Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (283)

Search Parameters:
Keywords = trailer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 478 KiB  
Article
Towards Inclusive and Sustainable Nature Education in Austria: Evaluation of Organization, Infrastructure, Risk Assessment, and Legal Frameworks of Forest and Nature Childcare Groups
by Elisabeth Quendler, Dominik Mühlberger, Bernhard Spangl, Daniel Ennöckl and Alina Branco
Sustainability 2025, 17(15), 6965; https://doi.org/10.3390/su17156965 - 31 Jul 2025
Viewed by 154
Abstract
Early childhood forest and nature education plays a vital role in shaping values and promoting sustainability throughout life. Conceptualized in Denmark, forest and nature childcare groups have been established in Austria for over 20 years, contributing to mental well-being and supporting both Education [...] Read more.
Early childhood forest and nature education plays a vital role in shaping values and promoting sustainability throughout life. Conceptualized in Denmark, forest and nature childcare groups have been established in Austria for over 20 years, contributing to mental well-being and supporting both Education for Sustainable Development (ESD) and Early Childhood Education and Care (ECEC). With increasing demand for childcare and a growing disconnect from nature—factors linked to physical and mental health challenges—there is a pressing need to expand these groups and integrate them into formal legal frameworks. This study examines the organization, staffing, infrastructure, risk prevention, and hygiene of 79 Austrian forest and nature kindergarten groups, identifying key areas of improvement to ensure safe access for all children, including those in public childcare. A semi-standardized online survey of 72 groups was analyzed using descriptive and statistical methods, including a Spearman correlation, Kruskal–Wallis test, Chi-square test, and ANOVA. Results revealed three main infrastructure types—house, container/trailer, and tipi—with houses offering the most comprehensive facilities. The ANOVA indicated significant effects of sponsorship type (p < 0.01), caregiver numbers (p < 0.001), and their interaction (p < 0.05) on half-day care costs. Currently, legal frameworks exist only in Tyrol and Salzburg. Broader access requires standardized infrastructure and risk assessment guidelines, collaboratively developed with stakeholders, to ensure safety and inclusivity in Austrian forest and nature childcare groups. Full article
(This article belongs to the Section Sustainable Education and Approaches)
Show Figures

Figure 1

17 pages, 2998 KiB  
Article
Choosing the Trailer Bus Train Scheme According to Fuel Economy Indicators
by Oleksandr Kravchenko, Volodymyr Sakhno, Anatolii Korpach, Oleksii Korpach, Ján Dižo and Miroslav Blatnický
Vehicles 2025, 7(3), 75; https://doi.org/10.3390/vehicles7030075 - 18 Jul 2025
Viewed by 266
Abstract
The presented research is focused on the development of the bus rapid transit (BRT) system, combining the high capacity of rail transport with the flexibility of bus routes. Classic BRT systems have certain limitations, particularly concerning a single rolling stock capacity. The main [...] Read more.
The presented research is focused on the development of the bus rapid transit (BRT) system, combining the high capacity of rail transport with the flexibility of bus routes. Classic BRT systems have certain limitations, particularly concerning a single rolling stock capacity. The main motivation of the work is to find efficient and cost-effective solutions to increase passenger traffic in the BRT system while optimizing fuel consumption. The main contribution of this study is the comprehensive analysis and optimization of various configurations of trailer bus trains, which represent a flexible and cost-effective alternative to traditional single or articulated buses. Based on two schemes, four possible options for using trailer bus trains are offered, which differ in the number of sections and working engines. Among the suggested schemes of trailer bus trains, the two-section and three-section schemes with all engines running and the three-section scheme with one engine turned off are appropriate for use due to improved fuel efficiency indicators with better or acceptable traction and speed properties. Calculations carried out on a mathematical model show that, for example, a two-section bus train can provide a reduction of specific fuel consumption per passenger by 6.3% compared to a single bus at full load, while a three-section train can provide even greater savings of up to 8.4%. Selective shutdown of one of the engines in a multi-section train can lead to an additional improvement in fuel efficiency by 5–10%, without leading to a critical reduction in the required traction characteristics. Full article
Show Figures

