learning in Small-Molecule Drug Discovery
by Abdul Manan, Eunhye Baek, Sidra Ilyas and Donghun Lee
Int. J. Mol. Sci. 2025, 26(14), 6807; https://doi.org/10.3390/ijms26146807 - 16 Jul 2025
Viewed by 189
Abstract
This review provides a comprehensive analysis of the transformative impact of artificial intelligence (AI) and machine learning (ML) on modern drug design, specifically focusing on how these advanced computational techniques address the inherent limitations of traditional small-molecule drug design methodologies. It begins by [...] Read more.
This review provides a comprehensive analysis of the transformative impact of artificial intelligence (AI) and machine learning (ML) on modern drug design, specifically focusing on how these advanced computational techniques address the inherent limitations of traditional small-molecule drug design methodologies. It begins by outlining the historical challenges of the drug discovery pipeline, including protracted timelines, exorbitant costs, and high clinical failure rates. Subsequently, it examines the core principles of structure-based virtual screening (SBVS) and ligand-based virtual screening (LBVS), establishing the critical bottlenecks that have historically impeded efficient drug development. The central sections elucidate how cutting-edge ML and deep learning (DL) paradigms, such as generative models and reinforcement learning, are revolutionizing chemical space exploration, enhancing binding affinity prediction, improving protein flexibility modeling, and automating critical design tasks. Illustrative real-world case studies demonstrating quantifiable accelerations in discovery timelines and improved success probabilities are presented. Finally, the review critically examines prevailing challenges, including data quality, model interpretability, ethical considerations, and evolving regulatory landscapes, while offering forward-looking critical perspectives on the future trajectory of AI-driven pharmaceutical innovation. Full article
(This article belongs to the Special Issue Advances in Computer-Aided Drug Design Strategies)
Show Figures

Graphical abstract

23 pages, 1562 KiB  
Article
Decomposition of Industrial Carbon Emission Drivers and Exploration of Peak Pathways: Empirical Evidence from China
by Yuling Hou, Xinyu Zhang, Kaiwen Geng and Yang Li
Sustainability 2025, 17(14), 6479; https://doi.org/10.3390/su17146479 - 15 Jul 2025
Viewed by 120
Abstract
Against the backdrop of increasing extreme weather events associated with global climate change, regulating carbon dioxide emissions, a primary contributor to atmospheric warming, has emerged as a pressing global challenge. Focusing on China as a representative case study of major developing economies, this [...] Read more.
Against the backdrop of increasing extreme weather events associated with global climate change, regulating carbon dioxide emissions, a primary contributor to atmospheric warming, has emerged as a pressing global challenge. Focusing on China as a representative case study of major developing economies, this research examines industrial carbon emission patterns during 2001–2022. Methodologically, it introduces an innovative analytical framework that integrates the Generalized Divisia Index Method (GDIM) with the Low Emissions Analysis Platform (LEAP) to both decompose industrial emission drivers and project future trajectories through 2040. Key findings reveal that:the following: (1) Carbon intensity in China’s industrial sector has been substantially decreasing under green technological advancements and policy interventions. (2) Industrial restructuring demonstrates constraining effects on carbon output, while productivity gains show untapped potential for emission abatement. Notably, the dual mechanisms of enhanced energy efficiency and cleaner energy transitions emerge as pivotal mitigation levers. (3) Scenario analyses indicate that coordinated policies addressing energy mix optimization, efficiency gains, and economic restructuring could facilitate achieving industrial carbon peaking before 2030. These results offer substantive insights for designing phased decarbonization roadmaps, while contributing empirical evidence to international climate policy discourse. The integrated methodology also presents a transferable analytical paradigm for emission studies in other industrializing economies. Full article
Show Figures

Figure 1

20 pages, 1987 KiB  
Article
A Sustainable Approach to Modeling Human-Centric and Energy-Efficient Vehicle Acceleration Profiles in Non-Car-Following Scenarios
by Wei Deng, Yi Luo, Shaopeng Yang, Yini Ren, Dongyi Hu and Yong Shi
Sustainability 2025, 17(14), 6481; https://doi.org/10.3390/su17146481 - 15 Jul 2025
Viewed by 93
Abstract
Previous studies have described vehicle acceleration profiles in non-car-following scenarios; however, the underlying mechanisms governing these profiles remain incompletely understood. This study aims to enhance the understanding of these mechanisms by proposing an improved model based on an optimal control problem with two [...] Read more.
Previous studies have described vehicle acceleration profiles in non-car-following scenarios; however, the underlying mechanisms governing these profiles remain incompletely understood. This study aims to enhance the understanding of these mechanisms by proposing an improved model based on an optimal control problem with two bounded conditions (OCP2B), segmenting vehicle acceleration curves into three distinct phases. Specifically, the proposed model imposes constraints on acceleration through maximum jerk and maximum acceleration functions, thereby capturing essential dynamics previously unexplained by conventional models. Our key contributions include establishing a comprehensive analytical framework for accurately describing vehicle acceleration profiles and elucidating critical characteristics overlooked in the prior literature. Our findings demonstrate that incorporating human-centric considerations, such as driving comfort, significantly enhances the model’s practical applicability. Moreover, the proposed approach provides crucial insights for designing autonomous vehicle (CAV) trajectories consistent with human driving behaviors and effectively predicts the movements of human-driven vehicles (HVs), thus facilitating smoother interactions and potentially reducing conflicts between CAVs and HVs. Full article
Show Figures

Figure 1

21 pages, 6802 KiB  
Article
Digital Twin Driven Four-Dimensional Path Planning of Collaborative Robots for Assembly Tasks in Industry 5.0
by Ilias Chouridis, Gabriel Mansour, Asterios Chouridis, Vasileios Papageorgiou, Michel Theodor Mansour and Apostolos Tsagaris
Robotics 2025, 14(7), 97; https://doi.org/10.3390/robotics14070097 - 15 Jul 2025
Viewed by 107
Abstract
Collaborative robots are vital in Industry 5.0 operations. They are utilized to perform tasks in collaboration with humans or other robots to increase overall production efficiency and execute complex tasks. Aiming at a comprehensive approach to assembly processes and highlighting new applications of [...] Read more.
Collaborative robots are vital in Industry 5.0 operations. They are utilized to perform tasks in collaboration with humans or other robots to increase overall production efficiency and execute complex tasks. Aiming at a comprehensive approach to assembly processes and highlighting new applications of collaborative robots, this paper presents the development of a digital twin (DT) for the design, monitoring, optimization and simulation of robots’ deployment in assembly cells. The DT integrates information from both the physical and virtual worlds to design the trajectory of collaborative robots. The physical information about the industrial environment is replicated within the DT in a computationally efficient way that aligns with the requirements of the path planning algorithm and the DT’s objectives. An enhanced artificial fish swarm algorithm (AFSA) is utilized for the 4D path planning optimization, taking into account dynamic and static obstacles. Finally, the proposed framework is utilized for the examination of a case in which four industrial robotic arms are collaborating for the assembly of an industrial component. Full article
(This article belongs to the Special Issue Robot Teleoperation Integrating with Augmented Reality)
Show Figures

Figure 1

Back to TopTop