Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,412)

Search Parameters:
Keywords = tracking lighting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6272 KiB  
Article
Research on Energy-Saving Control of Automotive PEMFC Thermal Management System Based on Optimal Operating Temperature Tracking
by Qi Jiang, Shusheng Xiong, Baoquan Sun, Ping Chen, Huipeng Chen and Shaopeng Zhu
Energies 2025, 18(15), 4100; https://doi.org/10.3390/en18154100 (registering DOI) - 1 Aug 2025
Abstract
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating [...] Read more.
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating temperature (OOT), addressing challenges of temperature control accuracy and high energy consumption in the PEMFC thermal management system (TMS). First, PEMFC and TMS models were developed and experimentally validated. Subsequently, the PEMFC power–temperature coupling curve was experimentally determined under multiple operating conditions to serve as the reference trajectory for TMS multi-objective optimization. For MPC controller design, the TMS model was linearized and discretized, yielding a predictive model adaptable to different load demands for stack temperature across the full operating range. A multi-constrained quadratic cost function was formulated, aiming to minimize the deviation of the PEMFC operating temperature from the OOT while accounting for TMS parasitic power consumption. Finally, simulations under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) conditions evaluated the OOT tracking performance of both PID and MPC control strategies, as well as their impact on stack efficiency and TMS energy consumption at different ambient temperatures. The results indicate that, compared to PID control, MPC reduces temperature tracking error by 33%, decreases fan and pump speed fluctuations by over 24%, and lowers TMS energy consumption by 10%. These improvements enhance PEMFC operational stability and improve FCV energy efficiency. Full article
Show Figures

Figure 1

30 pages, 7223 KiB  
Article
Smart Wildlife Monitoring: Real-Time Hybrid Tracking Using Kalman Filter and Local Binary Similarity Matching on Edge Network
by Md. Auhidur Rahman, Stefano Giordano and Michele Pagano
Computers 2025, 14(8), 307; https://doi.org/10.3390/computers14080307 - 30 Jul 2025
Viewed by 96
Abstract
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part [...] Read more.
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part of a single event, resulting in increased power consumption and inefficient bandwidth usage. Furthermore, maintaining consistent animal identities in the wild is difficult due to occlusions, variable lighting, and complex environments. In this study, we propose a lightweight hybrid tracking framework built on the YOLOv8m deep neural network, combining motion-based Kalman filtering with Local Binary Pattern (LBP) similarity for appearance-based re-identification using texture and color features. To handle ambiguous cases, we further incorporate Hue-Saturation-Value (HSV) color space similarity. This approach enhances identity consistency across frames while reducing redundant transmissions. The framework is optimized for real-time deployment on edge platforms such as NVIDIA Jetson Orin Nano and Raspberry Pi 5. We evaluate our method against state-of-the-art trackers using event-based metrics such as MOTA, HOTA, and IDF1, with a focus on detected animals occlusion handling, trajectory analysis, and counting during both day and night. Our approach significantly enhances tracking robustness, reduces ID switches, and provides more accurate detection and counting compared to existing methods. When transmitting time-series data and detected frames, it achieves up to 99.87% bandwidth savings and 99.67% power reduction, making it highly suitable for edge-based wildlife monitoring in resource-constrained environments. Full article
(This article belongs to the Special Issue Intelligent Edge: When AI Meets Edge Computing)
Show Figures

Figure 1

16 pages, 2715 KiB  
Article
Composite Behavior of Nanopore Array Large Memristors
by Ian Reistroffer, Jaden Tolbert, Jeffrey Osterberg and Pingshan Wang
Micromachines 2025, 16(8), 882; https://doi.org/10.3390/mi16080882 - 29 Jul 2025
Viewed by 105
Abstract
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior [...] Read more.
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior of nanopore-array large memristors, formed with different membrane materials, pore sizes, electrolytes, and device arrangements. Anodic aluminum oxide (AAO) membranes with 5 nm and 20 nm diameter pores and track-etched polycarbonate (PCTE) membranes with 10 nm diameter pores are tested and shown to demonstrate memristive and nonlinear behaviors with approximately 107–1010 pores in parallel when electrolyte concentration across the membranes is asymmetric. Ion diffusion through the large number of channels induces time-dependent electrolyte asymmetry that drives the system through different memristive states. The behaviors of series composite memristors with different configurations are also presented. In addition to helping understand fluidic devices and circuits for neuromorphic computing, the results also shed light on the development of field-assisted ion-selection-membrane filtration techniques as well as the investigations of large neurons and giant synapses. Further work is needed to de-embed parasitic components of the measurement setup to obtain intrinsic large memristor properties. Full article
(This article belongs to the Section D4: Glassy Materials and Micro/Nano Devices)
Show Figures

