Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (648)

Search Parameters:
Keywords = traffic-awareness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3989 KiB  
Article
Secure Context-Aware Traffic Light Scheduling System: Integrity of Vehicles’ Identities
by Marah Yahia, Maram Bani Younes, Firas Najjar, Ahmad Audat and Said Ghoul
World Electr. Veh. J. 2025, 16(8), 448; https://doi.org/10.3390/wevj16080448 - 7 Aug 2025
Abstract
Autonomous vehicles and intelligent traffic transportation are widely investigated for road networks. Context-aware traffic light scheduling algorithms determine signal phases by analyzing the real-time characteristics and contextual information of competing traffic flows. The context of traffic flows mainly considers the existence of regular, [...] Read more.
Autonomous vehicles and intelligent traffic transportation are widely investigated for road networks. Context-aware traffic light scheduling algorithms determine signal phases by analyzing the real-time characteristics and contextual information of competing traffic flows. The context of traffic flows mainly considers the existence of regular, emergency, or heavy vehicles. This is an important factor in setting the phases of the traffic light schedule and assigning a high priority for emergency vehicles to pass through the signalized intersection first. VANET technology, through its communication capabilities and the exchange of data packets among moving vehicles, is utilized to collect real-time traffic information for the analyzed road scenarios. This introduces an attractive environment for hackers, intruders, and criminals to deceive drivers and intelligent infrastructure by manipulating the transmitted packets. This consequently leads to the deployment of less efficient traffic light scheduling algorithms. Therefore, ensuring secure communications between traveling vehicles and verifying the integrity of transmitted data are crucial. In this work, we investigate the possible attacks on the integrity of transferred messages and vehicles’ identities and their effects on the traffic light schedules. Then, a new secure context-aware traffic light scheduling system is proposed that guarantees the integrity of transmitted messages and verifies the vehicles’ identities. Finally, a comprehensive series of experiments were performed to assess the proposed secure system in comparison to the absence of security mechanisms within a simulated road intersection. We can infer from the experimental study that attacks on the integrity of vehicles have different effects on the efficiency of the scheduling algorithm. The throughput of the signalized intersection and the waiting delay time of traveling vehicles are highly affected parameters. Full article
Show Figures

Figure 1

26 pages, 2843 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 - 1 Aug 2025
Viewed by 178
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
Show Figures

Figure 1

24 pages, 3559 KiB  
Article
Advancing Online Road Safety Education: A Gamified Approach for Secondary School Students in Belgium
by Imran Nawaz, Ariane Cuenen, Geert Wets, Roeland Paul and Davy Janssens
Appl. Sci. 2025, 15(15), 8557; https://doi.org/10.3390/app15158557 - 1 Aug 2025
Viewed by 214
Abstract
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 [...] Read more.
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 years) in Belgium. The program incorporates gamified e-learning modules containing, among others, podcasts, interactive 360° visuals, and virtual reality (VR), to enhance traffic knowledge, situation awareness, risk detection, and risk management. This study was conducted across several cities and municipalities within Belgium. More than 600 students from school years 3 to 6 completed the platform and of these more than 200 students filled in a comprehensive questionnaire providing detailed feedback on platform usability, preferences, and behavioral risk assessments. The results revealed shortcomings in traffic knowledge and skills, particularly among older students. Gender-based analysis indicated no significant performance differences overall, though females performed better in risk management and males in risk detection. Furthermore, students from cities outperformed those from municipalities. Feedback on the R2S platform indicated high usability and engagement, with VR-based simulations receiving the most positive reception. In addition, it was highlighted that secondary school students are high-risk groups for distraction and red-light violations as cyclists and pedestrians. This study demonstrates the importance of gamified, technology-enhanced road safety education while underscoring the need for module-specific improvements and regional customization. The findings support the broader application of e-learning methodologies for sustainable, behavior-oriented traffic safety education targeting adolescents. Full article
(This article belongs to the Special Issue Technology Enhanced and Mobile Learning: Innovations and Applications)
Show Figures

