Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (655)

Search Parameters:
Keywords = traffic regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 14160 KiB  
Article
Automated Vehicle Classification and Counting in Toll Plazas Using LiDAR-Based Point Cloud Processing and Machine Learning Techniques
by Alexander Campo-Ramírez, Eduardo F. Caicedo-Bravo and Bladimir Bacca-Cortes
Future Transp. 2025, 5(3), 105; https://doi.org/10.3390/futuretransp5030105 - 5 Aug 2025
Abstract
This paper presents the design and implementation of a high-precision vehicle detection and classification system for toll stations on national highways in Colombia, leveraging LiDAR-based 3D point cloud processing and supervised machine learning. The system integrates a multi-sensor architecture, including a LiDAR scanner, [...] Read more.
This paper presents the design and implementation of a high-precision vehicle detection and classification system for toll stations on national highways in Colombia, leveraging LiDAR-based 3D point cloud processing and supervised machine learning. The system integrates a multi-sensor architecture, including a LiDAR scanner, high-resolution cameras, and Doppler radars, with an embedded computing platform for real-time processing and on-site inference. The methodology covers data preprocessing, feature extraction, descriptor encoding, and classification using Support Vector Machines. The system supports eight vehicular categories established by national regulations, which present significant challenges due to the need to differentiate categories by axle count, the presence of lifted axles, and vehicle usage. These distinctions affect toll fees and require a classification strategy beyond geometric profiling. The system achieves 89.9% overall classification accuracy, including 96.2% for light vehicles and 99.0% for vehicles with three or more axles. It also incorporates license plate recognition for complete vehicle traceability. The system was deployed at an operational toll station and has run continuously under real traffic and environmental conditions for over eighteen months. This framework represents a robust, scalable, and strategic technological component within Intelligent Transportation Systems and contributes to data-driven decision-making for road management and toll operations. Full article
Show Figures

Figure 1

20 pages, 10603 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 - 31 Jul 2025
Viewed by 168
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

20 pages, 484 KiB  
Article
Design of Extended Dissipative Approach via Memory Sampled-Data Control for Stabilization and Its Application to Mixed Traffic System
by Wimonnat Sukpol, Vadivel Rajarathinam, Porpattama Hammachukiattikul and Putsadee Pornphol
Mathematics 2025, 13(15), 2449; https://doi.org/10.3390/math13152449 - 29 Jul 2025
Viewed by 189
Abstract
This study examines the extended dissipativity analysis for newly designed mixed traffic systems (MTSs) utilizing the coupling memory sampled-data control (CMSDC) approach. The traffic flow creates a platoon, and the behavior of human-driven vehicles (HDVs) is presumed to adhere to the optimal velocity [...] Read more.
This study examines the extended dissipativity analysis for newly designed mixed traffic systems (MTSs) utilizing the coupling memory sampled-data control (CMSDC) approach. The traffic flow creates a platoon, and the behavior of human-driven vehicles (HDVs) is presumed to adhere to the optimal velocity model, with the acceleration of a single-linked automated vehicle regulated directly by a suggested CMSDC. The ultimate objective of this work is to present a CMSDC approach for optimizing traffic flow amidst disruptions. The primary emphasis is on the proper design of the CMSDC to ensure that the closed-loop MTS is extended dissipative and quadratically stable. A more generalized CMSDC methodology incorporating a time delay effect is created using a Bernoulli-distributed sequence. The existing Lyapunov–Krasovskii functional (LKF) and enhanced integral inequality methods offer sufficient conditions for the suggested system to achieve an extended dissipative performance index. The suggested criteria provide a comprehensive dissipative study, evaluating L2L, H, passivity, and dissipativity performance. A simulation example illustrates the accuracy and superiority of the proposed controller architecture for the MTS. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization for Transportation Systems)
Show Figures

