Performance Evaluation of Long-Distance Road Transportation of Roundwood in Mountainous Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Description of Machine
- -
- Dirt roads (fourth grade forest roads) with a length of 88.4 km;
- -
- Partially paved roads (third grade) with a length of 12.7 km;
- -
- Gravel roads (second grade) with a length of 5.4 km.
- -
- Design speed: for the second and third grade—20 km/h, for the fourth grade—10 km/h;
- -
- Width of 4 m;
- -
- Maximum longitudinal slope 9%;
- -
- Maximum lateral slope in a straight line 2.5%; in a curve 6%;
- -
- Minimum radius of horizontal curves: second and third degree 20 m, fourth degree 15 m;
- -
- Minimum radius concave vertical curves 500 m;
- -
- Minimum radius serpentines 15 m.
2.2. Productivity Study and Costs
- -
- Travel unloaded (TU)—the time for movement from the garage to the landing and from the consumer to the landing or garage.
- -
- Preparation for loading (PL)—the time of landing roadside: the driver gets out of the cabin, moves to the crane, controls the stabilizers, climbs and takes the seat and extends the crane.
- -
- Loading (L)—the time during which the driver loads the assortments with the crane.
- -
- Preparation for departure (PD)—the time for placing the crane in the transport position, getting out of the crane seat, retracting the stabilizers, getting the driver into the cabin.
- -
- Travel to the trailer for reloading and back for loading the truck (R).
- -
- Travel loaded (TL)—the time for movement with load to the consumer.
- -
- Unloading (U)—the time for unloading the wooden materials with the crane on the truck or other unloading machine.
- -
- Delays (D)—the time during which no useful work is performed due to technical or organizational reasons.
2.3. Data Analysis
3. Results and Discussion
3.1. Work Cycle Time
3.2. Travel Speed Analysis
3.3. Productivity Analysis
3.4. Cost Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kizha, A.R.; Han, H.S. Forest residues recovered from whole-tree timber harvesting operations. Eur. J. For. Eng. 2015, 1, 46–55. [Google Scholar]
- Cataldo, M.F.; Proto, A.R.; Macrì, G.; Zimbalatti, G. Evaluation of different wood harvesting systems in typical Mediterranean small-scale forests: A Southern Italian case study. Ann. Silvic. Res. 2020, 45, 1–11. [Google Scholar] [CrossRef]
- Daigneault, A.; Johnston, C.; Korouso, A.; Baker, J.S.; Forsell, N.; Prestemon, J.P.; Abt, R.C. Developing detailed shared socioeconomic pathway (SSP) narratives for the global forest sector. J. For. Econ. 2019, 34, 7–45. [Google Scholar] [CrossRef]
- Papandrea, S.F.; Stoilov, S.; Cataldo, M.F.; Petkov, K.; Angelov, G.; Zumbo, A.; Proto, A.R. Evaluation of Productivity and Cost Analysis on a Combined Logging System. Forests 2024, 15, 980. [Google Scholar] [CrossRef]
- Soman, H.; Kizha, A.R.; Roth, B.E. Impacts of silvicultural prescriptions and implementation of best management practices on timber harvesting costs. Int. J. For. Eng. 2019, 30, 14–25. [Google Scholar] [CrossRef]
- Louis, L.T.; Kizha, A.R.; Daigneault, A.; Han, H.S.; Weiskittel, A. Factors affecting operational cost and productivity of ground-based timber harvesting machines: A meta-analysis. Curr. For. Rep. 2022, 8, 38–54. [Google Scholar] [CrossRef]
- Oprea, I. Timber Harvesting Technology; Braşov Transilvania University Publishing House: Braşov, Romania, 2008. [Google Scholar]
