Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (260)

Search Parameters:
Keywords = traction batteries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2981 KiB  
Article
Data-Driven Modelling and Simulation of Fuel Cell Hybrid Electric Powertrain
by Mehroze Iqbal, Amel Benmouna and Mohamed Becherif
Hydrogen 2025, 6(3), 53; https://doi.org/10.3390/hydrogen6030053 - 1 Aug 2025
Viewed by 122
Abstract
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle [...] Read more.
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle subsystems as data-driven entities. The simulation framework is developed in the MATLAB/Simulink environment and is based on a power dynamics approach, capturing nonlinear interactions and performance intricacies between different powertrain elements. This study investigates subsystem synergies and performance boundaries under a combined driving cycle composed of the NEDC, WLTP Class 3 and US06 profiles, representing urban, extra-urban and aggressive highway conditions. To emulate the real-world load-following strategy, a state transition power management and allocation method is synthesised. The proposed method dynamically governs the power flow between the fuel cell stack and the traction battery across three operational states, allowing the battery to stay within its allocated bounds. This simulation framework offers a near-accurate and computationally efficient digital counterpart to a commercial hybrid powertrain, serving as a valuable tool for educational and research purposes. Full article
Show Figures

Figure 1

16 pages, 3383 KiB  
Article
Thermal and Electrical Design Considerations for a Flexible Energy Storage System Utilizing Second-Life Electric Vehicle Batteries
by Rouven Christen, Simon Nigsch, Clemens Mathis and Martin Stöck
Batteries 2025, 11(8), 287; https://doi.org/10.3390/batteries11080287 - 26 Jul 2025
Viewed by 313
Abstract
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These [...] Read more.
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These batteries, no longer suitable for traction applications due to a reduced state of health (SoH) below 80%, retain sufficient capacity for less demanding stationary applications. The proposed system is designed to be flexible and scalable, serving both research and commercial purposes. Key challenges include heterogeneous battery characteristics, safety considerations due to increased internal resistance and battery aging, and the need for flexible power electronics. An optimized dual active bridge (DAB) converter topology is introduced to connect several batteries in parallel and to ensure efficient bidirectional power flow over a wide voltage range. A first prototype, rated at 50 kW, has been built and tested in the laboratory. This study contributes to sustainable energy storage solutions by extending battery life cycles, reducing waste, and promoting economic viability for industrial partners. Full article
Show Figures

Figure 1

22 pages, 1400 KiB  
Article
Reliability Study of Electric Buses in the Urban Public Transport System
by Andrzej Niewczas, Joanna Rymarz, Marcin Ślęzak, Dariusz Kasperek and Piotr Hołyszko
Energies 2025, 18(14), 3863; https://doi.org/10.3390/en18143863 - 20 Jul 2025
Viewed by 417
Abstract
Contemporary research on electric buses focuses mainly on the following issues: energy efficiency, range and transport costs, and traction battery technology. However, little research has been conducted on operational reliability. This article presents a comparative assessment of the reliability of electric buses in [...] Read more.
Contemporary research on electric buses focuses mainly on the following issues: energy efficiency, range and transport costs, and traction battery technology. However, little research has been conducted on operational reliability. This article presents a comparative assessment of the reliability of electric buses in relation to combustion engine buses. The research was conducted under real conditions in the city of Lublin, Poland. The reliability functions of buses and their structural components were determined based on the Weibull distribution. It was shown that electric buses have a shorter distance between failures than combustion engine buses of analogous capacity. The statistical significance of the differences in reliability between electric and combustion engine buses was verified. The suitability of the Weibull model as a model of bus reliability in comparative studies was verified. The results of the research can be used to monitor current sustainable public transport development programs and to improve bus diagnostic and maintenance systems in transport companies. Full article
Show Figures