Figure 1

31 pages, 6206 KiB  
Article
High-Redundancy Design and Application of Excitation Systems for Large Hydro-Generator Units Based on ATS and DDS
by Xiaodong Wang, Xiangtian Deng, Xuxin Yue, Haoran Wang, Xiaokun Li and Xuemin He
Electronics 2025, 14(15), 3013; https://doi.org/10.3390/electronics14153013 - 29 Jul 2025
Viewed by 260
Abstract
The large-scale integration of stochastic renewable energy sources necessitates enhanced dynamic balancing capabilities in power systems, positioning hydropower as a critical balancing asset. Conventional excitation systems utilizing hot-standby dual-redundancy configurations remain susceptible to unit shutdown events caused by regulator failures. To mitigate this [...] Read more.
The large-scale integration of stochastic renewable energy sources necessitates enhanced dynamic balancing capabilities in power systems, positioning hydropower as a critical balancing asset. Conventional excitation systems utilizing hot-standby dual-redundancy configurations remain susceptible to unit shutdown events caused by regulator failures. To mitigate this vulnerability, this study proposes a peer-to-peer distributed excitation architecture integrating asynchronous traffic shaping (ATS) and Data Distribution Service (DDS) technologies. This architecture utilizes control channels of equal priority and achieves high redundancy through cross-communication between discrete acquisition and computation modules. This research advances three key contributions: (1) design of a peer-to-peer distributed architectural framework; (2) development of a real-time data interaction methodology combining ATS and DDS, incorporating cross-layer parameter mapping, multi-priority queue scheduling, and congestion control mechanisms; (3) experimental validation of system reliability and redundancy through dynamic simulation. The results confirm the architecture’s operational efficacy, delivering both theoretical foundations and practical frameworks for highly reliable excitation systems. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

25 pages, 4161 KiB  
Article
Indoor/Outdoor Particulate Matter and Related Pollutants in a Sensitive Public Building in Madrid (Spain)
by Elisabeth Alonso-Blanco, Francisco Javier Gómez-Moreno, Elías Díaz-Ramiro, Javier Fernández, Esther Coz, Carlos Yagüe, Carlos Román-Cascón, Dulcenombre Gómez-Garre, Adolfo Narros, Rafael Borge and Begoña Artíñano
Int. J. Environ. Res. Public Health 2025, 22(8), 1175; https://doi.org/10.3390/ijerph22081175 - 25 Jul 2025
Viewed by 382
Abstract
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated [...] Read more.
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated carbonaceous species, such as black carbon (BC), which are classified as carcinogenic by the International Agency for Research on Cancer (IARC), are not currently regulated. Compared with IAQ studies in other types of buildings, studies focusing on IAQ in hospitals or other healthcare facilities are scarce. Therefore, this study aims to evaluate the impact of these outdoor pollutants, among others, on the indoor environment of a hospital under different atmospheric conditions. To identify the seasonal influence, two different periods of two consecutive seasons (summer 2020 and winter 2021) were selected for the measurements. Regulated pollutants (NO, NO2, O3, PM10, and PM2.5) and nonregulated pollutants (PM1, PNC, and equivalent BC (eBC)) in outdoor air were simultaneously measured indoor and outdoor. This study also investigated the impact of indoor activities on indoor air quality. In the absence of indoor activities, outdoor sources significantly contribute to indoor traffic-related pollutants. Indoor and outdoor (I-O) measurements showed similar behavior, but indoor concentrations were lower, with peak levels delayed by up to two hours. Seasonal variations in indoor/outdoor (I/O) ratios were lower for particles than for associated gaseous pollutants. Particle infiltration depended on particle size, with it being higher the smaller the particle size. Indoor activities also significantly affected indoor pollutants. PMx (especially PM10 and PM2.5) concentrations were mainly modulated by walking-induced particle resuspension. Vertical eBC profiles indicated a relatively well-mixed environment. Ventilation through open windows rapidly altered indoor air quality. Outdoor-dominant pollutants (PNC, eBC, and NOX) had I/O ratios ≥ 1. Staying in the room with an open window had a synergistic effect, increasing the I/O ratios for all pollutants. Higher I/O ratios were associated with turbulent outdoor conditions in both unoccupied and occupied conditions. Statistically significant differences were observed between stable (TKE ≤ 1 m2 s−2) and unstable (TKE > 1 m2 s−2) conditions, except for NO2 in summer. This finding was particularly significant when the wind direction was westerly or easterly during unstable conditions. The results of this study highlight the importance of understanding the behavior of indoor particulate matter and related pollutants. These pollutants are highly variable, and knowledge about them is crucial for determining their health effects, particularly in public buildings such as hospitals, where information on IAQ is often limited. More measurement data is particularly important for further research into I-O transport mechanisms, which are essential for developing preventive measures and improving IAQ. Full article
Show Figures