- Stoilov, S.; Proto, A.R.; Oslekov, D.; Angelov, G.; Papandrea, S.F. Forest Operations Using a Combi–Forwarder in Deciduous Forests. Small-Scale For. 2024, 23, 25–40. [Google Scholar] [CrossRef]
- Han, H.S.; Kellogg, L.D. Damage characteristics in young Douglas-fir stands from commercial thinning with four timber harvesting systems. West. J. Appl. For. 2000, 15, 27–33. [Google Scholar] [CrossRef]
- Buffa, F.P.; Munn, J.R. A recursive algorithm for order cycle-time that minimizes logistics cost. J. Oper. Res. Soc. 1989, 40, 367–377. [Google Scholar] [CrossRef]
- Trzciński, G.; Moskalik, T.; Wojtan, R. Total weight and axle loads of truck units in the transport of timber depending on the timber cargo. Forests 2018, 9, 164. [Google Scholar] [CrossRef]
- Karagiannis, E.; Tsioras, P.A.; Kararizos, P. Timber trucking characteristics in Greece. J. Environ. Sci. Eng. 2012, 1, 1079–1086. [Google Scholar]
- Uusitalo, J. A framework for CTL method-based wood procurement logistics. Int. J. For. Eng. 2005, 16, 37–46. [Google Scholar] [CrossRef]
- Devlin, G.J.; McDonnell, K.; Ward, S. Timber haulage routing in Ireland: An analysis using GIS and GPS. J. Transp. Geogr. 2008, 16, 63–72. [Google Scholar] [CrossRef]
- Lopez, J.; De La Torre, R.; Cubbage, F. Effect of land prices, transportation costs, and site productivity on timber investment returns for pine plantations in Colombia. New For. 2010, 39, 313.328. [Google Scholar] [CrossRef]
- Briker, R.W.; Tufts, R.A. Forest roads and construction of associated water diversion devices. In Alabama Cooperative Extension System; Alabama A & M and Auburn Universities: Huntsville, AL, USA, 1995. [Google Scholar]
- Pandur, Z.; Nevečerel, H.; Šušnjar, M.; Bačić, M.; Lepoglavec, K. Energy efficiency of timber transport by trucks on hilly and mountainous forest roads. Forestist 2022, 72, 20–28. [Google Scholar] [CrossRef]
- Proto, A.R.; Macrì, G.; Sorgonà, A.; Zimbalatti, G. Impact of skidding operations on soil physical properties in southern Italy. Contemp. Eng. Sci. 2016, 9, 1095–1104. [Google Scholar] [CrossRef]
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and how much, do harvesting activities affect forest soil, regeneration and stands? Curr. For. Rep. 2020, 6, 115–128. [Google Scholar] [CrossRef]
- Stoilov, S.; Proto, A.R.; Angelov, G.; Papandrea, S.F.; Borz, S.A. Evaluation of Salvage Logging Productivity and Costs in the Sensitive Forests of Bulgaria. Forests 2021, 12, 309. [Google Scholar] [CrossRef]
- Malinen, J.; Nousiainen, V.; Palojarvi, K.; Palander, T. Prospects and challenges of timber trucking in a changing operational environment in Finland. Croat. J. For. Eng. 2014, 35, 91–100. [Google Scholar]
- Antoniade, C.; Slincu, C.; Stan, C.; Ciobanu, V.; Stefan, V. Maximum loading heights for heavy vehicles used in timber transportation. Bull. Transilv. Univ. Brasov. Ser. II For. Wood Ind. Agric. Food Eng. 2012, 5, 7–12. [Google Scholar]
- Allman, M.; Dudáková, Z.; Jankovský, M.; Merganič, J. Operational Parameters of Logging Trucks Working in Mountainous Terrains of the Western Carpathians. Forests 2021, 12, 718. [Google Scholar] [CrossRef]
- Berg, S.; Lindholm, E.L. Energy use and environmental impacts of forest operations in Sweden. J. Clean. Prod. 2005, 13, 33–42. [Google Scholar] [CrossRef]
- Svenson, G. The impact of road characteristics on fuel consumption for timber trucks. In Engineering Conference; The Forestry Research Institute of Sweden: Uppsala, Sweden, 2011; p. 172. [Google Scholar]