Figure 1

17 pages, 1396 KiB  
Article
Enhancing Disaster Resilience Through Mobile Solar–Biogas Hybrid PowerKiosks
by Seneshaw Tsegaye, Mason Lundquist, Alexis Adams, Thomas H. Culhane, Peter R. Michael, Jeffrey L. Pearson and Thomas M. Missimer
Sustainability 2025, 17(14), 6320; https://doi.org/10.3390/su17146320 - 10 Jul 2025
Viewed by 364
Abstract
Natural disasters in the United States frequently wreak havoc on critical infrastructure, affecting energy, water, transportation, and communication systems. To address these disruptions, the use of mobile power solutions like PowerKiosk trailers is a partial solution during recovery periods. PowerKiosk is a trailer [...] Read more.
Natural disasters in the United States frequently wreak havoc on critical infrastructure, affecting energy, water, transportation, and communication systems. To address these disruptions, the use of mobile power solutions like PowerKiosk trailers is a partial solution during recovery periods. PowerKiosk is a trailer equipped with renewable energy sources such as solar panels and biogas generators, offering a promising strategy for emergency power restoration. With a daily power output of 12.1 kWh, PowerKiosk trailers can support small lift stations or a few homes, providing a temporary solution during emergencies. Their key strength lies in their mobility, allowing them to quickly reach disaster-affected areas and deliver power when and where it is most needed. This flexibility is particularly valuable in regions like Florida, where hurricanes are common, and power outages can cause widespread disruption. Although the PowerKiosk might not be suitable for long-term use because of its limited capacity, it can play a critical role in disaster recovery efforts. In a community-wide power outage, deploying the PowerKiosk to a lift station ensures essential services like wastewater management, benefiting everyone. By using this mobile power solution, community resilience can be enhanced in the face of natural disasters. Full article
Show Figures

Figure 1

25 pages, 1264 KiB  
Article
Potential Assessment of Electrified Heavy-Duty Trailers Based on the Methods Developed for EU Legislation (VECTO Trailer)
by Stefan Present and Martin Rexeis
Future Transp. 2025, 5(3), 77; https://doi.org/10.3390/futuretransp5030077 - 1 Jul 2025
Viewed by 360
Abstract
Since 1 January 2024, newly produced heavy-duty trailers are subject to the assessment of their performance regarding CO2 and fuel consumption according to Implementing Regulation (EU) 2022/1362. The method is based on the already established approach for the CO2 and energy [...] Read more.
Since 1 January 2024, newly produced heavy-duty trailers are subject to the assessment of their performance regarding CO2 and fuel consumption according to Implementing Regulation (EU) 2022/1362. The method is based on the already established approach for the CO2 and energy consumption evaluation of trucks and buses, i.e., applying a combination of component testing and vehicle simulation using the software VECTO (Vehicle Energy Consumption calculation TOol). For the evaluation of trailers, generic conventional towing vehicles in combination with the specific CO2 and fuel consumption-relevant properties of the trailer, such as mass, aerodynamics, rolling resistance etc., are simulated in the “VECTO Trailer” software. The corresponding results are used in the European HDV CO2 standards with which manufacturers must comply to avoid penalty payments (2030: −10% for semitrailers and −7.5% for trailers compared with the baseline year 2025). Methodology and legislation are currently being extended to also cover the effects of electrified trailers (trailers with an electrified axle and/or electrically supplied auxiliaries) on CO2, electrical energy consumption, and electric range extension (special use case in combination with a battery-electric towing vehicle). This publication gives an overview of the developed regulatory framework and methods to be implemented in a future extension of VECTO Trailer as well as a comparison of different e-trailer configurations and usage scenarios regarding their impact on CO2, energy consumption, and electric range by applying the developed methods in a preliminary potential analysis. Results from this analysis indicate that e-trailers that use small batteries (5–50 kWh) to power electric refrigeration units achieve a CO2 reduction of 5–10%, depending primarily on battery capacity. In contrast, e-trailers designed for propulsion support with larger batteries (50–500 kWh) and e-axle(s) (50–500 kW) demonstrate a reduction potential of up to 40%, largely determined by battery capacity and e-axle rating. Despite their reduction potential, market acceptance of e-trailers remains uncertain as the higher number of trailers compared with towing vehicles could lead to slow adoption, especially of the more expensive configurations. Full article
Show Figures