Figure 1

19 pages, 950 KiB  
Article
How the Adoption of EVs in Developing Countries Can Be Effective: Indonesia’s Case
by Ida Nyoman Basmantra, Ngurah Keshawa Satya Santiarsa, Regina Dinanti Widodo and Caren Angellina Mimaki
World Electr. Veh. J. 2025, 16(8), 428; https://doi.org/10.3390/wevj16080428 - 1 Aug 2025
Viewed by 213
Abstract
Indonesia’s worsening air pollution and traffic emissions have thrust electric vehicles (EVs) into the spotlight, but what really drives Indonesians to make the switch? This study integrates Protection Motivation Theory with green branding and policy frameworks to explain electric vehicle (EV) adoption in [...] Read more.
Indonesia’s worsening air pollution and traffic emissions have thrust electric vehicles (EVs) into the spotlight, but what really drives Indonesians to make the switch? This study integrates Protection Motivation Theory with green branding and policy frameworks to explain electric vehicle (EV) adoption in Indonesia. Using a nationwide survey (n = 986) and partial-least-squares structural-equation modeling, we test how environmental awareness, consumer expectancy, threat appraisal, and coping appraisal shape adoption both directly and through green brand image (GBI), while perceived policy incentives moderate the GBI–adoption link. The model accounts for 54% of the variance in adoption intention. These findings highlight that combining public awareness campaigns, compelling green brand messaging, and carefully calibrated policy incentives is essential for accelerating Indonesia’s transition to cleaner transport. Full article
Show Figures

Figure 1

22 pages, 61181 KiB  
Article
Stepwise Building Damage Estimation Through Time-Scaled Multi-Sensor Integration: A Case Study of the 2024 Noto Peninsula Earthquake
by Satomi Kimijima, Chun Ping, Shono Fujita, Makoto Hanashima, Shingo Toride and Hitoshi Taguchi
Remote Sens. 2025, 17(15), 2638; https://doi.org/10.3390/rs17152638 - 30 Jul 2025
Viewed by 337
Abstract
Rapid and comprehensive assessment of building damage caused by earthquakes is essential for effective emergency response and rescue efforts in the immediate aftermath. Advanced technologies, including real-time simulations, remote sensing, and multi-sensor systems, can effectively enhance situational awareness and structural damage evaluations. However, [...] Read more.
Rapid and comprehensive assessment of building damage caused by earthquakes is essential for effective emergency response and rescue efforts in the immediate aftermath. Advanced technologies, including real-time simulations, remote sensing, and multi-sensor systems, can effectively enhance situational awareness and structural damage evaluations. However, most existing methods rely on isolated time snapshots, and few studies have systematically explored the continuous, time-scaled integration and update of building damage estimates from multiple data sources. This study proposes a stepwise framework that continuously updates time-scaled, single-damage estimation outputs using the best available multi-sensor data for estimating earthquake-induced building damage. We demonstrated the framework using the 2024 Noto Peninsula Earthquake as a case study and incorporated official damage reports from the Ishikawa Prefectural Government, real-time earthquake building damage estimation (REBDE) data, and satellite-based damage estimation data (ALOS-2-building damage estimation (BDE)). By integrating the REBDE and ALOS-2-BDE datasets, we created a composite damage estimation product (integrated-BDE). These datasets were statistically validated against official damage records. Our framework showed significant improvements in accuracy, as demonstrated by the mean absolute percentage error, when the datasets were integrated and updated over time: 177.2% for REBDE, 58.1% for ALOS-2-BDE, and 25.0% for integrated-BDE. Finally, for stepwise damage estimation, we proposed a methodological framework that incorporates social media content to further confirm the accuracy of damage assessments. Potential supplementary datasets, including data from Internet of Things-enabled home appliances, real-time traffic data, very-high-resolution optical imagery, and structural health monitoring systems, can also be integrated to improve accuracy. The proposed framework is expected to improve the timeliness and accuracy of building damage assessments, foster shared understanding of disaster impacts across stakeholders, and support more effective emergency response planning, resource allocation, and decision-making in the early stages of disaster management in the future, particularly when comprehensive official damage reports are unavailable. Full article
Show Figures