Figure 1

14 pages, 827 KiB  
Article
Sensor Fusion for Enhancing Motion Capture: Integrating Optical and Inertial Motion Capture Systems
by Hailey N. Hicks, Howard Chen and Sara A. Harper
Sensors 2025, 25(15), 4680; https://doi.org/10.3390/s25154680 - 29 Jul 2025
Viewed by 257
Abstract
This study aimed to create and evaluate an optimization-based sensor fusion algorithm that combines Optical Motion Capture (OMC) and Inertial Motion Capture (IMC) measurements to provide a more efficient and reliable gap-filling process for OMC measurements to be used for future research. The [...] Read more.
This study aimed to create and evaluate an optimization-based sensor fusion algorithm that combines Optical Motion Capture (OMC) and Inertial Motion Capture (IMC) measurements to provide a more efficient and reliable gap-filling process for OMC measurements to be used for future research. The proposed algorithm takes the first and last frame of OMC data and fills the rest with gyroscope data from the IMC. The algorithm was validated using data from twelve participants who performed a hand cycling task with an inertial measurement unit (IMU) placed on their hand, forearm, and upper arm. The OMC tracked a cluster of reflective markers that were placed on top of each IMU. The proposed algorithm was evaluated with simulated gaps of up to five minutes. Average total root-mean-square errors (RMSE) of <1.8° across a 5 min duration were observed for all sensor placements for the cyclic upper limb motion pattern used in this study. The results demonstrated that the fusion of these two sensing modalities is feasible and shines light on the possibility of more field-based studies for human motion analysis. Full article
Show Figures

Figure 1

25 pages, 10205 KiB  
Article
RTLS-Enabled Bidirectional Alert System for Proximity Risk Mitigation in Tunnel Environments
by Fatima Afzal, Farhad Ullah Khan, Ayaz Ahmad Khan, Ruchini Jayasinghe and Numan Khan
Buildings 2025, 15(15), 2667; https://doi.org/10.3390/buildings15152667 - 28 Jul 2025
Viewed by 161
Abstract
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location [...] Read more.
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location systems (RTLS) with long-range (LoRa) wireless communication and ultra-wideband (UWB) positioning. The system comprises Arduino nano microcontrollers, organic light-emitting diode (OLED) displays, and piezo buzzers to detect and signal proximity breaches between workers and equipment. Using an action research approach, three pilot case studies were conducted in a simulated tunnel environment to test the system’s effectiveness in both static and dynamic risk scenarios. The results showed that the system accurately tracked proximity and generated timely alerts when safety thresholds were crossed, although minor delays of 5–8 s and slight positional inaccuracies were noted. These findings confirm the system’s capacity to enhance situational awareness and reduce reliance on manual safety protocols. The study contributes to the tunnel safety literature by demonstrating the feasibility of low-cost, real-time monitoring solutions that simultaneously track labour and machinery. The proposed RTLS framework offers practical value for safety managers and informs future research into automated safety systems in complex construction environments. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

25 pages, 5055 KiB  
Article
FlickPose: A Hand Tracking-Based Text Input System for Mobile Users Wearing Smart Glasses
by Ryo Yuasa and Katashi Nagao
Appl. Sci. 2025, 15(15), 8122; https://doi.org/10.3390/app15158122 - 22 Jul 2025
Viewed by 331
Abstract
With the growing use of head-mounted displays (HMDs) such as smart glasses, text input remains a challenge, especially in mobile environments. Conventional methods like physical keyboards, voice recognition, and virtual keyboards each have limitations—physical keyboards lack portability, voice input has privacy concerns, and [...] Read more.
With the growing use of head-mounted displays (HMDs) such as smart glasses, text input remains a challenge, especially in mobile environments. Conventional methods like physical keyboards, voice recognition, and virtual keyboards each have limitations—physical keyboards lack portability, voice input has privacy concerns, and virtual keyboards struggle with accuracy due to a lack of tactile feedback. FlickPose is a novel text input system designed for smart glasses and mobile HMD users, integrating flick-based input and hand pose recognition. It features two key selection methods: the touch-panel method, where users tap a floating UI panel to select characters, and the raycast method, where users point a virtual ray from their wrist and confirm input via a pinch motion. FlickPose uses five left-hand poses to select characters. A machine learning model trained for hand pose recognition outperforms Random Forest and LightGBM models in accuracy and consistency. FlickPose was tested against the standard virtual keyboard of Meta Quest 3 in three tasks (hiragana, alphanumeric, and kanji input). Results showed that raycast had the lowest error rate, reducing unintended key presses; touch-panel had more deletions, likely due to misjudgments in key selection; and frequent HMD users preferred raycast, as it maintained input accuracy while allowing users to monitor their text. A key feature of FlickPose is adaptive tracking, which ensures the keyboard follows user movement. While further refinements in hand pose recognition are needed, the system provides an efficient, mobile-friendly alternative for HMD text input. Future research will explore real-world application compatibility and improve usability in dynamic environments. Full article
(This article belongs to the Special Issue Extended Reality (XR) and User Experience (UX) Technologies)
Show Figures