Figure 1

19 pages, 2669 KiB  
Article
Longer Truck to Reduce CO2 Emissions: Study and Proposal Accepted for Analysis in Spain
by Yesica Pino, Juan L. Elorduy and Angel Gento
Sustainability 2025, 17(13), 6026; https://doi.org/10.3390/su17136026 - 30 Jun 2025
Viewed by 453
Abstract
The transport industry in the European Union plays a key role in the economy. However, due to persistent political, social, and technological changes, examining optimization strategies in transportation has become a crucial task to minimize expenditure, promote sustainable solutions, and address environmental degradation [...] Read more.
The transport industry in the European Union plays a key role in the economy. However, due to persistent political, social, and technological changes, examining optimization strategies in transportation has become a crucial task to minimize expenditure, promote sustainable solutions, and address environmental degradation concerns. This study analyzes the effectiveness of a new truck trailer design, adapted from existing European models, which improves load capacity through an extended trailer length. The increased length (and, by extension, volume) is expected to reduce the number of vehicles for freight transportation, thereby improving road congestion and reducing environmental impacts, which include GHG emissions and overall carbon footprint. To achieve this objective, a comprehensive analysis of current European regulations on articulated vehicles and road trains was carried out, alongside a review of related case studies implemented or under development across the European Union member states. Additionally, a pilot study was conducted using the proposed 18 m semi-trailer across 14 real-life freight routes involving loads from several suppliers and manufacturers. This study therefore demonstrates the economic benefits and reduction in pollutant emissions related to the extended design and evaluates its impact on road infrastructure conditions, given the total length of 20.55 m. Full article
(This article belongs to the Special Issue Green Logistics and Sustainable Economy—2nd Edition)
Show Figures

Figure 1

24 pages, 2570 KiB  
Article
A Preliminary Model for Forestry Machinery Chain Selection and Calculation of Operating Costs for Wood Recovery
by Luca Nonini, Daniele Cavicchioli and Marco Fiala
Forests 2025, 16(7), 1069; https://doi.org/10.3390/f16071069 - 27 Jun 2025
Viewed by 363
Abstract
Selecting the most suitable machines to use for wood recovery is essential for computing the operating costs of the whole forestry machinery chain (FMC). Nevertheless, a generalized approach for selecting the most suitable FMC and quantifying the corresponding economic performances for wood recovery [...] Read more.
Selecting the most suitable machines to use for wood recovery is essential for computing the operating costs of the whole forestry machinery chain (FMC). Nevertheless, a generalized approach for selecting the most suitable FMC and quantifying the corresponding economic performances for wood recovery (i.e., harvesting and long-distance transport) is still missing. The primary aim of this study is to describe a decision support model, called FOREstry MAchinery chain selection (“FOREMA v1”), which is able to (i) select the most feasible FMC and (ii) calculate the costs (such as EUR∙h−1; EUR∙t−1 of dry matter, DM) of each operation (OP) comprising the FMC. The model is made up of three different modules (Ms): machinery chain selection (M1), machinery chain organization (M2), and cost calculation (M3). In M1, feasible FMCs are defined according to seven technical parameters that characterize the forest area. For each FMC, FOREMA v1 defines the sequence of OPs and the types of machines that can potentially be used. Once the characteristics of the area in which wood recovery occurs are processed, the user selects the types of machines to use according to the model’s suggestions. In M2 and M3, the user is supported in organizing the FMC (e.g., calculation of the required time, working productivity, and so on) and computing the operating costs. The secondary aim of this study is to discuss a case study focused on chips production for energy generation, providing empirical evidence on how FOREMA v1 works. The proposed model provides a systematic approach for the selection and optimization of the most suitable FMC to adopt for biomass recovery, thus supporting decision-making processes. The results showed that felling had the lowest cost per unit of time (63.7 EUR·h−1) but the highest cost per unit of mass (35.4 EUR·t DM−1) due to its longer working time and lower productivity. Loading and long-distance transport incurred the highest costs both per unit of time (223.5 EUR·h−1) and per unit of mass (29.4 EUR·t DM−1), attributed to the use of medium–small-sized trailers coupled with tractors operating at low speeds, leading to a high number of cycles. For the entire FMC the costs were equal to 147.3 EUR·h−1 and 101.1 EUR·t DM−1. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

