Exploring the Effects of Support Restoration on Pictorial Layers Through Multi-Resolution 3D Survey
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Reference Sample
2.3. Structured-Light Projection
2.4. Laser-Scanning Microprofilometry
2.5. Point Cloud Data Processing
3. Results
3.1. Analysis of the Panel Shape: Macroscopic Deformation
3.2. Analysis of the Surface Morphology: Microscopic Deformation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daffara, C.; Muradore, R.; Piccinelli, N.; Gaburro, N.; De Rubeis, T.; Ambrosini, D. A Cost-Effective System for Aerial 3D Thermography of Buildings. J. Imaging 2020, 6, 76. [Google Scholar] [CrossRef] [PubMed]
- Sels, S.; Bogaerts, B.; Verspeek, S.; Ribbens, B.; Steenackers, G.; Penne, R.; Vanlanduit, S. 3D Defect Detection Using Weighted Principal Component Thermography. Opt. Lasers Eng. 2020, 128, 106039. [Google Scholar] [CrossRef]
- Campione, I.; Lucchi, F.; Santopuoli, N.; Seccia, L. 3D Thermal Imaging System with Decoupled Acquisition for Industrial and Cultural Heritage Applications. Appl. Sci. 2020, 10, 828. [Google Scholar] [CrossRef]
- Grifoni, E.; Bonizzoni, L.; Gargano, M.; Melada, J.; Ludwig, N.; Bruni, S.; Mignani, I. Hyper-Dimensional Visualization of Cultural Heritage: A Novel Multi-Analytical Approach on 3D Pomological Models in the Collection of the University of Milan. J. Comput. Cult. Herit. 2022, 15, 1–15. [Google Scholar] [CrossRef]
- Es Sebar, L.; Lombardo, L.; Buscaglia, P.; Cavaleri, T.; Lo Giudice, A.; Re, A.; Borla, M.; Aicardi, S.; Grassini, S. 3D Multispectral Imaging for Cultural Heritage Preservation: The Case Study of a Wooden Sculpture of the Museo Egizio Di Torino. Heritage 2023, 6, 2783–2795. [Google Scholar] [CrossRef]
- Simon Chane, C.; Mansouri, A.; Marzani, F.S.; Boochs, F. Integration of 3D and Multispectral Data for Cultural Heritage Applications: Survey and Perspectives. Image Vis. Comput. 2013, 31, 91–102. [Google Scholar] [CrossRef]
- Chane, C.; Schütze, R.; Boochs, F.; Marzani, F. Registration of 3D and Multispectral Data for the Study of Cultural Heritage Surfaces. Sensors 2013, 13, 1004–1020. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Jiménez, D.; Buchón-Moragues, F.; Bravo, J.M.; Sánchez-Pérez, J.V. Estimation of the Precision of a Structured Light System in Oil Paintings on Canvas. Sensors 2019, 19, 4966. [Google Scholar] [CrossRef] [PubMed]
- Blais, F.; Cournoyer, L.; Beraldin, J.-A.; Picard, M. 3D Imaging from Theory to Practice: The Mona Lisa Story. In Current Developments in Lens Design and Optical Engineering IX; Mouroulis, P.Z., Smith, W.J., Johnson, R.B., Eds.; SPIE: San Diego, CA, USA, 2008; p. 70600L. [Google Scholar]
- Sansoni, G.; Trebeschi, M.; Docchio, F. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation. Sensors 2009, 9, 568–601. [Google Scholar] [CrossRef] [PubMed]
- Lunghi, I.; Vannini, E.; Dal Fovo, A.; Di Sarno, V.; Rocco, A.; Fontana, R. A Performance Comparison of 3D Survey Instruments for Their Application in the Cultural Heritage Field. Sensors 2024, 24, 3876. [Google Scholar] [CrossRef] [PubMed]
- Elkhuizen, W.S.; Callewaert, T.W.J.; Leonhardt, E.; Vandivere, A.; Song, Y.; Pont, S.C.; Geraedts, J.M.P.; Dik, J. Comparison of Three 3D Scanning Techniques for Paintings, as Applied to Vermeer’s ‘Girl with a Pearl Earring’. Herit. Sci. 2019, 7, 89. [Google Scholar] [CrossRef]
- Pelagotti, A.; Uccheddu, F.; Massa, E.; Carfagni, M. Comparing Two 3D Measurement Techniques for Documenting Painted Wooden Panels Surface Deformations on a Real Test Case: “Mystical Marriage of Saint Catherine” by Renaissance Artist Piero Di Cosimo. In IOP Conference Series: Materials Science and Engineering, Proceedings of the Florence Heri-Tech—The Future of Heritage Science and Technologies, Florence, Italy, 16–18 May 2018; IOP Publishing Ltd.: Bristol, UK, 2018; Volume 364, p. 012090. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Morello, M.; Mazzinghi, A.; Toso, C.; Pampaloni, E.; Fontana, R. Disclosure of a Concealed Michelangelo-Inspired Depiction in a 16th-Century Painting. J. Imaging 2024, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- Tornero-Martínez, N.; Trujillo-Schiaffino, G.; Anguiano-Morales, M.; Mendoza-Villegas, P.G.; Salas-Peimbert, D.P.; Corral-Martínez, L.F. Color Profilometry Techniques: A Review. Opt. Pura Apl. 2018, 51, 0136021. [Google Scholar] [CrossRef]