Figure 1

19 pages, 1563 KiB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 248
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

15 pages, 1019 KiB  
Article
Micro-Yizkor and Hasidic Memory: A Post-Holocaust Letter from the Margins
by Isaac Hershkowitz
Religions 2025, 16(7), 937; https://doi.org/10.3390/rel16070937 - 19 Jul 2025
Viewed by 476
Abstract
This paper examines a previously unknown anonymous Hebrew letter inserted into a postwar edition of Shem HaGedolim, found in the library of the Jewish University in Budapest. The letter, composed in Győr in 1947, consists almost entirely of passages copied from Tiferet Chayim, [...] Read more.
This paper examines a previously unknown anonymous Hebrew letter inserted into a postwar edition of Shem HaGedolim, found in the library of the Jewish University in Budapest. The letter, composed in Győr in 1947, consists almost entirely of passages copied from Tiferet Chayim, a hagiographic genealogy of the Sanz Hasidic dynasty. Although derivative in content, the letter’s form and placement suggest it was not meant for transmission but instead served as a private act of mourning and historiographical preservation. By situating the letter within the broader context of post-Holocaust Jewish and Hasidic memory practices, including yizkor books, rabbinic memoirs, and grassroots commemorative writing, this study proposes that the document constitutes a “micro-yizkor”: a bibliographic ritual that aimed to re-inscribe lost tzaddikim into sacred memory. Drawing on theories of trauma, religious coping, and bereavement psychology, particularly the Two-Track Model of Bereavement, the paper examines the letter as both a therapeutic and historiographical gesture. The author’s meticulous copying, selective omissions, and personalized touches (such as modified honorifics and emotive phrases) reflect an attempt to maintain spiritual continuity in the wake of communal devastation. Engaging scholarship by Michal Shaul, Lior Becker, Gershon Greenberg, and others, the analysis demonstrates how citation, far from being a passive act, functions here as an instrument of resistance, memory, and redemptive reconstruction. The existence of such a document can also be examined through the lens of Maurice Rickards’ insights, particularly his characterization of the “compulsive note” as a salient form of ephemera, materials often inserted between the pages of books, which pose unique challenges for interpreting the time capsule their authors sought to construct. Ultimately, the paper argues that this modest and anonymous document offers a rare window into postwar Ultra-orthodox religious subjectivity. It challenges prevailing assumptions about Hasidic silence after the Holocaust and demonstarates how even derivative texts can serve as potent sites of historical testimony, spiritual resilience, and bibliographic mourning. The letter thus sheds light on a neglected form of Hasidic historiography, one authored not by professional historians, but by the broken-hearted, writing in the margins of sacred books. Full article
Show Figures

