Composite Behavior of Nanopore Array Large Memristors
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, R.; Li, H.; Chen, P.-Y.; Wan, W.; Chen, H.-Y.; Gao, B.; Wu, H.; Yu, S.; Saraswat, K.; Wong, H.P. Device and materials requirements for neuromorphic computing. J. Phys. D Appl. Phys. 2019, 52, 113001. [Google Scholar] [CrossRef]
- Aguirre, F.; Sebastian, A.; Le Gallo, M.; Song, W.; Wang, T.; Yang, J.J.; Lu, W.; Chang, M.-F.; Ielmini, D.; Yang, Y. Hardware implementation of memristor-based artificial neural networks. Nat. Commun. 2024, 15, 1974. [Google Scholar] [CrossRef]
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500. [Google Scholar] [CrossRef]
- Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Vongehr, S.; Meng, X. The missing memristor has not been found. Sci. Rep. 2015, 5, 11657. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Sun, B.; Zhou, G.; Mao, S.; Zhu, S.; Zhang, J.; Ke, C.; Zhao, Y.; Shao, J. Memristor-based neural networks: A bridge from device to artificial intelligence. Nanoscale Horiz. 2023, 8, 716–745. [Google Scholar] [CrossRef] [PubMed]
- Gumyusenge, A.; Melianas, A.; Keene, S.T.; Salleo, A. Materials strategies for organic neuromorphic devices. Annu. Rev. Mater. Res. 2021, 51, 47–71. [Google Scholar] [CrossRef]
- Weilenmann, C.; Ziogas, A.N.; Zellweger, T.; Portner, K.; Mladenović, M.; Kaniselvan, M.; Moraitis, T.; Luisier, M.; Emboras, A. Single neuromorphic memristor closely emulates multiple synaptic mechanisms for energy efficient neural networks. Nat. Commun. 2024, 15, 6898. [Google Scholar] [CrossRef]
- John, R.A.; Tiwari, N.; Yaoyi, C.; Ankit; Tiwari, N.; Kulkarni, M.; Nirmal, A.; Nguyen, A.C.; Basu, A.; Mathews, N. Ultralow power dual-gated subthreshold oxide neuristors: An enabler for higher order neuronal temporal correlations. ACS Nano 2018, 12, 11263–11273. [Google Scholar] [CrossRef]
- Melianas, A.; Quill, T.; LeCroy, G.; Tuchman, Y.; Loo, H.v.; Keene, S.; Giovannitti, A.; Lee, H.; Maria, I.; McCulloch, I. Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Sci. Adv. 2020, 6, eabb2958. [Google Scholar] [CrossRef]
- Chekol, S.A.; Menzel, S.; Ahmad, R.W.; Waser, R.; Hoffmann-Eifert, S. Effect of the Threshold Kinetics on the Filament Relaxation Behavior of Ag-Based Diffusive Memristors. Adv. Funct. Mater. 2022, 32, 2111242. [Google Scholar] [CrossRef]
- Wang, D.; Yu, D.; Chen, H.; Zhao, C.; Chen, X.; Lu, M. Scaling effect of nanoscale channel on the resistive switching performance of lateral molybdenum disulfide memristors. J. Alloys Compd. 2025, 1028, 180708. [Google Scholar] [CrossRef]
- Rehman, M.M.; Siddiqui, G.U.; ur Rehman, M.M.; Kim, H.B.; Doh, Y.H.; Choi, K.H. 2D nanocomposite of hexagonal boron nitride nanoflakes and molybdenum disulfide quantum dots applied as the functional layer of all-printed flexible memory device. Mater. Res. Bull. 2018, 105, 28–35. [Google Scholar] [CrossRef]
- Lee, Y.; Park, H.-L.; Kim, Y.; Lee, T.-W. Organic electronic synapses with low energy consumption. Joule 2021, 5, 794–810. [Google Scholar] [CrossRef]
- Del Valle, J.; Ramírez, J.G.; Rozenberg, M.J.; Schuller, I.K. Challenges in materials and devices for resistive-switching-based neuromorphic computing. J. Appl. Phys. 2018, 124, 211101. [Google Scholar] [CrossRef]