14 pages, 4052 KiB  
Article
Analysis of Hydrogen Leakage and Influencing Factors of Fuel Cell Vehicles in Enclosed Spaces
by Congxin Li and Zhang Xin
Batteries 2025, 11(7), 247; https://doi.org/10.3390/batteries11070247 - 26 Jun 2025
Viewed by 342
Abstract
A simulation study was conducted on the hydrogen leakage diffusion process and influencing factors of fuel cell vehicles in enclosed spaces. The results indicate that when hydrogen leakage flows towards the rear of the vehicle, it mainly flows along the rear wall of [...] Read more.
A simulation study was conducted on the hydrogen leakage diffusion process and influencing factors of fuel cell vehicles in enclosed spaces. The results indicate that when hydrogen leakage flows towards the rear of the vehicle, it mainly flows along the rear wall of the space and diffuses to the surrounding areas. Setting ventilation openings of different areas on the top of the carriage did not significantly improve the spatial diffusion speed of the leaked hydrogen, and the impact on the concentration of leaked hydrogen was limited to the vicinity of the ventilation openings. The ventilation opening at the rear can accelerate the diffusion of hydrogen gas to the external environment, significantly reducing the concentration of hydrogen and rate of gas rise. When the leaked hydrogen gas flows towards the front of the vehicle and above the space, the concentration of hydrogen mainly increases along the height direction of the space. The research results have significant safety implications for the use of fuel cell semi-trailer trucks. Full article
(This article belongs to the Special Issue Challenges, Progress, and Outlook of High-Performance Fuel Cells)
Show Figures

Figure 1

18 pages, 5428 KiB  
Article
Computational Analysis of Wind-Induced Driving Safety Under Wind–Rain Coupling Effect Based on Field Measurements
by Dandan Xia, Chen Chen, Yongzhu Hu, Ziyong Lin, Zhiqun Yuan and Li Lin
Vehicles 2025, 7(3), 64; https://doi.org/10.3390/vehicles7030064 - 24 Jun 2025
Viewed by 361
Abstract
Extreme events such as tropical cyclones frequently occur in coastal areas in China. With high wind speeds and rainfall during such extreme events, the vehicles on sea-crossing bridges may face severe instability problems. In this study, the dynamics of vehicles on a cross-sea [...] Read more.
Extreme events such as tropical cyclones frequently occur in coastal areas in China. With high wind speeds and rainfall during such extreme events, the vehicles on sea-crossing bridges may face severe instability problems. In this study, the dynamics of vehicles on a cross-sea bridge under the wind–rain coupling effect were analyzed based on field measurement data using computational fluid dynamics (CFD). Wind field parameters of the coastal area in China were obtained using wind speed data from measurement towers. Based on CFD, the sliding grid method was applied to establish an aerodynamic analysis model of a container truck moving on a bridge under wind and rain conditions. The discrete phase model based on the Euler–Lagrange method was used to investigate the influence of rain and obtain the aerodynamic characteristics of the truck under the coupled wind and rain effects. Based on the computational analysis results, considering the turbulence intensity, the yaw angle peaks of the tractor and trailer increased by 5.2% and 3.8%, respectively, and the lateral displacement of the truck’s center of mass increased by 9.8%. Rainfall may cause the vehicle to have a higher response, resulting in a high risk of skidding. The results show that skidding occurs for the considered container truck when rainfall is at 9.8%. These results can provide parameters for traffic control strategies under such extreme climate events in coastal areas. Full article
Show Figures