Figure 1

22 pages, 2705 KiB  
Article
Diff-Pre: A Diffusion Framework for Trajectory Prediction
by Yijie Liu, Chengjie Zhu, Xin Chang, Xinyu Xi, Che Liu and Yanli Xu
Sensors 2025, 25(15), 4603; https://doi.org/10.3390/s25154603 - 25 Jul 2025
Viewed by 351
Abstract
With the rapid development of intelligent transportation, accurately predicting vehicle trajectories is crucial for ensuring road safety and enhancing traffic efficiency. This paper proposes a trajectory prediction model that integrates a diffusion model framework with trajectory features of target and neighboring vehicles, as [...] Read more.
With the rapid development of intelligent transportation, accurately predicting vehicle trajectories is crucial for ensuring road safety and enhancing traffic efficiency. This paper proposes a trajectory prediction model that integrates a diffusion model framework with trajectory features of target and neighboring vehicles, as well as driving intentions. The model uses historical trajectories of the target and adjacent vehicles as input, employs Long Short-Term Memory (LSTM) networks to extract temporal features, and dynamically captures the interaction between the target and neighboring vehicles through a multi-head attention mechanism. An intention module regulates lateral offsets, and the diffusion framework selects the most probable trajectory from various possible predictions, thereby improving the model’s ability to handle complex scenarios. Experiments conducted on real traffic data demonstrate that the proposed method outperforms several representative models in terms of Average Displacement Error (ADE) and Final Displacement Error (FDE), without sacrificing efficiency. Notably, it exhibits higher robustness and predictive accuracy in high-interaction and uncertain scenarios, such as lane changes and overtaking. To the best of our knowledge, this is the first application of the diffusion framework in vehicle trajectory prediction. This study provides an efficient solution for vehicle trajectory prediction tasks. The average ADE within 1 to 5 s reached 0.199 m, while the average FDE within 1 to 5 s reached 0.437 m. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

36 pages, 7335 KiB  
Article
COLREGs-Compliant Distributed Stochastic Search Algorithm for Multi-Ship Collision Avoidance
by Bohan Zhang, Jinichi Koue, Tenda Okimoto and Katsutoshi Hirayama
J. Mar. Sci. Eng. 2025, 13(8), 1402; https://doi.org/10.3390/jmse13081402 - 23 Jul 2025
Viewed by 237
Abstract
The increasing complexity of maritime traffic imposes growing demands on the safety and rationality of ship-collision-avoidance decisions. While most existing research focuses on simple encounter scenarios, autonomous collision-avoidance strategies that comply with the International Regulations for Preventing Collisions at Sea (COLREGs) in complex [...] Read more.
The increasing complexity of maritime traffic imposes growing demands on the safety and rationality of ship-collision-avoidance decisions. While most existing research focuses on simple encounter scenarios, autonomous collision-avoidance strategies that comply with the International Regulations for Preventing Collisions at Sea (COLREGs) in complex multi-ship environments remain insufficiently investigated. To address this gap, this study proposes a novel collision-avoidance framework that integrates a quantitative COLREGs analysis with a distributed stochastic search mechanism. The framework consists of three core components: encounter identification, safety assessment, and stage classification. A cost function is employed to balance safety, COLREGs compliance, and navigational efficiency, incorporating a distance-based weighting factor to modulate the influence of each target vessel. The use of a distributed stochastic search algorithm enables decentralized decision-making through localized information sharing and probabilistic updates. Extensive simulations conducted across a variety of scenarios demonstrate that the proposed method can rapidly generate effective collision-avoidance strategies that fully comply with COLREGs. Comprehensive evaluations in terms of safety, navigational efficiency, COLREGs adherence, and real-time computational performance further validate the method’s strong adaptability and its promising potential for practical application in complex multi-ship environments. Full article
(This article belongs to the Special Issue Maritime Security and Risk Assessments—2nd Edition)
Show Figures