Figure 1

35 pages, 3959 KiB  
Article
Battery Charging Simulation of a Passenger Electric Vehicle from a Traction Voltage Inverter with an Integrated Charger
by Evgeniy V. Khekert, Boris V. Malozyomov, Roman V. Klyuev, Nikita V. Martyushev, Vladimir Yu. Konyukhov, Vladislav V. Kukartsev, Oleslav A. Antamoshkin and Ilya S. Remezov
World Electr. Veh. J. 2025, 16(7), 391; https://doi.org/10.3390/wevj16070391 - 13 Jul 2025
Viewed by 286
Abstract
This paper presents the results of the mathematical modeling and experimental studies of charging a traction lithium-ion battery of a passenger electric car using an integrated charger based on a traction voltage inverter. An original three-stage charging algorithm (3PT/PN) has been developed and [...] Read more.
This paper presents the results of the mathematical modeling and experimental studies of charging a traction lithium-ion battery of a passenger electric car using an integrated charger based on a traction voltage inverter. An original three-stage charging algorithm (3PT/PN) has been developed and implemented, which provides a sequential decrease in the charging current when the specified voltage and temperature levels of the battery module are reached. As part of this study, a comprehensive mathematical model has been created that takes into account the features of the power circuit, control algorithms, thermal effects and characteristics of the storage battery. The model has been successfully verified based on the experimental data obtained when charging the battery module in real conditions. The maximum error of voltage modeling has been 0.71%; that of current has not exceeded 1%. The experiments show the achievement of a realized capacity of 8.9 Ah and an integral efficiency of 85.5%, while the temperature regime remains within safe limits. The proposed approach provides a high charge rate, stability of the thermal state of the battery and a long service life. The results can be used to optimize the charging infrastructure of electric vehicles and to develop intelligent battery module management systems. Full article
Show Figures

Figure 1

37 pages, 1546 KiB  
Article
Fractional-Order Swarming Intelligence Heuristics for Nonlinear Sliding-Mode Control System Design in Fuel Cell Hybrid Electric Vehicles
by Nabeeha Qayyum, Laiq Khan, Mudasir Wahab, Sidra Mumtaz, Naghmash Ali and Babar Sattar Khan
World Electr. Veh. J. 2025, 16(7), 351; https://doi.org/10.3390/wevj16070351 - 24 Jun 2025
Viewed by 301
Abstract
Due to climate change, the electric vehicle (EV) industry is rapidly growing and drawing researchers interest. Driving conditions like mountainous roads, slick surfaces, and rough terrains illuminate the vehicles inherent nonlinearities. Under such scenarios, the behavior of power sources (fuel cell, battery, and [...] Read more.
Due to climate change, the electric vehicle (EV) industry is rapidly growing and drawing researchers interest. Driving conditions like mountainous roads, slick surfaces, and rough terrains illuminate the vehicles inherent nonlinearities. Under such scenarios, the behavior of power sources (fuel cell, battery, and super-capacitor), power processing units (converters), and power consuming units (traction motors) deviates from nominal operation. The increasing demand for FCHEVs necessitates control systems capable of handling nonlinear dynamics, while ensuring robust, precise energy distribution among fuel cells, batteries, and super-capacitors. This paper presents a DSMC strategy enhanced with Robust Uniform Exact Differentiators for FCHEV energy management. To optimally tune DSMC parameters, reduce chattering, and address the limitations of conventional methods, a hybrid metaheuristic framework is proposed. This framework integrates moth flame optimization (MFO) with the gravitational search algorithm (GSA) and Fractal Heritage Evolution, implemented through three spiral-based variants: MFOGSAPSO-A (Archimedean), MFOGSAPSO-H (Hyperbolic), and MFOGSAPSO-L (Logarithmic). Control laws are optimized using the Integral of Time-weighted Absolute Error (ITAE) criterion. Among the variants, MFOGSAPSO-L shows the best overall performance with the lowest ITAE for the fuel cell (56.38), battery (57.48), super-capacitor (62.83), and DC bus voltage (4741.60). MFOGSAPSO-A offers the most accurate transient response with minimum RMSE and MAE FC (0.005712, 0.000602), battery (0.004879, 0.000488), SC (0.002145, 0.000623), DC voltage (0.232815, 0.058991), and speed (0.030990, 0.010998)—outperforming MFOGSAPSO, GSA, and PSO. MFOGSAPSO-L further reduces the ITAE for fuel cell tracking by up to 29% over GSA and improves control smoothness. PSO performs moderately but lags under transient conditions. Simulation results conducted under EUDC validate the effectiveness of the MFOGSAPSO-based DSMC framework, confirming its superior tracking, faster convergence, and stable voltage control under transients making it a robust and high-performance solution for FCHEV. Full article
(This article belongs to the Special Issue Vehicle Control and Drive Systems for Electric Vehicles)
Show Figures