- Hormuzdi, S.G.; Filippov, M.A.; Mitropoulou, G.; Monyer, H.; Bruzzone, R. Electrical synapses: A dynamic signaling system that shapes the activity of neuronal networks. Biochim. Biophys. Acta (BBA)-Biomembr. 2004, 1662, 113–137. [Google Scholar] [CrossRef]
- Noy, A.; Darling, S.B. Nanofluidic computing makes a splash. Science 2023, 379, 143–144. [Google Scholar] [CrossRef]
- Xiong, T.; Li, C.; He, X.; Xie, B.; Zong, J.; Jiang, Y.; Ma, W.; Wu, F.; Fei, J.; Yu, P. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 2023, 379, 156–161. [Google Scholar] [CrossRef]
- Wang, D.; Kvetny, M.; Liu, J.; Brown, W.; Li, Y.; Wang, G. Transmembrane potential across single conical nanopores and resulting memristive and memcapacitive ion transport. J. Am. Chem. Soc. 2012, 134, 3651–3654. [Google Scholar] [CrossRef]
- Robin, P.; Kavokine, N.; Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 2021, 373, 687–691. [Google Scholar] [CrossRef]
- Robin, P.; Emmerich, T.; Ismail, A.; Niguès, A.; You, Y.; Nam, G.-H.; Keerthi, A.; Siria, A.; Geim, A.; Radha, B. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 2023, 379, 161–167. [Google Scholar] [CrossRef]
- Noy, A.; Li, Z.; Darling, S.B. Fluid learning: Mimicking brain computing with neuromorphic nanofluidic devices. Nano Today 2023, 53, 102043. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, C.; Lu, C.; Sun, J.; Zhang, Y.; Wang, F.; Qu, J. Steric hindrance-induced dehydration promotes cation selectivity in trans-subnanochannel transport. ACS Nano 2023, 17, 12629–12640. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, P.; Gómez, V.; Cervera, J.; Mafe, S.; Bisquert, J. Synaptical Tunability of Multipore Nanofluidic Memristors. J. Phys. Chem. Lett. 2023, 14, 10930–10934. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liang, Y.; Ma, Y.; Shi, D.; Xie, Y. Memristive Characteristics in an Asymmetrically Charged Nanochannel. J. Phys. Chem. Lett. 2024, 15, 6852–6858. [Google Scholar] [CrossRef]
- Bu, Y.; Ahmed, Z.; Yobas, L. A nanofluidic memristor based on ion concentration polarization. Analyst 2019, 144, 7168–7172. [Google Scholar] [CrossRef]
- Ramirez, P.; Cervera, J.; Nasir, S.; Ali, M.; Ensinger, W.; Mafe, S. Memristive switching of nanofluidic diodes by ionic concentration gradients. Colloids Surf. A Physicochem. Eng. Asp. 2024, 698, 134525. [Google Scholar] [CrossRef]
- Ramirez, P.; Portillo, S.; Cervera, J.; Nasir, S.; Ali, M.; Ensinger, W.; Mafe, S. Neuromorphic responses of nanofluidic memristors in symmetric and asymmetric ionic solutions. J. Chem. Phys. 2024, 160, 044701. [Google Scholar] [CrossRef]
- Sheng, Q.; Xie, Y.; Li, J.; Wang, X.; Xue, J. Transporting an ionic-liquid/water mixture in a conical nanochannel: A nanofluidic memristor. Chem. Commun. 2017, 53, 6125–6127. [Google Scholar] [CrossRef]
- Shi, D.; Wang, W.; Liang, Y.; Duan, L.; Du, G.; Xie, Y. Ultralow energy consumption angstrom-fluidic memristor. Nano Lett. 2023, 23, 11662–11668. [Google Scholar] [CrossRef]
- Abbott, L.F.; Regehr, W.G. Synaptic computation. Nature 2004, 431, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Fernández Santoro, E.M.; Karim, A.; Warnaar, P.; De Zeeuw, C.I.; Badura, A.; Negrello, M. Purkinje cell models: Past, present and future. Front. Comput. Neurosci. 2024, 18, 1426653. [Google Scholar] [CrossRef] [PubMed]