- Klvač, R.; Kolařík, J.; Volná, M.; Drápela, K. Fuel consumption in timber haulage. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2013, 34, 229–240. [Google Scholar]
- Väätäinen, K.; Laitila, J.; Anttila, P.; Kilpeläinen, A.; Asikainen, A. The influence of gross vehicle weight (GVW) and transport distance on timber trucking performance indicators–Discrete event simulation case study in Central Finland. Int. J. For. Eng. 2020, 31, 156–170. [Google Scholar] [CrossRef]
- Väätäinen, K.; Anttila, P.; Eliasson, L.; Enström, J.; Laitila, J.; Prinz, R.; Routa, J. Roundwood and biomass logistics in Finland and Sweden. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2021, 42, 39–61. [Google Scholar] [CrossRef]
- Almeida, R.O.; Munis, R.A.; Camargo, D.A.; da Silva, T.; Sasso Júnior, V.A.; Simões, D. Prediction of Road Transport of Wood in Uruguay: Approach with Machine Learning. Forests 2022, 13, 1737. [Google Scholar] [CrossRef]
- Knight, C.R.D.; Bolding, M.C.; Conrad, J.L.; Barrett, S.M. Log truck transportation challenges and innovative solutions: Evaluating the perspectives of truck drivers, logging business owners, and foresters. Int. J. For. Eng. 2023, 35, 113–121. [Google Scholar] [CrossRef]
- Trzciński, G.; Sieniawski, W.; Moskalik, T. Effects of Timber Loads on Gross Vehicle Weight. Folia For. Pol. 2014, 55, 159–167. [Google Scholar] [CrossRef]
- Tomczak, A.; Jakubowski, M.; Jelonek, T.; Wąsik, R.; Grzywiński, W. Mass and density of pine pulpwood harvested in selected stands from the Forest Experimental Station in Murowana Goślina. Acta Sci. Pol. Silv. Colendar. Ratio Ind. Lignar 2016, 15, 105–112. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R.; Acuna, M.; Brown, M. Analysing the effect of five operational factors on forest residue supply chain costs: A case study in Western Australia. Biomass Bioenergy 2013, 59, 486–493. [Google Scholar] [CrossRef]
- Owusu-Ababio, S.; Schmitt, R. Analysis of data on heavier truck weights: Case study of logging trucks. Transp. Res. Rec. 2015, 2478, 82–92. [Google Scholar] [CrossRef]
- Mousavi, R.; Naghdi, R. Time consumption and productivity analysis of timber trucking using two kinds of trucks in northern Iran. J. For. Sci. 2013, 59, 211–221. [Google Scholar] [CrossRef]
- Regulation No. 5 of 31 July 2014 on Construction in Forest Areas Without Changing Their Purpose, Issued by the Minister of Regional Development and the Minister of Agriculture and Food, Promulgated in the State Gazette, Issue 68 of 15 August 2014. Available online: https://www.fao.org/faolex/en (accessed on 12 December 2024).
- Regulation n. 11 from 3 July 2001 for the Movement of Oversized and/or Heavy Vehicles, Issued by the Minister of Regional Development and Public Works of Republic of Bulgaria, State Gazzette 2001, Vol. 65 from 24 July 2001. Available online: https://www.mrrb.bg/en/ (accessed on 12 December 2024).
- Directive (EU) 2015/719 of the European Parliament and of the Council of 29 April 2015 Amending Council Directive 96/53/EC Laying Down for Certain Road Vehicles Circulating Within the Community the Maximum Authorised Dimensions in National and International Traffic and the Maximum Authorised Weights in International Traffic. Official Journal L 115, 6.5.2015. pp. 1–10. Available online: http://data.europa.eu/eli/dir/2015/719/oj (accessed on 12 December 2024).