Figure 1

20 pages, 5236 KiB  
Article
Leakage Detection in Subway Tunnels Using 3D Point Cloud Data: Integrating Intensity and Geometric Features with XGBoost Classifier
by Anyin Zhang, Junjun Huang, Zexin Sun, Juju Duan, Yuanai Zhang and Yueqian Shen
Sensors 2025, 25(14), 4475; https://doi.org/10.3390/s25144475 - 18 Jul 2025
Viewed by 335
Abstract
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics [...] Read more.
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics of leakage patterns. To address these limitations, this study proposes a classification method based on XGBoost classifier, integrating both intensity and geometric features. The proposed methodology comprises the following steps: First, a RANSAC algorithm is employed to filter out noise from tunnel objects, such as facilities, tracks, and bolt holes, which exhibit intensity values similar to leakage. Next, intensity features are extracted to facilitate the initial separation of leakage regions from the tunnel lining. Subsequently, geometric features derived from the k neighborhood are incorporated to complement the intensity features, enabling more effective segmentation of leakage from the lining structures. The optimal neighborhood scale is determined by selecting the scale that yields the highest F1-score for leakage across various multiple evaluated scales. Finally, the XGBoost classifier is applied to the binary classification to distinguish leakage from tunnel lining. Experimental results demonstrate that the integration of geometric features significantly enhances leakage detection accuracy, achieving an F1-score of 91.18% and 97.84% on two evaluated datasets, respectively. The consistent performance across four heterogeneous datasets indicates the robust generalization capability of the proposed methodology. Comparative analysis further shows that XGBoost outperforms other classifiers, such as Random Forest, AdaBoost, LightGBM, and CatBoost, in terms of balance of accuracy and computational efficiency. Moreover, compared to deep learning models, including PointNet, PointNet++, and DGCNN, the proposed method demonstrates superior performance in both detection accuracy and computational efficiency. Full article
(This article belongs to the Special Issue Application of LiDAR Remote Sensing and Mapping)
Show Figures

Figure 1

49 pages, 7424 KiB  
Article
ACIVY: An Enhanced IVY Optimization Algorithm with Adaptive Cross Strategies for Complex Engineering Design and UAV Navigation
by Heming Jia, Mahmoud Abdel-salam and Gang Hu
Biomimetics 2025, 10(7), 471; https://doi.org/10.3390/biomimetics10070471 - 17 Jul 2025
Viewed by 277
Abstract
The Adaptive Cross Ivy (ACIVY) algorithm is a novel bio-inspired metaheuristic that emulates ivy plant growth behaviors for complex optimization problems. While the original Ivy Optimization Algorithm (IVYA) demonstrates a competitive performance, it suffers from limited inter-individual information exchange, inadequate directional guidance for [...] Read more.
The Adaptive Cross Ivy (ACIVY) algorithm is a novel bio-inspired metaheuristic that emulates ivy plant growth behaviors for complex optimization problems. While the original Ivy Optimization Algorithm (IVYA) demonstrates a competitive performance, it suffers from limited inter-individual information exchange, inadequate directional guidance for local optima escape, and abrupt exploration–exploitation transitions. To address these limitations, ACIVY integrates three strategic enhancements: the crisscross strategy, enabling horizontal and vertical crossover operations for improved population diversity; the LightTrack strategy, incorporating positional memory and repulsion mechanisms for effective local optima escape; and the Top-Guided Adaptive Mutation strategy, implementing ranking-based mutation with dynamic selection pools for smooth exploration–exploitation balance. Comprehensive evaluations on the CEC2017 and CEC2022 benchmark suites demonstrate ACIVY’s superior performance against state-of-the-art algorithms across unimodal, multimodal, hybrid, and composite functions. ACIVY achieved outstanding average rankings of 1.25 (CEC2022) and 1.41 (CEC2017 50D), with statistical significance confirmed through Wilcoxon tests. Practical applications in engineering design optimization and UAV path planning further validate ACIVY’s robust performance, consistently delivering optimal solutions across diverse real-world scenarios. The algorithm’s exceptional convergence precision, solution reliability, and computational efficiency establish it as a powerful tool for challenging optimization problems requiring both accuracy and consistency. Full article
Show Figures

Figure 1

19 pages, 14478 KiB  
Article
Exploring the Effects of Support Restoration on Pictorial Layers Through Multi-Resolution 3D Survey
by Emma Vannini, Silvia Belardi, Irene Lunghi, Alice Dal Fovo and Raffaella Fontana
Remote Sens. 2025, 17(14), 2487; https://doi.org/10.3390/rs17142487 - 17 Jul 2025
Viewed by 210
Abstract
Three-dimensional (3D) reproduction of artworks has advanced significantly, offering valuable insights for conservation by documenting the objects’ conservative state at both macroscopic and microscopic scales. This paper presents the 3D survey of an earthquake-damaged panel painting, whose wooden support suffered severe deformation during [...] Read more.
Three-dimensional (3D) reproduction of artworks has advanced significantly, offering valuable insights for conservation by documenting the objects’ conservative state at both macroscopic and microscopic scales. This paper presents the 3D survey of an earthquake-damaged panel painting, whose wooden support suffered severe deformation during a seismic event, posing unique restoration challenges. Our work focuses on quantifying how shape variations in the support—induced during restoration—affect the surface morphology of the pictorial layers. To this end, we conducted measurements before and after support consolidation using two complementary 3D techniques: structured-light projection to generate 3D models of the painting, tracking global shape changes in the panel, and laser-scanning microprofilometry to produce high-resolution models of localized areas, capturing surface morphology, superficial cracks, and pictorial detachments. By processing and cross-comparing 3D point cloud data from both techniques, we quantified shape variations and evaluated their impact on the pictorial layers. This approach demonstrates the utility of multi-scale 3D documentation in guiding complex restoration interventions. Full article
(This article belongs to the Special Issue New Insight into Point Cloud Data Processing)
Show Figures