Figure 1

28 pages, 7048 KiB  
Article
Enhanced Conjunction Assessment in LEO: A Hybrid Monte Carlo and Spline-Based Method Using TLE Data
by Shafeeq Koheal Tealib, Ahmed Magdy Abdelaziz, Igor E. Molotov, Xu Yang, Jian Sun and Jing Liu
Aerospace 2025, 12(8), 674; https://doi.org/10.3390/aerospace12080674 - 28 Jul 2025
Viewed by 227
Abstract
The growing density of space objects in low Earth orbit (LEO), driven by the deployment of large satellite constellations, has elevated the risk of orbital collisions and the need for high-precision conjunction analysis. Traditional methods based on Two-Line Element (TLE) data suffer from [...] Read more.
The growing density of space objects in low Earth orbit (LEO), driven by the deployment of large satellite constellations, has elevated the risk of orbital collisions and the need for high-precision conjunction analysis. Traditional methods based on Two-Line Element (TLE) data suffer from limited accuracy and insufficient uncertainty modeling. This study proposes a hybrid collision assessment framework that combines Monte Carlo simulation, spline-based refinement of the time of closest approach (TCA), and a multi-stage deterministic refinement process. The methodology begins with probabilistic sampling of TLE uncertainties, followed by a coarse search for TCA using the SGP4 propagator. A cubic spline interpolation then enhances temporal resolution, and a hierarchical multi-stage refinement computes the final TCA and minimum distance with sub-second and sub-kilometer accuracy. The framework was validated using real-world TLE data from over 2600 debris objects and active satellites. Results demonstrated a reduction in average TCA error to 0.081 s and distance estimation error to 0.688 km. The approach is computationally efficient, with average processing times below one minute per conjunction event using standard hardware. Its compatibility with operational space situational awareness (SSA) systems and scalability for high-volume screening make it suitable for integration into real-time space traffic management workflows. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

18 pages, 1138 KiB  
Article
Intelligent Priority-Aware Spectrum Access in 5G Vehicular IoT: A Reinforcement Learning Approach
by Adeel Iqbal, Tahir Khurshaid and Yazdan Ahmad Qadri
Sensors 2025, 25(15), 4554; https://doi.org/10.3390/s25154554 - 23 Jul 2025
Viewed by 271
Abstract
Efficient and intelligent spectrum access is crucial for meeting the diverse Quality of Service (QoS) demands of Vehicular Internet of Things (V-IoT) systems in next-generation cellular networks. This work proposes a novel reinforcement learning (RL)-based priority-aware spectrum management (RL-PASM) framework, a centralized self-learning [...] Read more.
Efficient and intelligent spectrum access is crucial for meeting the diverse Quality of Service (QoS) demands of Vehicular Internet of Things (V-IoT) systems in next-generation cellular networks. This work proposes a novel reinforcement learning (RL)-based priority-aware spectrum management (RL-PASM) framework, a centralized self-learning priority-aware spectrum management framework operating through Roadside Units (RSUs). RL-PASM dynamically allocates spectrum resources across three traffic classes: high-priority (HP), low-priority (LP), and best-effort (BE), utilizing reinforcement learning (RL). This work compares four RL algorithms: Q-Learning, Double Q-Learning, Deep Q-Network (DQN), and Actor-Critic (AC) methods. The environment is modeled as a discrete-time Markov Decision Process (MDP), and a context-sensitive reward function guides fairness-preserving decisions for access, preemption, coexistence, and hand-off. Extensive simulations conducted under realistic vehicular load conditions evaluate the performance across key metrics, including throughput, delay, energy efficiency, fairness, blocking, and interruption probability. Unlike prior approaches, RL-PASM introduces a unified multi-objective reward formulation and centralized RSU-based control to support adaptive priority-aware access for dynamic vehicular environments. Simulation results confirm that RL-PASM balances throughput, latency, fairness, and energy efficiency, demonstrating its suitability for scalable and resource-constrained deployments. The results also demonstrate that DQN achieves the highest average throughput, followed by vanilla QL. DQL and AC maintain fairness at high levels and low average interruption probability. QL demonstrates the lowest average delay and the highest energy efficiency, making it a suitable candidate for edge-constrained vehicular deployments. Selecting the appropriate RL method, RL-PASM offers a robust and adaptable solution for scalable, intelligent, and priority-aware spectrum access in vehicular communication infrastructures. Full article
(This article belongs to the Special Issue Emerging Trends in Next-Generation mmWave Cognitive Radio Networks)
Show Figures