Figure 1

18 pages, 2127 KiB  
Article
Practical Validation of nearZEB Residential Power Supply Model with Renewable Electricity Brought into the Building Using Electric Vehicles (via V2G) Instead of the Distribution Network
by Jacek A. Biskupski
Energies 2025, 18(11), 2786; https://doi.org/10.3390/en18112786 - 27 May 2025
Viewed by 461
Abstract
This article attempts to estimate the potential of supplying a residential building in Europe with energy exclusively from RESs during a whole year, including the heating period. The aim of the tests carried out was to minimize the purchase of energy required to [...] Read more.
This article attempts to estimate the potential of supplying a residential building in Europe with energy exclusively from RESs during a whole year, including the heating period. The aim of the tests carried out was to minimize the purchase of energy required to achieve the thermal comfort (HVACR + DHW) of a residential building powered solely by electricity. During the tests carried out, the EVs were used by the residents as their daily means of transport, topped up during working hours, and the excess energy remaining in their batteries was discharged into the building when they returned home. Energy for the EVs/PHEVs was sourced from RESs (mostly for free) while they were parked at the workplace, and also on the way home. Two one-month tests in the spring and autumn resulted in a state where, instead of purchasing a significant volume of black energy from the grid, the building was mostly powered by green energy from roof-top PVs and RES energy brought in by the PHEVs/EVs. This study identified days when the building became a real nZEB, which was not possible in previous years. The results of economic gains and carbon footprint reduction were calculated. After a period of testing, the degree of degradation of traction batteries used to carry the energy of EVs/PHEVs was checked. A high potential for such an operation was identified, especially in areas where there are periodic shutdowns (due to a call from the grid operator) of local RESs situated near the residential areas. The proposed solution may be of interest to all countries where the use of grid energy is associated not only with a doubling of costs (grid charges), but also with significant emissions, particularly in the heating period (e.g., Poland). Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 4869 KiB  
Article
New BMS Topology with Active Cell Balancing Between Electric Vehicles’ Traction and Auxiliary Batteries
by José Gabriel O. Pinto, Manuel Freitas Silva, Luis A. M. Barros and José A. Afonso
Batteries 2025, 11(5), 175; https://doi.org/10.3390/batteries11050175 - 27 Apr 2025
Viewed by 1781
Abstract
This paper proposes a new topology for a battery management system (BMS) with active cell balancing capable of exchanging energy between an electric vehicle’s traction and auxiliary batteries. This topology facilitates energy exchange between any cell in the traction battery pack and with [...] Read more.
This paper proposes a new topology for a battery management system (BMS) with active cell balancing capable of exchanging energy between an electric vehicle’s traction and auxiliary batteries. This topology facilitates energy exchange between any cell in the traction battery pack and with the auxiliary battery. The proposed topology allows both the selection of the cells involved in the balancing process and the charging of the auxiliary battery, eliminating the need for a dedicated dc-dc isolated power converter. The flexibility of this topology allows the adoption of different balancing strategies, which can be used to improve balancing efficiency. The proposed topology was first analyzed through computer simulations, and a laboratory BMS prototype was developed. The results from the simulation and experimental tests validate the topology operation and its performance in transferring energy between the cells and the auxiliary battery. Full article
Show Figures