Figure 1

26 pages, 2018 KiB  
Review
Influence of Light Regimes on Production of Beneficial Pigments and Nutrients by Microalgae for Functional Plant-Based Foods
by Xiang Huang, Feng Wang, Obaid Ur Rehman, Xinjuan Hu, Feifei Zhu, Renxia Wang, Ling Xu, Yi Cui and Shuhao Huo
Foods 2025, 14(14), 2500; https://doi.org/10.3390/foods14142500 - 17 Jul 2025
Viewed by 440
Abstract
Microalgal biomass has emerged as a valuable and nutrient-rich source of novel plant-based foods of the future, with several demonstrated benefits. In addition to their green and health-promoting characteristics, these foods exhibit bioactive properties that contribute to a range of physiological benefits. Photoautotrophic [...] Read more.
Microalgal biomass has emerged as a valuable and nutrient-rich source of novel plant-based foods of the future, with several demonstrated benefits. In addition to their green and health-promoting characteristics, these foods exhibit bioactive properties that contribute to a range of physiological benefits. Photoautotrophic microalgae are particularly important as a source of food products due to their ability to biosynthesize high-value compounds. Their photosynthetic efficiency and biosynthetic activity are directly influenced by light conditions. The primary goal of this study is to track the changes in the light requirements of various high-value microalgae species and use advanced systems to regulate these conditions. Artificial intelligence (AI) and machine learning (ML) models have emerged as pivotal tools for intelligent microalgal cultivation. This approach involves the continuous monitoring of microalgal growth, along with the real-time optimization of environmental factors and light conditions. By accumulating data through cultivation experiments and training AI models, the development of intelligent microalgae cell factories is becoming increasingly feasible. This review provides a concise overview of the regulatory mechanisms that govern microalgae growth in response to light conditions, explores the utilization of microalgae-based products in plant-based foods, and highlights the potential for future research on intelligent microalgae cultivation systems. Full article
Show Figures

Graphical abstract

21 pages, 474 KiB  
Review
Sustainable STEM Education in Arab Countries: Features and Challenges
by Rania Bou Saad, Ariadna Llorens Garcia and Jose M. Cabre Garcia
Sustainability 2025, 17(14), 6503; https://doi.org/10.3390/su17146503 - 16 Jul 2025
Viewed by 465
Abstract
This paper investigates how sustainable STEM education is being shaped within the pre-university systems of the 22 Arab countries. By categorizing these systems into four groups based on the Global Knowledge Index and two analytical tracks, this study examines in detail the factors [...] Read more.
This paper investigates how sustainable STEM education is being shaped within the pre-university systems of the 22 Arab countries. By categorizing these systems into four groups based on the Global Knowledge Index and two analytical tracks, this study examines in detail the factors that enable—or hinder—the development of long-term, sustainability-oriented competencies in science, technology, engineering, and mathematics. Beyond pedagogical dimensions, this study emphasizes STEM education as a strategic tool for achieving national sustainable development goals (SDGs), promoting workforce readiness, and informing education policy reform. The analysis highlights the policy efforts, systemic limitations, and the need for localized strategies to integrate sustainability into the STEM curricula and teacher training. It is structured in six sections: (1) an introduction to STEM and sustainability concepts, the Global Knowledge Index, and the Arab-region education landscape; (2) research questions, methodology, and data sources; (3) analysis of Groups 1 and 2, assessing their experiences in implementing sustainability-driven STEM initiatives; (4) analysis of Groups 3 and 4, evaluating their readiness for adopting sustainable STEM programs; (5) discussion of findings in light of sustainability policy frameworks; and (6) a concluding overview with actionable recommendations to align national education systems with global sustainability goals. Full article
Show Figures