Figure 1

20 pages, 3194 KiB  
Article
Emission Rates for Light-Duty Truck Towing Operations in Real-World Conditions
by Bumsik Kim, Rohit Jaikumar, Rodolfo Souza, Minjie Xu, Jeremy Johnson, Carl R. Fulper, James Faircloth, Madhusudhan Venugopal, Chaoyi Gu, Tara Ramani, Michael Aldridge, Richard W. Baldauf, Antonio Fernandez, Thomas Long, Richard Snow, Craig Williams, Russell Logan and Heidi Vreeland
Atmosphere 2025, 16(6), 749; https://doi.org/10.3390/atmos16060749 - 19 Jun 2025
Viewed by 433
Abstract
Light-duty trucks (LDTs) are often used to tow trailers. Towing increases the load on the engine, and this additional load can affect exhaust emissions. Although heavy-duty towing impacts are widely studied, data on LDT towing impacts is sparse. In this study, portable emissions [...] Read more.
Light-duty trucks (LDTs) are often used to tow trailers. Towing increases the load on the engine, and this additional load can affect exhaust emissions. Although heavy-duty towing impacts are widely studied, data on LDT towing impacts is sparse. In this study, portable emissions measurement systems (PEMSs) were used to measure in-use emissions from three common LDTs during towing and non-towing operations. Emission rates were characterized by operating modes defined in the Environmental Protection Agency’s (EPA’s) MOVES (MOtor Vehicle Emissions Simulator) model. The measured emission rates were compared to the default rates used by MOVES, revealing similar overall trends. However, discrepancies between measured rates and MOVES predictions, especially at high speed and high operating modes, indicate a need for refinement in emissions modeling for LDTs under towing operations. Results highlight a general trend of increased CO2, CO, HC, and NOx when towing a trailer compared to non-towing operations across nearly all operating modes, with distinct CO and HC increases in the higher operating modes. Although emissions were observed to be notably higher in a handful of scenarios, results also indicate that three similar LDTs can have distinctly different emission profiles. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

27 pages, 3471 KiB  
Article
Control of a Dumper Vehicle with a Trailer Using Partial Feedback Linearization
by Jaume Franch, Jose-Manuel Rodriguez-Fortun and Rafael Herguedas
Electronics 2025, 14(11), 2293; https://doi.org/10.3390/electronics14112293 - 4 Jun 2025
Viewed by 447
Abstract
The control of vehicles towing trailers is of significant interest to industry due to their wide-ranging applications across various sectors. Trailers play essential roles in logistics, mining, and other fields. This study focuses on the control of a dumper with a trailer specifically [...] Read more.
The control of vehicles towing trailers is of significant interest to industry due to their wide-ranging applications across various sectors. Trailers play essential roles in logistics, mining, and other fields. This study focuses on the control of a dumper with a trailer specifically used for the monitoring of terrain stability in mining operations. The trailer is equipped with a radar system for detecting potential ground shifts that could jeopardize fieldwork safety. While numerous studies have addressed the control of Ackerman vehicles and trailers, this dumper presents a unique challenge due to its rear-axle steering mechanism. Due to this configuration, which has not been extensively studied in the literature, although the differential flatness of the system is proven, computation of the flat outputs leads to a system of partial differential equations that cannot be solved analytically. For this reason, this paper examines partial feedback linearization to facilitate control and proposes a solution for trajectory tracking that also stabilizes jack-knifing tendencies between the vehicle and trailer. The designed control system was successfully validated in a virtual environment. Full article
(This article belongs to the Special Issue Control and Design of Intelligent Robots)
Show Figures

Figure 1

16 pages, 3830 KiB  
Article
Analysis of Damage to Shipping Container Sides During Port Handling Operations
by Sergej Jakovlev, Tomas Eglynas, Valdas Jankunas, Mindaugas Jusis and Miroslav Voznak
J. Mar. Sci. Eng. 2025, 13(5), 982; https://doi.org/10.3390/jmse13050982 - 19 May 2025
Viewed by 877
Abstract
The damage to shipping containers during port handling operations continues to pose a significant challenge that adversely affects operational efficiency, equipment integrity, and supply chain accountability. This study utilises real-world measurement data gathered through accelerometers to examine the occurrence and dynamics of physical [...] Read more.
The damage to shipping containers during port handling operations continues to pose a significant challenge that adversely affects operational efficiency, equipment integrity, and supply chain accountability. This study utilises real-world measurement data gathered through accelerometers to examine the occurrence and dynamics of physical impacts, particularly side and rear collisions, during the handling of containers at Klaipėda City Port. The research prioritises two critical scenarios: side impacts during stacking operations with reach stackers and rear impacts during trailer loading procedures. Impact events are meticulously recorded and analysed to ascertain the magnitudes of acceleration across multiple axes. This reveals that side impacts produce significantly greater forces, particularly in the lateral direction, than rear impacts. This study employs sensor-based monitoring, advanced data visualisation techniques, and structured scenario analysis to delineate the variability and intensity of mechanical interactions during these operations. The findings emphasise the structural stress that containers experience and underscore the importance of embedded monitoring technologies for real-time event detection and damage prevention. The results contribute to the expanding body of knowledge that supports the digital transformation of container terminals and furnish actionable insights for enhancing handling protocols, informing insurance assessments, and improving safety measures within both automated and conventional port environments. Full article
(This article belongs to the Special Issue Maritime Transport and Port Management)
Show Figures