Figure 1

20 pages, 14942 KiB  
Article
Hybrid Energy Storage System for Regenerative Braking Utilization and Peak Power Decrease in 3 kV DC Railway Electrification System
by Adam Szeląg, Włodzimierz Jefimowski, Tadeusz Maciołek, Anatolii Nikitenko, Maciej Wieczorek and Mirosław Lewandowski
Electronics 2025, 14(9), 1752; https://doi.org/10.3390/electronics14091752 - 25 Apr 2025
Viewed by 601
Abstract
This paper proposes the sizing optimization method and energy management strategy for a stationary hybrid energy storage system dedicated to a DC traction power supply system. The hybrid energy storage system consists of two modules—a supercapacitor, mainly dedicated to regenerative energy utilization, and [...] Read more.
This paper proposes the sizing optimization method and energy management strategy for a stationary hybrid energy storage system dedicated to a DC traction power supply system. The hybrid energy storage system consists of two modules—a supercapacitor, mainly dedicated to regenerative energy utilization, and a Li-ion battery, aimed to peak power reduction. The sizing method and energy management strategy proposed in this paper aim to reduce the aging effect of lithium-ion batteries. It is shown that the parameters of both modules could be sized independently. The supercapacitor module parameters are sized based on the results of a simulation determining the regenerative power, resulting in limited catenary receptivity. The simulation model of the DC electrification system is validated by comparing the results of the simulation with the measurements of 15 min average power in a 24 h cycle as average values of one year. The battery module is sized based on the statistical data of 15 min substation power value occurrences. The battery energy capacity, its maximum discharge C-rate, and the conditions determining its operation are optimized to achieve the maximum ratio of annual income resulting from peak power reduction to annual operating cost resulting from the battery aging process and total life cycle. The case study prepared for a typical 3 kV DC substation with mixed railway traffic shows that peak power could be reduced by ~1 MW, giving a ~10-year payback period for battery module installation, while the energy consumption could be decreased by 1.9 MWh/24 h, giving a ~7.5-year payback period for supercapacitor module installation. The payback period of the whole energy storage system (ESS) is ~8.4 years. Full article
(This article belongs to the Special Issue Railway Traction Power Supply, 2nd Edition)
Show Figures

Figure 1

25 pages, 8244 KiB  
Article
Sustainable Energy Storage Systems: Polypyrrole-Filled Polyimide-Modified Carbon Nanotube Sheets with Remarkable Energy Density
by Andekuba Andezai and Jude O. Iroh
Energies 2025, 18(9), 2158; https://doi.org/10.3390/en18092158 - 23 Apr 2025
Cited by 1 | Viewed by 520
Abstract
Organic hybrid materials are gaining traction as electrode candidates for energy storage due to their structural tunability and environmental compatibility. This study investigates polyimide/carbon nanotube/polypyrrole (PI/CNTs/PPy) hybrid nanocomposites, focusing on the correlation between thermal imidization temperature, polypyrrole deposition time, and the resulting electrochemical [...] Read more.
Organic hybrid materials are gaining traction as electrode candidates for energy storage due to their structural tunability and environmental compatibility. This study investigates polyimide/carbon nanotube/polypyrrole (PI/CNTs/PPy) hybrid nanocomposites, focusing on the correlation between thermal imidization temperature, polypyrrole deposition time, and the resulting electrochemical properties. By modulating PI processing temperatures (90 °C, 180 °C, 250 °C) and PPy deposition durations (60–700 s), this research uncovers critical structure–function relationships governing charge storage behavior. Scanning electron microscopy and electrochemical impedance spectroscopy reveal that low-temperature imidization preserves porosity and enables ion-accessible pathways, while moderate PPy deposition enhances electrical conductivity without blocking pore networks. The optimized composite, processed at 90 °C with 60 s PPy deposition, demonstrates superior specific capacitance (850 F/g), high redox contribution (~70% of total charge), low charge transfer resistance, and enhanced energy/power density. In contrast, high-temperature processing and prolonged PPy deposition result in structural densification, increased resistance, and diminished performance. These findings highlight a synergistic design approach that leverages partial imidization and controlled doping to balance ionic diffusion, electron transport, and redox activity. The results provide a framework for developing scalable, high-performance, and sustainable electrode materials for next-generation lithium-ion batteries and supercapacitors. Full article
Show Figures