Figure 1

13 pages, 1064 KiB  
Article
The Detection of Pedestrians Crossing from the Oncoming Traffic Lane Side to Reduce Fatal Collisions Between Vehicles and Older Pedestrians
by Masato Yamada, Arisa Takeda, Shingo Moriguchi, Mami Nakamura and Masahito Hitosugi
Vehicles 2025, 7(3), 76; https://doi.org/10.3390/vehicles7030076 - 20 Jul 2025
Viewed by 306
Abstract
To inform the development of effective prevention strategies for reducing pedestrian fatalities in an ageing society, a retrospective analysis was conducted on fatal pedestrian–vehicle collisions in Japan. All pedestrian fatalities caused by motor vehicle collisions between 2013 and 2022 in Shiga Prefecture were [...] Read more.
To inform the development of effective prevention strategies for reducing pedestrian fatalities in an ageing society, a retrospective analysis was conducted on fatal pedestrian–vehicle collisions in Japan. All pedestrian fatalities caused by motor vehicle collisions between 2013 and 2022 in Shiga Prefecture were reviewed. Among the 164 pedestrian fatalities (involving 92 males and 72 females), the most common scenario involved a pedestrian crossing the road (57.3%). In 61 cases (64.9%), pedestrians crossed from the oncoming traffic lane side to the vehicle’s lane side (i.e., crossing from right to left from the driver’s perspective, as vehicles drive on the left in Japan). In 33 cases (35.1%), pedestrians crossed from the vehicle’s lane side to the oncoming traffic lane side. Among cases of pedestrians crossing from the vehicle’s lane side, 54.5% were struck by the near side of the vehicle’s front, whereas 39.7% of those crossing from the oncoming traffic lane side were hit by the far side of the vehicle’s front (p = 0.02). Therefore, for both crossing directions, collisions frequently involved the front left of the vehicle. When pedestrians were struck by the front centre or front right of the vehicle, the collision speeds were higher when pedestrians crossed from the oncoming traffic lane side to the vehicle’s lane side rather than crossing from the vehicle’s lane side to the oncoming traffic lane side. A significant difference in collision speed was observed for impacts with the vehicle’s front centre (p = 0.048). The findings suggest that increasing awareness that older pedestrians may cross roads from the oncoming traffic lane side may help drivers anticipate and avoid potential collisions. Full article
(This article belongs to the Special Issue Novel Solutions for Transportation Safety)
Show Figures

Figure 1

20 pages, 1258 KiB  
Article
The Crime of Vehicular Homicide in Italy: Trends in Alcohol and Drug Use in Fatal Road Accidents in Lazio Region from 2018 to 2024
by Francesca Vernich, Leonardo Romani, Federico Mineo, Giulio Mannocchi, Lucrezia Stefani, Margherita Pallocci, Luigi Tonino Marsella, Michele Treglia and Roberta Tittarelli
Toxics 2025, 13(7), 607; https://doi.org/10.3390/toxics13070607 - 19 Jul 2025
Viewed by 346
Abstract
In Italy, the law on road homicide (Law no. 41/2016) introduced specific provisions for drivers who cause severe injuries or death to a person due to the violation of the Highway Code. The use of alcohol or drugs while driving constitutes an aggravating [...] Read more.
In Italy, the law on road homicide (Law no. 41/2016) introduced specific provisions for drivers who cause severe injuries or death to a person due to the violation of the Highway Code. The use of alcohol or drugs while driving constitutes an aggravating circumstance of the offence and provides for a tightening of penalties. Our study aims to report on the analysis performed on blood samples collected between January 2018 and December 2024 from drivers convicted of road homicide and who tested positive for alcohol and/or drugs. The majority of the involved subjects were males belonging to the 18–30 and 41–50 age groups. Alcohol, cocaine and cannabinoids were the most detected substances and the most frequent polydrug combination was alcohol and cocaine. We also investigated other influencing factors in road traffic accidents as the day of the week and the time of the day in which fatal road traffic accident occurred, and the time elapsed between the road accident and the collection of biological samples. Our data, in line with the international scenario, strongly support that, in addition to the tightening of penalties, raising awareness plays a key role in preventing alcohol- and drug-related traffic accidents by increasing risk perception and encouraging safer driving behaviors. Full article
(This article belongs to the Special Issue Current Issues and Research Perspectives in Forensic Toxicology)
Show Figures