Figure 1

22 pages, 2337 KiB  
Article
From Misunderstanding to Safety: Insights into COLREGs Rule 10 (TSS) Crossing Problem
by Ivan Vilić, Đani Mohović and Srđan Žuškin
J. Mar. Sci. Eng. 2025, 13(8), 1383; https://doi.org/10.3390/jmse13081383 - 22 Jul 2025
Viewed by 371
Abstract
Despite navigation advancements in enhanced sensor utilization and increased focus on maritime training and education, most marine accidents still involve collisions with high human involvement. Furthermore, navigators’ knowledge and application of the most often misunderstood Rule 10 Traffic Separation Schemes (TSS) according to [...] Read more.
Despite navigation advancements in enhanced sensor utilization and increased focus on maritime training and education, most marine accidents still involve collisions with high human involvement. Furthermore, navigators’ knowledge and application of the most often misunderstood Rule 10 Traffic Separation Schemes (TSS) according to the Convention on the International Regulations for Preventing Collisions at Sea (COLREG) represents the first focus in this study. To provide insight into the level of understanding and knowledge regarding COLREG Rule 10, a customized, worldwide survey has been created and disseminated among marine industry professionals. The survey results reveal a notable knowledge gap in Rule 10, where we initially assumed that more than half of the respondents know COLREG regulations well. According to the probability calculation and chi-square test results, all three categories (OOW, Master, and others) have significant rule misunderstanding. In response to the COLREG misunderstanding, together with the increasing density of maritime traffic, the implementation of Decision Support Systems (DSS) in navigation has become crucial for ensuring compliance with regulatory frameworks and enhancing navigational safety in general. This study presents a structural approach to vessel prioritization and decision-making within a DSS framework, focusing on the classification and response of the own vessel (OV) to bow-crossing scenarios within the TSS. Through the real-time integration of AIS navigational status data, the proposed DSS Architecture offers a structured, rule-compliant architecture to enhance navigational safety and the decision-making process within the TSS. Furthermore, implementing a Fall-Back Strategy (FBS) represents the key innovation factor, which ensures system resilience by directing operator response if opposing vessels disobey COLREG rules. Based on the vessel’s dynamic context and COLREG hierarchy, the proposed DSS Architecture identifies and informs the navigator regarding stand-on or give-way obligations among vessels. Full article
(This article belongs to the Special Issue Advances in Navigability and Mooring (2nd Edition))
Show Figures

Figure 1

14 pages, 744 KiB  
Review
The Impact of Intraoperative Traffic and Door Openings on Surgical Site Infections: An Umbrella Review
by Jessica Drago, Sarah Scollo, Simone Cosmai, Daniela Cattani, Gloria Modena, Stefano Mancin, Sara Morales Palomares, Fabio Petrelli, Francesca Marfella, Giovanni Cangelosi, Diego Lopane and Beatrice Mazzoleni
Surgeries 2025, 6(3), 61; https://doi.org/10.3390/surgeries6030061 - 21 Jul 2025
Viewed by 317
Abstract
Background: Surgical site infections (SSIs) are among the most common postoperative complications. Environmental factors, including intraoperative traffic and door openings in the operating room (OR), have been identified as critical contributors to microbial air contamination. Nurses play a pivotal role in managing these [...] Read more.
Background: Surgical site infections (SSIs) are among the most common postoperative complications. Environmental factors, including intraoperative traffic and door openings in the operating room (OR), have been identified as critical contributors to microbial air contamination. Nurses play a pivotal role in managing these factors, directly influencing infection control practices. Methods: An integrative review was conducted to synthesize current evidence on the association between intraoperative traffic, door openings, and SSIs. A structured methodology was employed to identify, assess, and analyze the existing literature, with a specific focus on the nursing role in infection prevention. Results: Findings from a single-center prospective cohort study indicate that ORs with more than 10 personnel present exhibit a threefold increase in SSI risk [Relative Risk (RR) = 3.12; 95% Confidence Interval (CI): 0.71–13.66] compared to ORs with fewer personnel. Additionally, every five door openings per procedure were associated with a significant increase in SSI incidence [Hazard Ratio (HR) = 2.00; 95% CI: 1.24–3.20, p = 0.005]. Conclusions: These findings underscore the importance of strict protocols to limit intraoperative traffic and unnecessary OR access. A multidisciplinary approach plays a crucial role in ensuring surgical safety and preventing SSIs by regulating OR access and adhering to infection control best practices. Full article
Show Figures