Figure 1

15 pages, 1945 KiB  
Article
On-Road Measurements and Modelling of Disc Brake Temperatures and Brake Wear Particle Number Emissions on a Heavy-Duty Tractor Trailer
by Misja Frederik Alban Steinmetz, Jann Aschersleben and Aspasia Panagiotidou
Atmosphere 2025, 16(5), 561; https://doi.org/10.3390/atmos16050561 - 8 May 2025
Viewed by 512
Abstract
In this paper, results are presented for an on-road measurement campaign for measuring the brake wear particles of disc brakes on a heavy-duty tractor trailer during the EU P012101 Pilot Project funded by the European Parliament. A novel approach was adopted using a [...] Read more.
In this paper, results are presented for an on-road measurement campaign for measuring the brake wear particles of disc brakes on a heavy-duty tractor trailer during the EU P012101 Pilot Project funded by the European Parliament. A novel approach was adopted using a fully open sampling system with minimal influence on air flow around the brake and brake disc temperatures. Models for brake disc heating and cooling were developed, as well as a model for the particle number emissions. It was concluded that brake wear emissions per kilometre were the highest on urban roads and the lowest on the motorway. Furthermore, when modelling heating during braking actions, the best results were seen when introducing dependencies on both the braking work and initial brake temperatures. When modelling the brake cooling, a non-linear dependence on the difference between the brake disc temperature and ambient air temperature was empirically observed. For the particle number emissions, a relationship was established between the braking work applied to the disc during the braking action and the particle number emissions of the braking action. Full article
(This article belongs to the Special Issue Brake and Tire Non-Exhaust Emissions and Air Pollution)
Show Figures

Figure 1

13 pages, 2916 KiB  
Article
Performance Evaluation of Long-Distance Road Transportation of Roundwood in Mountainous Conditions
by Stanimir Stoilov, Antonio Zumbo, Chavdar Ustabasciev, Georgi Angelov, Salvatore F. Papandrea and Andrea R. Proto
Forests 2025, 16(5), 781; https://doi.org/10.3390/f16050781 - 6 May 2025
Viewed by 812
Abstract
In Europe, long-distance transport of wood from landings to consumers is most often carried out by trucks and trucks with trailers. In forests located mainly in mountainous areas with rugged terrain and frequent curves, the construction of forest roads is complicated and often [...] Read more.
In Europe, long-distance transport of wood from landings to consumers is most often carried out by trucks and trucks with trailers. In forests located mainly in mountainous areas with rugged terrain and frequent curves, the construction of forest roads is complicated and often access for trucks with trailers is difficult or there is not enough space on the landing for maneuvers. In these cases, the truck leaves the trailer next to the public road and without it moves to the landing and loads the wood with Palafinger hydraulic crane model Epsilon Kran GmbH mounted on it, which it transfers to the trailer on the way back. Then, the truck moves to the landing to load itself, returns, hooks up the trailer and transports the wood to the customer. This study, conducted in a coniferous stand in Bulgaria, aimed to determine and develop models for the productivity and costs associated with transporting a truck with a trailer and to evaluate the suitability of this method. To study this very common method of long-distance transport, observations were made of 185 turns of a truck with a trailer operating with coniferous wood in Rila-Rhodope Mountain Massif, Southern Bulgaria. It was found that the duration of the working cycle is affected by the total mileage (average 65.41 km), the volume of the load and the number of logs. The productivity with and without delays, 7.80 and 7.30 m3/h, respectively, is affected by the mileage and the volume of the wood, while the corresponding transportation productivity (177.46 and 167.24 m3 km/h) is affected by the transport distance loaded and the volume of the load. To increase efficiency and reduce the cost of transporting wood over long distances, investments are needed to improve forest roads to eliminate the need to uncouple the trailer. Full article
Show Figures