- Bonnan, A.; Rowan, M.M.; Baker, C.A.; Bolton, M.M.; Christie, J.M. Autonomous Purkinje cell activation instructs bidirectional motor learning through evoked dendritic calcium signaling. Nat. Commun. 2021, 12, 2153. [Google Scholar] [CrossRef] [PubMed]
- Llinás, R.; Sugimori, M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. 1980, 305, 197–213. [Google Scholar] [CrossRef]
- De Schutter, E.; Bower, J.M. An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J. Neurophysiol. 1994, 71, 375–400. [Google Scholar] [CrossRef]
- Bolam, J.P.; Pissadaki, E.K. Living on the edge with too many mouths to feed: Why dopamine neurons die. Mov. Disord. 2012, 27, 1478–1483. [Google Scholar] [CrossRef]
- Kole, M.H.; Hallermann, S.; Stuart, G.J. Single Ih channels in pyramidal neuron dendrites: Properties, distribution, and impact on action potential output. J. Neurosci. 2006, 26, 1677–1687. [Google Scholar] [CrossRef]
- Teymornejad, S.; Worthy, K.H.; Rosa, M.G.; Atapour, N. Giant pyramidal neurons of the primary motor cortex express vasoactive intestinal polypeptide (VIP), a known marker of cortical interneurons. Sci. Rep. 2024, 14, 21174. [Google Scholar] [CrossRef]
- Goriounova, N.A.; Heyer, D.B.; Wilbers, R.; Verhoog, M.B.; Giugliano, M.; Verbist, C.; Obermayer, J.; Kerkhofs, A.; Smeding, H.; Verberne, M. Large and fast human pyramidal neurons associate with intelligence. Elife 2018, 7, e41714. [Google Scholar] [CrossRef]
- Sengupta, B.; Faisal, A.A.; Laughlin, S.B.; Niven, J.E. The effect of cell size and channel density on neuronal information encoding and energy efficiency. J. Cereb. Blood Flow Metab. 2013, 33, 1465–1473. [Google Scholar] [CrossRef]
- Choudhury, S.P.; Bano, S.; Sen, S.; Suchal, K.; Kumar, S.; Nikolajeff, F.; Dey, S.K.; Sharma, V. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson’s disease. npj Park. Dis. 2022, 8, 66. [Google Scholar] [CrossRef]
- Jaslove, S.W.; Brink, P.R. The mechanism of rectification at the electrotonic motor giant synapse of the crayfish. Nature 1986, 323, 63–65. [Google Scholar] [CrossRef]
- Schneider, M.L.; Segall, K. Fan-out and fan-in properties of superconducting neuromorphic circuits. J. Appl. Phys. 2020, 128, 214903. [Google Scholar] [CrossRef]
- Furber, S. Digital neuromorphic technology: Current and future prospects. Natl. Sci. Rev. 2024, 11, nwad283. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, G.; Yamane, T.; Héroux, J.B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A. Recent advances in physical reservoir computing: A review. Neural Netw. 2019, 115, 100–123. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Feng, G.; Liu, L.; Duan, S. Composite characteristics of memristor series and parallel circuits. Int. J. Bifurc. Chaos 2015, 25, 1530019. [Google Scholar] [CrossRef]
- Adhikari, S.P.; Yang, C.; Kim, H.; Chua, L.O. Memristor bridge synapse-based neural network and its learning. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1426–1435. [Google Scholar] [CrossRef]
- Hong, Q.; Zhao, L.; Wang, X. Novel circuit designs of memristor synapse and neuron. Neurocomputing 2019, 330, 11–16. [Google Scholar] [CrossRef]
- Spring, S.A.; Goggins, S.; Frost, C.G. Ratiometric electrochemistry: Improving the robustness, reproducibility and reliability of biosensors. Molecules 2021, 26, 2130. [Google Scholar] [CrossRef]