- Macrì, G.; Zimbalatti, G.; Russo, D.; Proto, A.R. Measuring the mobility parameters of tree-length forwarding systems using GPS technology in the Southern Italy forestry. Agron. Res. 2016, 14, 836–845. [Google Scholar]
- Ackerman, P.; Belbo, H.; Eliasson, L.; De Jong, A.; Lazdins, A.; Lyons, J. The COST model for calculation of forest operations costs. Int. J. For. Eng. 2014, 25, 75–81. [Google Scholar] [CrossRef]
- Proto, A.R.; Macrì, G.; Visser, R.; Russo, D.; Zimbalatti, G. Comparison of Timber Extraction Productivity between Winch and Grapple Skidding: A Case Study in Southern Italian Forests. Forests 2018, 9, 61. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N. The effects of introducing modern technology on the financial, labour and energy performance of forest operations in the Italian Alps. For. Policy Econ. 2011, 13, 520–524. [Google Scholar] [CrossRef]
- Proto, A.R.; Macrì, G.; Visser, R.; Harrill, H.; Russo, D.; Zimbalatti, G. Factors affecting forwarder productivity. Eur. J. For. Res. 2018, 137, 143–151. [Google Scholar] [CrossRef]
- Nurminen, T.; Heinonen, J. Characteristics and time consumption of timber trucking in Finland. Silva Fennica 2007, 41, 284. [Google Scholar] [CrossRef]
- Holzleitner, F.; Kanzian, C.; Stampfer, K. Analyzing time and fuel consumption in road transport of round wood with an onboard fleet manager. Eur. J. For. Res. 2011, 130, 293–301. [Google Scholar] [CrossRef]
- Muhdi, M.; Lestari, B.D.; Hanafiah, D.S.; Sahar, A.; Zaitunah, A. Timber transportation using two types of trucks in industrial plantation forests, North Sumatra, Indonesia. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1122, p. 012005. [Google Scholar] [CrossRef]
- Brown, M.W. Evaluation of the Impact of Timber Truck Configuration and Tare Weight on Payload Efficiency: An Australian Case Study. Forests 2021, 12, 855. [Google Scholar] [CrossRef]
Parameter | Characteristics |
---|---|
Total area | 5190.6 ha |
Forested area | 4853.8 ha |
Elevation | Between 1000 and 1800 m above sea level |
Tree species composition by forested territory |
|
Growing stock | 1,324,500 m3 (273 m3·ha−1) |
Average age of the forests | 75 years |
Average annual cut | 21,500 m3 |
Density of the forest roads (incl. public roads) | 23 m·ha−1 |
Average longitudinal slope of the forest roads (incl. public roads) | 8 deg (14%) |
Model | MAN 33.480 6 × 4 | Schwarzmüller 2-Axle Timber/Stanchion Trailer |
---|---|---|
Engine | D2676LF03, 6 in-line cylinders | |
Displacement, liter | 12,419 | |
Effective power | 353 kW (480 hp) at 1900 m−1 | |
Torque | 2300 Nm at 1050–1400 m−1 | |
Transmission | ZF 16S2520D, 16 synchronized gears with manual shifting, gear ratios 13.80 to 0.84 | |
Tires | Front 385/65R22.5”, load capacity 9000 kg. Rear 315/80R22.5”, load capacity 13,000 kg. | 385/65R22.5”, load capacity 9000 kg |
Kerbweight, kg | 15,300 | 3000 |
Permissible gross vehicle weight, kg | 25,000 | 18,000 |
Variables | Duration (minutes) | Distance (km) | ||||
---|---|---|---|---|---|---|
Mean Value ±SD | Min | Max | Mean Value ±SD | Min | Max | |
Travel unloaded (TU) | 46.70 ± 19.85 | 11 | 119 | 30.32 ± 13.84 | 5 | 67 |
Preparation for loading (PL) | 11.51 ± 4.24 | 2 | 25 | |||
Loading (L) | 27.16 ± 5.70 | 10 | 41 | |||
Preparation for departure (PD) | 12.64 ± 4.91 | 5 | 31 | |||
Travel to the trailer for reloading and back for loading the truck (R) | 29.58 ± 9.48 | 9 | 55 | 9.90 ± 4.84 | 1 | 26 |