Figure 1

21 pages, 3679 KiB  
Article
Simulation Modeling of Energy Efficiency of Electric Dump Truck Use Depending on the Operating Cycle
by Aleksey F. Pryalukhin, Boris V. Malozyomov, Nikita V. Martyushev, Yuliia V. Daus, Vladimir Y. Konyukhov, Tatiana A. Oparina and Ruslan G. Dubrovin
World Electr. Veh. J. 2025, 16(4), 217; https://doi.org/10.3390/wevj16040217 - 5 Apr 2025
Cited by 4 | Viewed by 797
Abstract
Open-pit mining involves the use of vehicles with high load capacity and satisfactory mobility. As experience shows, these requirements are fully met by pneumatic wheeled dump trucks, the traction drives of which can be made using thermal or electric machines. The latter are [...] Read more.
Open-pit mining involves the use of vehicles with high load capacity and satisfactory mobility. As experience shows, these requirements are fully met by pneumatic wheeled dump trucks, the traction drives of which can be made using thermal or electric machines. The latter are preferable due to their environmental friendliness. Unlike dump trucks with thermal engines, which require fuel to be injected into them, electric trucks can be powered by various options of a power supply: centralized, autonomous, and combined. This paper highlights the advantages and disadvantages of different power supply systems depending on their schematic solutions and the quarry parameters for all the variants of the power supply of the dumper. Each quantitative indicator of each factor was changed under conditions consistent with the others. The steepness of the road elevation in the quarry and its length were the factors under study. The studies conducted show that the energy consumption for dump truck movement for all variants of a power supply practically does not change. Another group of factors consisted of electric energy sources, which were accumulator batteries and double electric layer capacitors. The analysis of energy efficiency and the regenerative braking system reveals low efficiency of regeneration when lifting the load from the quarry. In the process of lifting from the lower horizons of the quarry to the dump and back, kinetic energy is converted into heat, reducing the efficiency of regeneration considering the technological cycle of works. Taking these circumstances into account, removing the regenerative braking systems of open-pit electric dump trucks hauling soil or solid minerals from an open pit upwards seems to be economically feasible. Eliminating the regenerative braking system will simplify the design, reduce the cost of a dump truck, and free up usable volume effectively utilized to increase the capacity of the battery packs, allowing for longer run times without recharging and improving overall system efficiency. The problem of considering the length of the path for energy consumption per given gradient of the motion profile was solved. Full article
Show Figures