- Zhang, S. High-Speed 3D Shape Measurement with Structured Light Methods: A Review. Opt. Lasers Eng. 2018, 106, 119–131. [Google Scholar] [CrossRef]
- Mazzocato, S.; Daffara, C. Experiencing the Untouchable: A Method for Scientific Exploration and Haptic Fruition of Artworks Microsurface Based on Optical Scanning Profilometry. Sensors 2021, 21, 4311. [Google Scholar] [CrossRef] [PubMed]
- Mazzocato, S.; Daffara, C. Spatio-Temporal Monitoring of the Microsurface Modification in Artworks under Environmental Forcing. Eur. Phys. J. Plus 2025, 140, 382. [Google Scholar] [CrossRef]
- Gagliardi, C.; Riparbelli, L.; Mazzanti, P.; Fioravanti, M. A Critical Review of Methods and Techniques Used for Monitoring Deformations in Wooden Panel Paintings. Forests 2025, 16, 546. [Google Scholar] [CrossRef]
- Palma, G.; Pingi, P.; Siotto, E. Temporal Deformation Analysis of 3D Models as Diagnostic Tool for Panel Paintings. In Handbook of Cultural Heritage Analysis; D’Amico, S., Venuti, V., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1915–1931. ISBN 978-3-030-60015-0. [Google Scholar]
- Badillo, P.D.; Parfenov, V.A.; Kuleshov, D.S. 3D Scanning for Periodical Conservation State Monitoring of Oil Paintings. In Proceedings of the 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), Saint Petersburg, Russia, 25–28 January 2022; IEEE: Saint Petersburg, Russia, 2022; pp. 1098–1102. [Google Scholar]
- Auber--Le Saux, J.; Detalle, V.; Bai, X.; Andrianakis, M.; Wilkie-Chancellier, N.; Tornari, V. Surface Displacement Measurements of Artworks: New Data Processing for Speckle Pattern Interferometry. Appl. Sci. 2022, 12, 11969. [Google Scholar] [CrossRef]
- Uzielli, L.; Cocchi, L.; Mazzanti, P.; Togni, M.; Jullien, D.; Dionisi-Vici, P. The Deformometric Kit: A Method and an Apparatus for Monitoring the Deformation of Wooden Panels. J. Cult. Herit. 2012, 13, S94–S101. [Google Scholar] [CrossRef]
- Mazzanti, P.; Marcon, B.; Cocchi, L.; Goli, G.; Riparbelli, L.; Uzielli, L. An Innovative Method Based on In Situ Deformometric Monitoring to Support Decisions for the Structural Restoration of a Historic Panel Painting. Heritage 2024, 7, 4193–4205. [Google Scholar] [CrossRef]
- Fontana, R.; Dal Fovo, A.; Striova, J.; Pezzati, L.; Pampaloni, E.; Raffaelli, M.; Barucci, M. Application of Non-Invasive Optical Monitoring Methodologies to Follow and Record Painting Cleaning Processes. Appl. Phys. A 2015, 121, 957–966. [Google Scholar] [CrossRef]
- Daffara, C.; Mazzocato, S. Surface Metrology Based on Scanning Conoscopic Holography for In Situ and In-Process Monitoring of Microtexture in Paintings. Sensors 2022, 22, 6637. [Google Scholar] [CrossRef] [PubMed]
- Grifoni, E.; Vannini, E.; Lunghi, I.; Faraioli, P.; Ginanni, M.; Santacesarea, A.; Fontana, R. 3D Multi-Modal Point Clouds Data Fusion for Metrological Analysis and Restoration Assessment of a Panel Painting. J. Cult. Herit. 2024, 66, 356–366. [Google Scholar] [CrossRef]
- Vannini, E.; Lunghi, I.; Grifoni, E.; Farioli, P.; Ginanni, M.; Santacesaria, A.; Fontana, R. Three-Dimensional Analysis for the Documentation of the Restoration of an Earthquake-Damaged Triptych. Heritage 2024, 7, 2176–2194. [Google Scholar] [CrossRef]
- Ioannidou, S.; Pantazis, G. Detection of Deformations and Alterations in Paintings Using a New Industrial Geodetic Methodology. J. Nondestruct. Eval. 2025, 44, 36. [Google Scholar] [CrossRef]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D Comparison of Complex Topography with Terrestrial Laser Scanner: Application to the Rangitikei Canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef]