Figure 1

6 pages, 326 KiB  
Proceeding Paper
Traffic Flow Model for Coordinated Traffic Light Systems
by Iliyan Andreev, Durhan Saliev and Iliyan Damyanov
Eng. Proc. 2025, 100(1), 45; https://doi.org/10.3390/engproc2025100045 - 17 Jul 2025
Viewed by 93
Abstract
Traffic in large cities is increasing due to continuous urbanization, the construction of new housing complexes and the accompanying new street network. The growth of cities creates prerequisites for increasing the intensity of transport, pedestrian, and bicycle flows, especially during peak periods. To [...] Read more.
Traffic in large cities is increasing due to continuous urbanization, the construction of new housing complexes and the accompanying new street network. The growth of cities creates prerequisites for increasing the intensity of transport, pedestrian, and bicycle flows, especially during peak periods. To improve the conditions in which traffic flows, it is necessary to introduce an effective method for reducing delays that arise at intersections, especially those regulated by traffic light systems. One of the possible approaches to this is to coordinate the operation of traffic light systems. The main thing in this is to determine relatively accurate times for the movement of individual flows, for which adequate traffic models are needed. This article presents a model of the movement of transport flows when starting from the first intersection in a coordinated mode of operation of traffic light systems. This is of particular importance when determining the times of individual signals and, above all, has an impact on the moment for switching on the permitting signal at the next intersection. The presented model aims to provide an opportunity to determine accurate times of passage of vehicles through consecutive intersections that operate in a coordinated mode of traffic light systems. Full article
Show Figures

Figure 1

28 pages, 7404 KiB  
Article
SR-YOLO: Spatial-to-Depth Enhanced Multi-Scale Attention Network for Small Target Detection in UAV Aerial Imagery
by Shasha Zhao, He Chen, Di Zhang, Yiyao Tao, Xiangnan Feng and Dengyin Zhang
Remote Sens. 2025, 17(14), 2441; https://doi.org/10.3390/rs17142441 - 14 Jul 2025
Viewed by 396
Abstract
The detection of aerial imagery captured by Unmanned Aerial Vehicles (UAVs) is widely employed across various domains, including engineering construction, traffic regulation, and precision agriculture. However, aerial images are typically characterized by numerous small targets, significant occlusion issues, and densely clustered targets, rendering [...] Read more.
The detection of aerial imagery captured by Unmanned Aerial Vehicles (UAVs) is widely employed across various domains, including engineering construction, traffic regulation, and precision agriculture. However, aerial images are typically characterized by numerous small targets, significant occlusion issues, and densely clustered targets, rendering traditional detection algorithms largely ineffective for such imagery. This work proposes a small target detection algorithm, SR-YOLO. It is specifically tailored to address these challenges in UAV-captured aerial images. First, the Space-to-Depth layer and Receptive Field Attention Convolution are combined, and the SR-Conv module is designed to replace the Conv module within the original backbone network. This hybrid module extracts more fine-grained information about small target features by converting image spatial information into depth information and the attention of the network to targets of different scales. Second, a small target detection layer and a bidirectional feature pyramid network mechanism are introduced to enhance the neck network, thereby strengthening the feature extraction and fusion capabilities for small targets. Finally, the model’s detection performance for small targets is improved by utilizing the Normalized Wasserstein Distance loss function to optimize the Complete Intersection over Union loss function. Empirical results demonstrate that the SR-YOLO algorithm significantly enhances the precision of small target detection in UAV aerial images. Ablation experiments and comparative experiments are conducted on the VisDrone2019 and RSOD datasets. Compared to the baseline algorithm YOLOv8s, our SR-YOLO algorithm has improved mAP@0.5 by 6.3% and 3.5% and mAP@0.5:0.95 by 3.8% and 2.3% on the datasets VisDrone2019 and RSOD, respectively. It also achieves superior detection results compared to other mainstream target detection methods. Full article
Show Figures