Figure 1

20 pages, 1788 KiB  
Article
Stochastic Optimal Scheduling of Flexible Traction Power Supply System for Heavy Haul Railway Considering the Online Degradation of Energy Storage
by Zhe Li, Yanlin He, Gaoqiang Peng and Jie Yin
World Electr. Veh. J. 2025, 16(4), 206; https://doi.org/10.3390/wevj16040206 - 1 Apr 2025
Cited by 1 | Viewed by 554
Abstract
The heavy-haul flexible traction power supply system (HFTPSS), integrated with an energy storage system (ESS) and power flow controller (PFC), offers significant potential for improving energy efficiency and reducing costs. However, the state of ESS capacity and the uncertainty of traction [...] Read more.
The heavy-haul flexible traction power supply system (HFTPSS), integrated with an energy storage system (ESS) and power flow controller (PFC), offers significant potential for improving energy efficiency and reducing costs. However, the state of ESS capacity and the uncertainty of traction power significantly affect HFTPSS operation, creating challenges in fully utilizing flexibility to achieve economic system operation. To address this challenge, a classical scenario generation approach combining long short-term memory (LSTM), Latin hypercube sampling (LHS), and fuzzy c-means (FCM) is proposed to quantitatively characterize traction power uncertainty. Based on the generated scenarios, and considering the energy balance and safe operation constraints of HFTPSS, a stochastic optimal energy dispatch model is developed. The model aims to minimize the operational cost for heavy-haul electrified railways (HERs) while accounting for the impact of online ESS capacity degradation on the energy scheduling process. Finally, the effectiveness of the proposed strategy and model is validated using operational data from a real HER system. Full article
Show Figures

Figure 1

14 pages, 6555 KiB  
Article
Analysis and Investigation of Diffusion-Induced Stress in Lithium-Ion Particle Through Elastic-Viscoplastic Model of Binder
by Juanhua Cao and Yafang Zhang
Batteries 2025, 11(4), 132; https://doi.org/10.3390/batteries11040132 - 29 Mar 2025
Viewed by 522
Abstract
During the charging and discharging process of lithium-ion batteries, lithium-ions are embedded and removed from the active particles, leading to volume expansion and contraction of the active particles, and hence diffusion-induced stress (DIS) is generated. DIS leads to fatigue damage of the active [...] Read more.
During the charging and discharging process of lithium-ion batteries, lithium-ions are embedded and removed from the active particles, leading to volume expansion and contraction of the active particles, and hence diffusion-induced stress (DIS) is generated. DIS leads to fatigue damage of the active particles during periodic cycling, causing battery aging and capacity degradation. This article establishes a two-dimensional particle-binder system model in which a linear elastic model is used for the active particle, and an elastic-viscoplastic model is used for the binder. The state of charge, stress, and strain of the particle-binder system under different charge rates are investigated. The simulation results show that the location of particle crack excitation is related to two factors: the concentration gradient of lithium-ion and the binder confinement effect. Under a lower charge rate, the crack excitation position of the particle located at the edge of the particle-binder interfacial (PBI) is mainly attributed to the binder confinement effect, while under a higher charge rate, the crack excitation position occurs at the center of the particle due to the dominance of concentration gradient effect. Furthermore, analysis reveals that the binder undergoes plastic deformation due to the traction force caused by particle expansion, which weakens the constraint on the particle and prevents PBI debonding. Finally, a binder with lower stiffness and higher yield strength behavior is recommended for rapid stress release of particles and could reduce plastic deformation of the binder. Full article
Show Figures

Figure 1

52 pages, 36644 KiB  
Article
Influence of the Layout of Cells in a Traction Battery on the Evolution of a Fire in the Event of a Failure
by Ana Olona and Luis Castejón
Processes 2025, 13(3), 889; https://doi.org/10.3390/pr13030889 - 18 Mar 2025
Viewed by 475
Abstract
Research on the safety and impact of lithium-ion battery failure has focused on individual cells as lithium-ion batteries began to be used in small devices. However, large and complex battery packs need to be considered, and how the failure of a single cell [...] Read more.
Research on the safety and impact of lithium-ion battery failure has focused on individual cells as lithium-ion batteries began to be used in small devices. However, large and complex battery packs need to be considered, and how the failure of a single cell can affect the system needs to be analyzed. This initial failure at the level of a single cell can lead to thermal runaway of other cells within the pack, resulting in increased risk. This article focuses on tests of mechanical abuse (perforation of cylindrical cells), overcharge (pouch cells), and heating (cylindrical cells with different arrangements and types of connection) to analyse how various parameters influence the mechanism of thermal runaway (TR) propagation. Parameters such as SoC (State of Charge), environment, arrangement, and type of connection are thoroughly evaluated. The tests also analyse the final state of the post-mortem cells and measure the internal resistance of the cells before and after testing. The novelty of this study lies in its analysis of the behavior of different types of cells at room temperature, since the behavior of lithium-ion batteries under adverse circumstances has been extensively studied and is well understood, failures can also occur under normal operating conditions. This study concludes that temperature is a crucial parameter, as overheating of the battery can cause an exothermic reaction and destroy the battery completely. Also, overcharging the cell can compromise its internal structure, which underlines the importance of a well-functioning battery management system (BMS). Full article
Show Figures