- Tang, X.; Chen, X.; Mak, P.; Gao, Y.; Vai, M. Investigation of residual Ag amount into human body using Ag/AgCl electrodes during IBC. In Proceedings of the 2016 IEEE International Conference on Consumer Electronics-China (ICCE-China), Guangzhou, China, 19–21 December 2016; pp. 1–4. [Google Scholar]
- Nasrollaholhosseini, S.H.; Mercier, J.; Fischer, G.; Besio, W.G. Electrode–Electrolyte Interface Modeling and Impedance Characterizing of Tripolar Concentric Ring Electrode. IEEE Trans. Biomed. Eng. 2019, 66, 2897–2905. [Google Scholar] [CrossRef]
- Mei, B.-A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. J. Phys. Chem. C 2018, 122, 194–206. [Google Scholar] [CrossRef]
- Yeh, L.-H.; Zhang, M.; Qian, S. Ion Transport in a pH-Regulated Nanopore. Anal. Chem. 2013, 85, 7527–7534. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chem. Rev. 2022, 122, 10821–10859. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, Y.P.; Santos, A.; Bueno, P.R. Quantum Mechanical Meaning of the Charge Transfer Resistance. J. Phys. Chem. C 2022, 126, 3151–3162. [Google Scholar] [CrossRef]
- Cheng, L.-J.; Guo, L.J. Rectified Ion Transport through Concentration Gradient in Homogeneous Silica Nanochannels. Nano Lett. 2007, 7, 3165–3171. [Google Scholar] [CrossRef]
- Martins, D.; Chu, V.; Conde, J.P. The effect of the surface functionalization and the electrolyte concentration on the electrical conductance of silica nanochannels. Biomicrofluidics 2013, 7, 034111. [Google Scholar] [CrossRef]
- Hiller, D.; Tröger, D.; Grube, M.; König, D.; Mikolajick, T. The negative fixed charge of atomic layer deposited aluminium oxide—A two-dimensional SiO2AlOx interface effect. J. Phys. D Appl. Phys. 2021, 54, 275304. [Google Scholar] [CrossRef]
- Pershin, Y.V.; Di Ventra, M. Memory effects in complex materials and nanoscale systems. Adv. Phys. 2011, 60, 145–227. [Google Scholar] [CrossRef]
- Sun, B.; Chen, Y.; Xiao, M.; Zhou, G.; Ranjan, S.; Hou, W.; Zhu, X.; Zhao, Y.; Redfern, S.A.; Zhou, Y.N. A unified capacitive-coupled memristive model for the nonpinched current–voltage hysteresis loop. Nano Lett. 2019, 19, 6461–6465. [Google Scholar] [CrossRef]
- Wang, D.; Brown, W.; Li, Y.; Kvetny, M.; Liu, J.; Wang, G. Hysteresis Charges in the Dynamic Enrichment and Depletion of Ions in Single Conical Nanopores. ChemElectroChem 2018, 5, 3089–3095. [Google Scholar] [CrossRef]
- Bisquert, J. Inductive and Capacitive Hysteresis of Current-Voltage Curves: Unified Structural Dynamics in Solar Energy Devices, Memristors, Ionic Transistors, and Bioelectronics. PRX Energy 2024, 3, 011001. [Google Scholar] [CrossRef]
- Li, Q.; Yu, S.; Yang, P.; Wang, Q.; Liu, S. A large memory window and low power consumption self-rectifying memristor for electronic synapse. Electron. Lett. 2023, 59, e12717. [Google Scholar] [CrossRef]
- Budhathoki, R.K.; Sah, M.P.; Adhikari, S.P.; Kim, H.; Chua, L. Composite behavior of multiple memristor circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 2688–2700. [Google Scholar] [CrossRef]
- Zambrowicz, E.B.; Colombini, M. Zero-current potentials in a large membrane channel: A simple theory accounts for complex behavior. Biophys. J. 1993, 65, 1093–1100. [Google Scholar] [CrossRef]
- Hu, W.; Fan, Z.; Mo, L.; Lin, H.; Li, M.; Li, W.; Ou, J.; Tao, R.; Tian, G.; Qin, M. Volatile Resistive Switching and Short-Term Synaptic Plasticity in a Ferroelectric-Modulated SrFeOx Memristor. ACS Appl. Mater. Interfaces 2025, 17, 9595–9605. [Google Scholar] [CrossRef]