Figure 1

22 pages, 2194 KiB  
Article
Environmental and Social Benefits of Urban Parking Space Shortages Mitigation Management Model: A System Dynamics and Nudge Approach
by Zhen Chen, Zhengyang Xu, Kang Tian and Shuwei Jia
Sustainability 2025, 17(14), 6414; https://doi.org/10.3390/su17146414 - 13 Jul 2025
Viewed by 391
Abstract
With the growth of the urban population and economic level, the issue of urban parking space shortages (UPSSs) has assumed growing prominence. This persistent issue not only exacerbates traffic congestion but also contributes to environmental pollution, highlighting the need for system-oriented mitigation strategies. [...] Read more.
With the growth of the urban population and economic level, the issue of urban parking space shortages (UPSSs) has assumed growing prominence. This persistent issue not only exacerbates traffic congestion but also contributes to environmental pollution, highlighting the need for system-oriented mitigation strategies. First, an algorithm for mitigating UPSSs based on nudge theory was constructed, in order to determine how the nudge strategies work. Second, nudge tools, including gain disclosure, salience, and outcome notification, were integrated to construct a mitigation model for UPSSs, which synthesizes nudge theory, the model of self-regulatory processes involved in behavioral change, and system dynamics (NT-SPBC-SD theory). Finally, four scenarios of natural development, guide adjustment, balanced regulation, and enhanced change were simulated. The findings of this study are as follows: (1) The UPSS mitigation had multiple overlapping effects and critical point effects, and the nudge strategy gradually decayed or even rebounded over time. (2) Under the enhanced change scenario, the degree of UPSSs, the amount of illegal parking, and CO2 emissions from civil vehicles decreased by 21.2%, 6.93%, and 14.54%, respectively. (3) After quantitative comparisons, the balanced regulation scenario with lower implementation costs instead demonstrated superior overall performance. The results support subsequent research and guide the enhancement of urban parking management policies to advance urban sustainability. Full article
Show Figures

Figure 1

22 pages, 893 KiB  
Proceeding Paper
Research and Analysis of Traffic Intensity on a Street with High Traffic Load: Case Study of the City of Sofia
by Durhan Saliev, Georgi Mladenov and Plamen Petkov
Eng. Proc. 2025, 100(1), 37; https://doi.org/10.3390/engproc2025100037 - 11 Jul 2025
Viewed by 269
Abstract
The study of traffic parameters in cities is the basis for making adequate decisions related to the organization and regulation of traffic. This publication presents a study of one of the main parameters of transport flows, namely, its intensity. The study covers one [...] Read more.
The study of traffic parameters in cities is the basis for making adequate decisions related to the organization and regulation of traffic. This publication presents a study of one of the main parameters of transport flows, namely, its intensity. The study covers one of the busiest streets in the city of Sofia, which is part of the radial connection in the radial circular street network of the city, for the evening peak period of the day. Data analysis presents the influence of the intensity of transport flows at the intersections, which are formed by the intersection with other streets, on the load of the studied street. The share of the load of each transport flow at the individual intersections on the total load of the studied section was recorded for the subsequent assessment of the existing traffic management. The results have been provided to the relevant directorates in the structure of Sofia Municipality for information and use. Full article
Show Figures