Figure 1

23 pages, 7209 KiB  
Article
A Method Based on Circular Economy to Improve the Economic Performance of Second-Life Batteries
by Roberto Álvarez Fernández and Oscar Castillo Campo
Sustainability 2025, 17(4), 1765; https://doi.org/10.3390/su17041765 - 19 Feb 2025
Cited by 2 | Viewed by 1016
Abstract
Batteries are essential for the functionality of electric vehicles (EVs), leading to their design with enhanced performance and durability. Consequently, traction batteries are often replaced while they still retain the properties for use in less stressful demanding applications, with lower power and storage [...] Read more.
Batteries are essential for the functionality of electric vehicles (EVs), leading to their design with enhanced performance and durability. Consequently, traction batteries are often replaced while they still retain the properties for use in less stressful demanding applications, with lower power and storage requirements. This serves as a notable opportunity for circular economy. The energy management system presented is designed with lithium-ion batteries coming from EVs and repurposed for electricity storage as a smart backup solution for buildings. The system buys and stores energy from the grid during low-cost periods and utilizes the stored electricity to feed the demand, avoiding high electricity prices and smoothing out peak consumptions exceeding a predefined power limit. To illustrate the proposal, a case study is presented based on the Spanish market, analyzing the impact on the electricity savings for end consumers as well as the extended second-life estimation for a pack of batteries. The analysis of the results will help assess if the system is both economically feasible and environmentally sustainable from a circular economy point of view. Full article
Show Figures

Figure 1

19 pages, 9417 KiB  
Article
Investigating High-Voltage Safety Concerns in Electric Vehicles Through Voltage Discharge Optimisation
by Preetraj Kurian and Mohammadali Abbasian
Energies 2025, 18(4), 916; https://doi.org/10.3390/en18040916 - 14 Feb 2025
Viewed by 674
Abstract
The rapid adoption of electric vehicles coupled with high-voltage battery packs increases safety concerns, especially during crashes. Such safety concerns can be addressed with voltage discharge strategies to reduce the voltage of the DC-bus capacitor. One discharge strategy involves injecting a negative current [...] Read more.
The rapid adoption of electric vehicles coupled with high-voltage battery packs increases safety concerns, especially during crashes. Such safety concerns can be addressed with voltage discharge strategies to reduce the voltage of the DC-bus capacitor. One discharge strategy involves injecting a negative current into the traction motor to dissipate the DC-bus energy through motor windings. One issue with strategies involving the injection of negative d- and q-axis currents into the motor to reduce the speed of the motor and discharge the capacitor quickly is the observation of a large voltage surge due to the energy recovery from the motor. A discharge strategy found in the literature deals with this with piecewise calculation of d- and q-axis currents based on the motor speed. This study investigates this strategy and provides recommendations for improvement and future work with key insights. Using MATLAB Simulink 2023b, this strategy is analysed and compared with other discharge strategies. In certain circumstances with a high-rotor-inertia motor, the performance of the strategy was not deemed adequate. In essence, the lack of testing of discharge strategies on multiple powertrains is deemed as one potential cause of such problems which needs to be addressed in future research. Full article
(This article belongs to the Special Issue Reliable and Safe Electric Vehicle Powertrain Design and Optimization)
Show Figures

Figure 1

Back to TopTop