Figure 1

20 pages, 9340 KiB  
Article
A Numerical Investigation of the Performance of Damaged Concrete Barriers Under Sequential Vehicular Impacts
by Ashesh Pokhrel, Andrew D. Sorensen and Mohsen Zaker Esteghamati
Buildings 2025, 15(8), 1271; https://doi.org/10.3390/buildings15081271 - 12 Apr 2025
Viewed by 549
Abstract
Concrete median barriers are prone to damage from low-velocity impacts. However, there is a limited understanding of how damage from initial impacts affects barriers’ long-term performance and whether they maintain safe continued service or must be replaced. Therefore, this paper evaluates the performance [...] Read more.
Concrete median barriers are prone to damage from low-velocity impacts. However, there is a limited understanding of how damage from initial impacts affects barriers’ long-term performance and whether they maintain safe continued service or must be replaced. Therefore, this paper evaluates the performance of the concrete barriers under sequential low-velocity impact using finite-element analysis. Crash test simulations were performed by impacting the concrete barrier twice with an 80,000 lb (36-ton) tractor-trailer at a target impact velocity and angle. The first impact’s velocities varied between 30 mph (48 kmph) and 54 mph (87 kmph) at 10°, 15°, and 20° crash angles, and the damaged barrier was subsequently subjected to the second impact conforming to the American Association of State Highway and Transportation Officials’ (AASHTO) Manual for Assessing Safety Hardware (MASH) for Test Level 5 criteria (i.e., representative velocity of 52.7 mph (85 kmph) at 15°). Therefore, a total of 78 impact simulations were conducted, and statistical analysis was performed to investigate the relationship between the peak impact forces of the first and second impacts and the crash angle and velocity across distinct phases of the crash simulation and over the entire crash history. The results show that while the peak impact force of the first impact was linearly related to both velocity and angle, the maximum impact force at the second impact did not follow the same trend. However, when considering the localized peak forces in each phase of the crash, the peak forces from the later stages of the second impact (i.e., rebound and final interaction phases) were highly correlated with the initial impact’s velocity and angle, substantially reducing the barrier’s capability to resist vehicular impact loads. In particular, for initial velocities above 46 mph (74 kmph) at angles of 15° and 20°, barriers formed shear cracks traversing across their cross-section, which resulted in excessive fragmentation during the second impact and consequent failure to meet the MASH criteria in terms of structural adequacy. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 1929 KiB  
Article
Low-Carbon Transport for Prefabricated Buildings: Optimizing Capacitated Truck–Trailer Routing Problem with Time Windows
by Jiajie Zhou, Qiang Du, Qian Chen, Zhongnan Ye, Libiao Bai and Yi Li
Mathematics 2025, 13(7), 1210; https://doi.org/10.3390/math13071210 - 7 Apr 2025
Cited by 1 | Viewed by 549
Abstract
The transportation of prefabricated components is challenged by the particularity of large cargo transport and urban road conditions, restrictions on parking, height, and weight. To address these challenges and to promote low-carbon logistics, this paper investigates the transportation of prefabricated components by leveraging [...] Read more.
The transportation of prefabricated components is challenged by the particularity of large cargo transport and urban road conditions, restrictions on parking, height, and weight. To address these challenges and to promote low-carbon logistics, this paper investigates the transportation of prefabricated components by leveraging separable fleets of trucks and trailers. Focusing on real-world constraints, this paper formulates the capacitated truck and trailer routing problem with time windows (CTTRPTW) incorporating carbon emissions, and designs a dynamic adaptive hybrid algorithm combining simulated annealing with tabu search (DASA-TS) to solve this model. The efficiency and robustness of the methodology are validated through two computational experiments. The results indicate that the DASA-TS consistently demonstrates excellent performance across all evaluations, with significant reductions in both transportation costs and carbon emissions costs for prefabricated components, particularly in large-scale computational instances. This study contributes to promoting the optimization of low-carbon transport for prefabricated components, offering guidance for routing design involving complex and large cargo, and supporting the sustainable development of urban logistics. Full article
Show Figures

Figure 1

Back to TopTop