Graphical abstract

25 pages, 2870 KiB  
Article
Performance Evaluation and QoS Optimization of Routing Protocols in Vehicular Communication Networks Under Delay-Sensitive Conditions
by Alaa Kamal Yousif Dafhalla, Hiba Mohanad Isam, Amira Elsir Tayfour Ahmed, Ikhlas Saad Ahmed, Lutfieh S. Alhomed, Amel Mohamed essaket Zahou, Fawzia Awad Elhassan Ali, Duria Mohammed Ibrahim Zayan, Mohamed Elshaikh Elobaid and Tijjani Adam
Computers 2025, 14(7), 285; https://doi.org/10.3390/computers14070285 - 17 Jul 2025
Viewed by 309
Abstract
Vehicular Communication Networks (VCNs) are essential to intelligent transportation systems, where real-time data exchange between vehicles and infrastructure supports safety, efficiency, and automation. However, achieving high Quality of Service (QoS)—especially under delay-sensitive conditions—remains a major challenge due to the high mobility and dynamic [...] Read more.
Vehicular Communication Networks (VCNs) are essential to intelligent transportation systems, where real-time data exchange between vehicles and infrastructure supports safety, efficiency, and automation. However, achieving high Quality of Service (QoS)—especially under delay-sensitive conditions—remains a major challenge due to the high mobility and dynamic topology of vehicular environments. While some efforts have explored routing protocol optimization, few have systematically compared multiple optimization approaches tailored to distinct traffic and delay conditions. This study addresses this gap by evaluating and enhancing two widely used routing protocols, QOS-AODV and GPSR, through their improved versions, CM-QOS-AODV and CM-GPSR. Two distinct optimization models are proposed: the Traffic-Oriented Model (TOM), designed to handle variable and high-traffic conditions, and the Delay-Efficient Model (DEM), focused on reducing latency for time-critical scenarios. Performance was evaluated using key QoS metrics: throughput (rate of successful data delivery), packet delivery ratio (PDR) (percentage of successfully delivered packets), and end-to-end delay (latency between sender and receiver). Simulation results reveal that TOM-optimized protocols achieve up to 10% higher PDR, maintain throughput above 0.40 Mbps, and reduce delay to as low as 0.01 s, making them suitable for applications such as collision avoidance and emergency alerts. DEM-based variants offer balanced, moderate improvements, making them better suited for general-purpose VCN applications. These findings underscore the importance of traffic- and delay-aware protocol design in developing robust, QoS-compliant vehicular communication systems. Full article
(This article belongs to the Special Issue Application of Deep Learning to Internet of Things Systems)
Show Figures

Figure 1

24 pages, 1991 KiB  
Article
A Multi-Feature Semantic Fusion Machine Learning Architecture for Detecting Encrypted Malicious Traffic
by Shiyu Tang, Fei Du, Zulong Diao and Wenjun Fan
J. Cybersecur. Priv. 2025, 5(3), 47; https://doi.org/10.3390/jcp5030047 - 17 Jul 2025
Viewed by 419
Abstract
With the increasing sophistication of network attacks, machine learning (ML)-based methods have showcased promising performance in attack detection. However, ML-based methods often suffer from high false rates when tackling encrypted malicious traffic. To break through these bottlenecks, we propose EFTransformer, an encrypted flow [...] Read more.
With the increasing sophistication of network attacks, machine learning (ML)-based methods have showcased promising performance in attack detection. However, ML-based methods often suffer from high false rates when tackling encrypted malicious traffic. To break through these bottlenecks, we propose EFTransformer, an encrypted flow transformer framework which inherits semantic perception and multi-scale feature fusion, can robustly and efficiently detect encrypted malicious traffic, and make up for the shortcomings of ML in the context of modeling ability and feature adequacy. EFTransformer introduces a channel-level extraction mechanism based on quintuples and a noise-aware clustering strategy to enhance the recognition ability of traffic patterns; adopts a dual-channel embedding method, using Word2Vec and FastText to capture global semantics and subword-level changes; and uses a Transformer-based classifier and attention pooling module to achieve dynamic feature-weighted fusion, thereby improving the robustness and accuracy of malicious traffic detection. Our systematic experiments on the ISCX2012 dataset demonstrate that EFTransformer achieves the best detection performance, with an accuracy of up to 95.26%, a false positive rate (FPR) of 6.19%, and a false negative rate (FNR) of only 5.85%. These results show that EFTransformer achieves high detection performance against encrypted malicious traffic. Full article
(This article belongs to the Section Security Engineering & Applications)
Show Figures