- Zucker, R.S.; Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405. [Google Scholar] [CrossRef]
- Pedroarena, C.M. A slow short-term depression at Purkinje to deep cerebellar nuclear neuron synapses supports gain-control and linear encoding over second-long time windows. J. Neurosci. 2020, 40, 5937–5953. [Google Scholar] [CrossRef]
- Goto, J.-I.; Inoue, T.; Kuruma, A.; Mikoshiba, K. Short-term potentiation at the parallel fiber–Purkinje cell synapse. Neurosci. Res. 2006, 55, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, X.; Chen, P.; Zhou, K.; Yu, J.; Wu, G.; Xiang, D.; Jiang, H.; Wang, M.; Liu, Q. Short-term synaptic plasticity in emerging devices for neuromorphic computing. IScience 2023, 26, 106315. [Google Scholar] [CrossRef] [PubMed]
- Cano, R.; Tabares, L. The active and periactive zone organization and the functional properties of small and large synapses. Front. Synaptic Neurosci. 2016, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Schneggenburger, R.; Sakaba, T.; Neher, E. Vesicle pools and short-term synaptic depression: Lessons from a large synapse. Trends Neurosci. 2002, 25, 206–212. [Google Scholar] [CrossRef]
- Obi-Nagata, K.; Suzuki, N.; Miyake, R.; MacDonald, M.L.; Fish, K.N.; Ozawa, K.; Nagahama, K.; Okimura, T.; Tanaka, S.; Kano, M. Distorted neurocomputation by a small number of extra-large spines in psychiatric disorders. Sci. Adv. 2023, 9, eade5973. [Google Scholar] [CrossRef]
- Li, Q.; Liu, H.; He, B.; Shi, W.; Ji, Y.; Cui, Z.; Yan, F.; Mohammad, Y.; Li, J. Ultrahigh-efficient separation of Mg2+/Li+ using an in-situ reconstructed positively charged nanofiltration membrane under an electric field. J. Membr. Sci. 2022, 641, 119880. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Liu, Y.; Ji, Y.; Cui, Z.; Yan, F.; Li, J.; Younas, M.; He, B. Mg2+/Li+ separation by electric field assisted nanofiltration: The impacts of membrane pore structure, electric property and other process parameters. J. Membr. Sci. 2022, 662, 120982. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, G.; Zhang, H.; Xiao, K. Nanofluidic Volatile Threshold Switching Ionic Memristor: A Perspective. ACS Nano 2025, 19, 10589–10598. [Google Scholar] [CrossRef]
Membrane | [nm] | [μm] | [nm] | [μm] | AL por. | SL por. | ||
---|---|---|---|---|---|---|---|---|
PCTE | N/A | N/A | N/A | N/A | ||||
AAO Iso. | N/A | N/A | N/A | N/A | ||||
AAO Ani. | 20–25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reistroffer, I.; Tolbert, J.; Osterberg, J.; Wang, P. Composite Behavior of Nanopore Array Large Memristors. Micromachines 2025, 16, 882. https://doi.org/10.3390/mi16080882
Reistroffer I, Tolbert J, Osterberg J, Wang P. Composite Behavior of Nanopore Array Large Memristors. Micromachines. 2025; 16(8):882. https://doi.org/10.3390/mi16080882
Chicago/Turabian StyleReistroffer, Ian, Jaden Tolbert, Jeffrey Osterberg, and Pingshan Wang. 2025. "Composite Behavior of Nanopore Array Large Memristors" Micromachines 16, no. 8: 882. https://doi.org/10.3390/mi16080882
APA StyleReistroffer, I., Tolbert, J., Osterberg, J., & Wang, P. (2025). Composite Behavior of Nanopore Array Large Memristors. Micromachines, 16(8), 882. https://doi.org/10.3390/mi16080882