Figure 1

13 pages, 665 KiB  
Review
Emerging Technologies for Injury Identification in Sports Settings: A Systematic Review
by Luke Canavan Dignam, Lisa Ryan, Michael McCann and Ed Daly
Appl. Sci. 2025, 15(14), 7874; https://doi.org/10.3390/app15147874 - 14 Jul 2025
Viewed by 398
Abstract
Sport injury recognition is rapidly evolving with the integration of new emerging technologies. This systematic review aims to identify and evaluate technologies capable of detecting injuries during sports participation. A comprehensive search of PUBMED, Sport Discus, Web of Science, and ScienceDirect was conducted [...] Read more.
Sport injury recognition is rapidly evolving with the integration of new emerging technologies. This systematic review aims to identify and evaluate technologies capable of detecting injuries during sports participation. A comprehensive search of PUBMED, Sport Discus, Web of Science, and ScienceDirect was conducted following the PRISMA 2020 guidelines. The review was registered on PROSPERO (CRD42024608964). Inclusion criteria focused on prospective studies involving athletes of all ages, evaluating tools which are utilised to identify injuries in sports settings. The review included research between 2014 and 2024; retrospective, conceptual, and fatigue-focused studies were excluded. Risk of bias was assessed using the Critical Appraisal Skills Program (CASP) tool. Of 4283 records screened, 70 full-text articles were assessed, with 21 studies meeting the final inclusion criteria. The technologies were grouped into advanced imaging (Magnetic Resonance Imaging (MRI), Diffusion Tensor Imaging (DFI), and Quantitative Susceptibility Mapping (QSM), with biomarkers (i.e., Neurofilament Light (NfL), Tau protein, Glial Fibrillary Acidic Protein (GFAP), Salivary MicroRNAs, and Immunoglobulin A (IgA), and sideline assessments (i.e., the King–Devick test, KD-Eye Tracking, modified Balance Error Scoring System (mBESS), DETECT, ImPACT structured video analysis, and Instrumented Mouth Guards (iMGs)), which demonstrated feasibility for immediate sideline identification of injury. Future research should improve methodological rigour through larger, diverse samples and controlled designs, with real-world testing environments. Following this guidance, the application of emerging technologies may assist medical staff, coaches, and national governing bodies in identifying injuries in a sports setting, providing real-time assessment. Full article
(This article belongs to the Special Issue Sports Injuries: Prevention and Rehabilitation)
Show Figures

Figure 1

36 pages, 5913 KiB  
Article
Design and Temperature Control of a Novel Aeroponic Plant Growth Chamber
by Ali Guney and Oguzhan Cakir
Electronics 2025, 14(14), 2801; https://doi.org/10.3390/electronics14142801 - 11 Jul 2025
Viewed by 388
Abstract
It is projected that the world population will quadruple over the next century, and to meet future food demands, agricultural production will need to increase by 70%. Therefore, there has been a transition from traditional farming methods to autonomous modern agriculture. One such [...] Read more.
It is projected that the world population will quadruple over the next century, and to meet future food demands, agricultural production will need to increase by 70%. Therefore, there has been a transition from traditional farming methods to autonomous modern agriculture. One such modern technique is aeroponic farming, in which plants are grown without soil under controlled and hygienic conditions. In aeroponic farming, plants are significantly less affected by climatic conditions, infectious diseases, and biotic and abiotic stresses, such as pest infestations. Additionally, this method can reduce water, nutrient, and pesticide usage by 98%, 60%, and 100%, respectively, while increasing the yield by 45–75% compared to traditional farming. In this study, a three-dimensional industrial design of an innovative aeroponic plant growth chamber was presented for use by individuals, researchers, and professional growers. The proposed chamber design is modular and open to further innovation. Unlike existing chambers, it includes load cells that enable real-time monitoring of the fresh weight of the plant. Furthermore, cameras were integrated into the chamber to track plant growth and changes over time and weight. Additionally, RGB power LEDs were placed on the inner ceiling of the chamber to provide an optimal lighting intensity and spectrum based on the cultivated plant species. A customizable chamber design was introduced, allowing users to determine the growing tray and nutrient nozzles according to the type and quantity of plants. Finally, system models were developed for temperature control of the chamber. Temperature control was implemented using a proportional-integral-derivative controller optimized with particle swarm optimization, radial movement optimization, differential evolution, and mayfly optimization algorithms for the gain parameters. The simulation results indicate that the temperatures of the growing and feeding chambers in the cabinet reached a steady state within 260 s, with an offset error of no more than 0.5 °C. This result demonstrates the accuracy of the derived model and the effectiveness of the optimized controllers. Full article
(This article belongs to the Special Issue Intelligent and Autonomous Sensor System for Precision Agriculture)
Show Figures

Figure 1

Back to TopTop