Travel loaded (TL) | 54.58 ± 24.36 | 14 | 145 | 25.19 ± 13.13 | 5 | 59 |
Unloading (U) | 26.12 ± 6.04 | 14 | 45 | |||
Delays (D) | 12.52 ± 5.46 | 4 | 29 | |||
Total cycle time (Ttot) | 218.43 ± 48.06 | 98 | 369 | |||
Delay-free cycle time (Tnet) | 205.91 ± 47.97 | 90 | 362 | |||
Number of logs per cycle | 68.35 ± 10.42 | 48 | 121 | |||
Load volume (m3 u.b.) | 25.31 ± 0.83 | 22.69 | 27.03 | |||
Productivity (m3·PMH−1) | 7.80 ± 1.94 | 4.29 | 17.15 | |||
Productivity (m3·SMH−1) | 7.30 ± 1.70 | 4.12 | 15.75 | |||
Transport productivity (m3 km·PMH−1) | 177.46 ± 67.37 | 55.57 | 381.09 | |||
Transport productivity (m3 km·SMH−1) | 167.24 ± 64.53 | 50.42 | 365.27 | |||
Distance utilization coefficient (β) | 0.45 ± 0.04 | 0.33 | 0.50 | |||
Dynamic load capacity utilization coefficient (γdyn) | 0.92 ± 0.03 | 0.82 | 0.99 | |||
Number of cycles per SMH | 0.29 ± 0.07 | 0.16 | 0.61 | |||
Mean speed (km h−1) | 28.85 ± 8.19 | 13.04 | 57.41 | |||
Mean speed loaded (km h−1) | 27.41 ± 7.63 | 11.42 | 51.82 | |||
Mean speed unloaded (km h−1) | 31.10 ± 10.09 | 11.43 | 64.80 |
Equations | F | R2 | R2adj | Std. Error | p-Value | |
---|---|---|---|---|---|---|
Tnet = 173.40 + 1.70 · Dtotal − 3.25 · V + 0.30 · n, min | (5) | 221.00 | 0.83 | 0.83 | 20,252 | p < 0.05 |
Ttot = 182.22 + 1.98 · Dtotal − 3.20 · V + 0.30 · n, min | (6) | 221.76 | 0.83 | 0.83 | 20,334 | p < 0.05 |
Equations | F | R2 | R2adj | Std. Error | p-Value | |
---|---|---|---|---|---|---|
PPMH = 9.01 − 0.065 · Dtotal + 0.093 · V, m3·h−1 | (7) | 104.87 | 0.70 | 0.69 | 0.96 | p < 0.05 |
PSMH = 8.4883 − 0.065 · Dtotal + 0.08 · V, m3·h−1 | (8) | 110.14 | 0.71 | 0.70 | 0.84 | p < 0.05 |
Equations | F | R2 | R2adj | Std. Error | p-Value | |
---|---|---|---|---|---|---|
TPPMH = 2.71 · Dload + 3.1 · V, m3 km·h−1 | (9) | 104.87 | 0.92 | 0.92 | 18.25 | p < 0.05 |
TPSMH = 3.68 · Dload + 2.77 · V, m3 km·h−1 | (10) | 110.14 | 0.93 | 0.92 | 17.12 | p < 0.05 |
Classification of Costs | Costs per PMH, EUR h−1 | Costs, EUR m−3 |
---|---|---|
Total fixed costs: | 22.01 | 3.00 |
Depreciation | 6.68 | 0.91 |
Insurance | 14.73 | 2.01 |
Taxes | 0.60 | 0.08 |
Total variable costs: | 35.65 | 4.86 |
Fuel and lubricants | 26.85 | 3.66 |
Tires | 0.36 | 0.05 |
Maintenance and repair | 5.20 | 0.71 |
Other | 1.98 | 0.27 |
Labor Costs | 15.17 | 2.07 |
Net costs | 72.83 | 9.92 |
Gross costs (incl. 10% overheads and 10% profit) | 86.45 | 11.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoilov, S.; Zumbo, A.; Ustabasciev, C.; Angelov, G.; Papandrea, S.F.; Proto, A.R. Performance Evaluation of Long-Distance Road Transportation of Roundwood in Mountainous Conditions. Forests 2025, 16, 781. https://doi.org/10.3390/f16050781
Stoilov S, Zumbo A, Ustabasciev C, Angelov G, Papandrea SF, Proto AR. Performance Evaluation of Long-Distance Road Transportation of Roundwood in Mountainous Conditions. Forests. 2025; 16(5):781. https://doi.org/10.3390/f16050781
Chicago/Turabian StyleStoilov, Stanimir, Antonio Zumbo, Chavdar Ustabasciev, Georgi Angelov, Salvatore F. Papandrea, and Andrea R. Proto. 2025. "Performance Evaluation of Long-Distance Road Transportation of Roundwood in Mountainous Conditions" Forests 16, no. 5: 781. https://doi.org/10.3390/f16050781
APA StyleStoilov, S., Zumbo, A., Ustabasciev, C., Angelov, G., Papandrea, S. F., & Proto, A. R. (2025). Performance Evaluation of Long-Distance Road Transportation of Roundwood in Mountainous Conditions. Forests, 16(5), 781. https://doi.org/10.3390/f16050781