Figure 1

5 pages, 4873 KiB  
Interesting Images
Imaging Findings of a Rare Intrahepatic Splenosis, Mimicking Hepatic Tumor
by Suk Yee Lau and Wilson T. Lao
Diagnostics 2025, 15(14), 1789; https://doi.org/10.3390/diagnostics15141789 - 16 Jul 2025
Viewed by 250
Abstract
A young adult patient presented to the gastrointestinal outpatient department with a suspected hepatic tumor. The patient was in a traffic accident ten years ago and underwent splenectomy and distal pancreatectomy at another medical institution. The physical examination was unremarkable. The liver function [...] Read more.
A young adult patient presented to the gastrointestinal outpatient department with a suspected hepatic tumor. The patient was in a traffic accident ten years ago and underwent splenectomy and distal pancreatectomy at another medical institution. The physical examination was unremarkable. The liver function tests and tumor markers were within normal limits, with the alpha-fetoprotein level at 1.38 ng/mL. Both hepatitis B surface antigen and anti-HCV were negative. Based on the clinical history, intrahepatic splenosis was suspected first. Dynamic computed tomography revealed a 2.3 cm lesion exhibiting suspicious early wash-in and early wash-out enhancement patterns. As previous studies have reported, this finding makes hepatocellular carcinoma and metastatic lesions the major differential diagnoses. For further evaluation, dynamic magnetic resonance imaging was performed, and similar enhancing features were observed, along with restricted diffusion. As hepatocellular carcinoma still could not be confidently ruled out, the patient underwent an ultrasound-guided biopsy. The diagnosis of intrahepatic splenosis was confirmed by the pathologic examination. Intrahepatic splenosis is a rare condition defined as an acquired autoimplantation of splenic tissue within the hepatic parenchyma. Diagnosis can be challenging due to its ability to mimic liver tumors in imaging studies. Therefore, in patients with a history of splenic trauma and/or splenectomy, a high index of suspicion and awareness is crucial for accurate diagnosis and for prevention of unnecessary surgeries or interventions. Full article
(This article belongs to the Collection Interesting Images)
Show Figures

Figure 1

28 pages, 1727 KiB  
Article
Detecting Jamming in Smart Grid Communications via Deep Learning
by Muhammad Irfan, Aymen Omri, Javier Hernandez Fernandez, Savio Sciancalepore and Gabriele Oligeri
J. Cybersecur. Priv. 2025, 5(3), 46; https://doi.org/10.3390/jcp5030046 - 15 Jul 2025
Viewed by 398
Abstract
Power-Line Communication (PLC) allows data transmission through existing power lines, thus avoiding the expensive deployment of ad hoc network infrastructures. However, power line networks remain vastly unattended, which allows tampering by malicious actors. In fact, an attacker can easily inject a malicious signal [...] Read more.
Power-Line Communication (PLC) allows data transmission through existing power lines, thus avoiding the expensive deployment of ad hoc network infrastructures. However, power line networks remain vastly unattended, which allows tampering by malicious actors. In fact, an attacker can easily inject a malicious signal (jamming) with the aim of disrupting ongoing communications. In this paper, we propose a new solution to detect jamming attacks before they significantly affect the quality of the communication link, thus allowing the detection of a jammer (geographically) far away from a receiver. We consider two scenarios as a function of the receiver’s ability to know in advance the impact of the jammer on the received signal. In the first scenario (jamming-aware), we leverage a classifier based on a Convolutional Neural Network, which has been trained on both jammed and non-jammed signals. In the second scenario (jamming-unaware), we consider a one-class classifier based on autoencoders, allowing us to address the challenge of jamming detection as a classical anomaly detection problem. Our proposed solution can detect jamming attacks on PLC networks with an accuracy greater than 99% even when the jammer is 68 m away from the receiver while requiring training only on traffic acquired during the regular operation of the target PLC network. Full article
Show Figures