- Abate, D. Documentation of Paintings Restoration through Photogrammetry and Change Detection Algorithms. Herit. Sci. 2019, 7, 13. [Google Scholar] [CrossRef]
- Bitelli, G.; Girelli, V.A.; Sammarini, G. 4-Dimensional Recording and Visualization of Urban Archeological Excavations. Appl. Geomat. 2018, 10, 415–426. [Google Scholar] [CrossRef]
- Riminesi, C.; Fà, R.M.D.; Brizzi, S.; Rocco, A.; Fontana, R.; Bertasa, M.; Grifoni, E.; Impallaria, A.; Leucci, G.; De Giorgi, L.; et al. Architectural Assessment of Wall Paintings Using a Multimodal and Multi-Resolution Diagnostic Approach: The Test Site of the Brancacci Chapel in Firenze. J. Cult. Herit. 2024, 66, 99–109. [Google Scholar] [CrossRef]
- Angheluță, L.M.; Rădvan, R. Macro photogrammetry for the damage assessment of artwork painted surfaces. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W15, 101–107. [Google Scholar] [CrossRef]
- Yang, Y.; Schwieger, V. Patch-Based M3C2: Towards Lower-Uncertainty and Higher-Resolution Deformation Analysis of 3D Point Clouds. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103535. [Google Scholar] [CrossRef]
- Zahs, V.; Winiwarter, L.; Anders, K.; Williams, J.G.; Rutzinger, M.; Höfle, B. Correspondence-Driven Plane-Based M3C2 for Lower Uncertainty in 3D Topographic Change Quantification. ISPRS J. Photogramm. Remote Sens. 2022, 183, 541–559. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; Smith, M.W. 3-D Uncertainty-based Topographic Change Detection with Structure-from-motion Photogrammetry: Precision Maps for Ground Control and Directly Georeferenced Surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, Y.; Sun, J. Deep Learning Based Point Cloud Registration: An Overview. Virtual Real. Intell. Hardw. 2020, 2, 222–246. [Google Scholar] [CrossRef]
- Monji-Azad, S.; Hesser, J.; Löw, N. A Review of Non-Rigid Transformations and Learning-Based 3D Point Cloud Registration Methods. ISPRS J. Photogramm. Remote Sens. 2023, 196, 58–72. [Google Scholar] [CrossRef]
- Yao, W.; Chu, T.; Tang, W.; Wang, J.; Cao, X.; Zhao, F.; Li, K.; Geng, G.; Zhou, M. SPPD: A Novel Reassembly Method for 3D Terracotta Warrior Fragments Based on Fracture Surface Information. IJGI 2021, 10, 525. [Google Scholar] [CrossRef]
- Vinodkumar, P.K.; Karabulut, D.; Avots, E.; Ozcinar, C.; Anbarjafari, G. A Survey on Deep Learning Based Segmentation, Detection and Classification for 3D Point Clouds. Entropy 2023, 25, 635. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Mei, G.; Zhang, J.; Abbas, R. A comprehensive survey on point cloud registration. arXiv 2021, arXiv:2103.02690. [Google Scholar]
MICRON3D Color | ConoPoint-10 with 50 mm Lens | |
---|---|---|
Working distance | 70 cm | 44 mm |
Depth of field | 20 cm | 8 mm |
Field of view | 30 × 40 cm | / |
Spot diameter | / | 37 µm |
Distance between points | 80 µm | 20 µm (= sampling step 1) |
Accuracy | 60 µm | 6 µm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vannini, E.; Belardi, S.; Lunghi, I.; Dal Fovo, A.; Fontana, R. Exploring the Effects of Support Restoration on Pictorial Layers Through Multi-Resolution 3D Survey. Remote Sens. 2025, 17, 2487. https://doi.org/10.3390/rs17142487
Vannini E, Belardi S, Lunghi I, Dal Fovo A, Fontana R. Exploring the Effects of Support Restoration on Pictorial Layers Through Multi-Resolution 3D Survey. Remote Sensing. 2025; 17(14):2487. https://doi.org/10.3390/rs17142487
Chicago/Turabian StyleVannini, Emma, Silvia Belardi, Irene Lunghi, Alice Dal Fovo, and Raffaella Fontana. 2025. "Exploring the Effects of Support Restoration on Pictorial Layers Through Multi-Resolution 3D Survey" Remote Sensing 17, no. 14: 2487. https://doi.org/10.3390/rs17142487
APA StyleVannini, E., Belardi, S., Lunghi, I., Dal Fovo, A., & Fontana, R. (2025). Exploring the Effects of Support Restoration on Pictorial Layers Through Multi-Resolution 3D Survey. Remote Sensing, 17(14), 2487. https://doi.org/10.3390/rs17142487