Figure 1

47 pages, 1040 KiB  
Systematic Review
Impact of EU Regulations on AI Adoption in Smart City Solutions: A Review of Regulatory Barriers, Technological Challenges, and Societal Benefits
by Bo Nørregaard Jørgensen and Zheng Grace Ma
Information 2025, 16(7), 568; https://doi.org/10.3390/info16070568 - 2 Jul 2025
Viewed by 1143
Abstract
This review investigates the influence of European Union regulations on the adoption of artificial intelligence in smart city solutions, with a structured emphasis on regulatory barriers, technological challenges, and societal benefits. It offers a comprehensive analysis of the legal frameworks in effect by [...] Read more.
This review investigates the influence of European Union regulations on the adoption of artificial intelligence in smart city solutions, with a structured emphasis on regulatory barriers, technological challenges, and societal benefits. It offers a comprehensive analysis of the legal frameworks in effect by 2025, including the Artificial Intelligence Act, General Data Protection Regulation, Data Act, and sector-specific directives governing mobility, energy, and surveillance. This study critically assesses how these regulations affect the deployment of AI systems across urban domains such as traffic optimization, public safety, waste management, and energy efficiency. A comparative analysis of regulatory environments in the United States and China reveals differing governance models and their implications for innovation, safety, citizen trust, and international competitiveness. The review concludes that although the European Union’s focus on ethics and accountability establishes a solid basis for trustworthy artificial intelligence, the complexity and associated compliance costs create substantial barriers to adoption. It offers recommendations for policymakers, municipal authorities, and technology developers to align regulatory compliance with effective innovation in the context of urban digital transformation. Full article
(This article belongs to the Special Issue Artificial Intelligence and Data Science for Smart Cities)
Show Figures

Figure 1

24 pages, 8171 KiB  
Article
An Improved Adaptive Car-Following Model Based on the Unscented Kalman Filter for Vehicle Platoons’ Speed Control
by Caixia Huang, Wu Tang, Jiande Wang and Zhiyong Zhang
Machines 2025, 13(7), 569; https://doi.org/10.3390/machines13070569 - 1 Jul 2025
Viewed by 297
Abstract
This study proposes an adaptive car-following model based on the unscented Kalman filter algorithm to enable coordinated speed control in vehicle platoons and to address key limitations present in conventional car-following models. Traditional models generally assume a fixed maximum speed within the optimal [...] Read more.
This study proposes an adaptive car-following model based on the unscented Kalman filter algorithm to enable coordinated speed control in vehicle platoons and to address key limitations present in conventional car-following models. Traditional models generally assume a fixed maximum speed within the optimal velocity function, which constrains effective platoon speed regulation across road segments with varying speed limits and lacks adaptability to dynamic scenarios such as changes in the platoon leader’s speed or substitution of the lead vehicle. The proposed adaptive model utilizes state estimation based on the unscented Kalman filter to dynamically identify each vehicle’s maximum achievable speed and to adjust inter-vehicle constraints, thereby enforcing a unified speed reference across the platoon. By estimating these maximum speeds and transmitting them to individual follower vehicles via vehicle-to-vehicle communication, the model promotes smooth acceleration and deceleration behavior, reduces headway variability, and mitigates shockwave propagation within the platoon. Simulation studies—covering both single-leader acceleration and intermittent acceleration scenarios—demonstrate that, compared with conventional car-following models, the adaptive model based on the unscented Kalman filter achieves superior speed synchronization, improved headway stability, and smoother acceleration transitions. These enhancements lead to substantial improvements in traffic flow efficiency and string stability. The proposed approach offers a practical solution for coordinated platoon speed control in intelligent transportation systems, with promising application prospects for real-world implementation. Full article
(This article belongs to the Special Issue Intelligent Control and Active Safety Techniques for Road Vehicles)
Show Figures

Figure 1

Back to TopTop