Figure 1

13 pages, 264 KiB  
Review
Impact of Climate Change and Air Pollution on Bronchiolitis: A Narrative Review Bridging Environmental and Clinical Insights
by Cecilia Nobili, Matteo Riccò, Giulia Piglia and Paolo Manzoni
Pathogens 2025, 14(7), 690; https://doi.org/10.3390/pathogens14070690 - 14 Jul 2025
Viewed by 451
Abstract
Climate change and air pollution are reshaping viral circulation patterns and increasing host vulnerability, amplifying the burden of respiratory illness in early childhood. This narrative review synthesizes current evidence on how environmental exposures, particularly to nitrogen dioxide, ozone, and fine particulate matter, contribute [...] Read more.
Climate change and air pollution are reshaping viral circulation patterns and increasing host vulnerability, amplifying the burden of respiratory illness in early childhood. This narrative review synthesizes current evidence on how environmental exposures, particularly to nitrogen dioxide, ozone, and fine particulate matter, contribute to the incidence and severity of bronchiolitis, with a focus on biological mechanisms, epidemiological trends, and public health implications. Bronchiolitis remains one of the leading causes of hospitalization in infancy, with Respiratory Syncytial Virus (RSV) being responsible for the majority of severe cases. Airborne pollutants penetrate deep into the airways, triggering inflammation, compromising mucosal defenses, and impairing immune function, especially in infants with pre-existing vulnerabilities. These interactions can intensify the clinical course of viral infections and contribute to more severe disease presentations. Children in urban areas exposed to high levels of traffic-related emissions are disproportionately affected, underscoring the need for integrated public health interventions. These include stricter emission controls, urban design strategies to reduce exposure, and real-time health alerts during pollution peaks. Prevention strategies should also address indoor air quality and promote risk awareness among families and caregivers. Further research is needed to standardize exposure assessments, clarify dose–response relationships, and deepen our understanding of how pollution interacts with viral immunity. Bronchiolitis emerges as a sentinel condition at the crossroads of climate, environment, and pediatric health, highlighting the urgent need for collaboration across clinical medicine, epidemiology, and environmental science. Full article
10 pages, 1971 KiB  
Proceeding Paper
An Experimental Evaluation of Latency-Aware Scheduling for Distributed Kubernetes Clusters
by Radoslav Furnadzhiev
Eng. Proc. 2025, 100(1), 25; https://doi.org/10.3390/engproc2025100025 - 9 Jul 2025
Viewed by 288
Abstract
Kubernetes clusters are deployed across data centers for geo-redundancy and low-latency access, resulting in new challenges in scheduling workloads optimally. This paper presents a practical evaluation of network-aware scheduling in a distributed Kubernetes cluster that spans multiple network zones. A custom scheduling plugin [...] Read more.
Kubernetes clusters are deployed across data centers for geo-redundancy and low-latency access, resulting in new challenges in scheduling workloads optimally. This paper presents a practical evaluation of network-aware scheduling in a distributed Kubernetes cluster that spans multiple network zones. A custom scheduling plugin is implemented within the scheduling framework to incorporate real-time network telemetry (inter-node ping latency) into pod placement decisions. The assessment methodology combines a custom scheduler plugin, realistic network latency measurements, and representative distributed benchmarks to assess the impact of scheduling on traffic patterns. The results provide strong empirical confirmation of the findings previously established through simulation, offering a validated path forward to integrate not only network metrics, but also other performance-critical metrics such as energy efficiency, hardware utilization, and fault tolerance. Full article
Show Figures

Figure 1

Back to TopTop