Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = tower site analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8323 KiB  
Article
The Archaeotectural Exploration of the 13th Century Terraced Building F1 at the Laogulou Yashu Archaeological Site in Chongqing, China
by Bowen Qiu, Di Zhu, Chi Jin and Yongkang Cao
Buildings 2025, 15(14), 2486; https://doi.org/10.3390/buildings15142486 - 15 Jul 2025
Viewed by 325
Abstract
The Laogulou Yashu Archaeological Site in Chongqing represented a significant discovery in the study of medieval Chinese urban heritage. Among its remains, the 13th century terraced building F1 stood out for its scale and function as a governmental qiaolou (gate tower). This study [...] Read more.
The Laogulou Yashu Archaeological Site in Chongqing represented a significant discovery in the study of medieval Chinese urban heritage. Among its remains, the 13th century terraced building F1 stood out for its scale and function as a governmental qiaolou (gate tower). This study reconstructed the original architectural design of F1 using an archaeotectural approach that integrated archaeological evidence and Song Dynasty architectural treatises, especially Yingzao Fashi, and comparatively analysed the building with contemporaneous structures and visual references. By applying the statistical estimation of historical measurement units (chi), typological analysis based on modular standards (cai) and the interpretive modelling of structural elements, the research offered a historically grounded and dimensionally coherent reconstruction. The study not only enhanced the understanding of Southern Song governmental architecture but also contributed a replicable methodological framework for reconstructing complex historical buildings from fragmentary archaeological data. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

20 pages, 4670 KiB  
Article
Vascular Flora on Croatian Historic Structures: Drivers of Biodeterioration and Conservation Implications
by Alessia Cozzolino, Riccardo Motti and Ivana Vitasović-Kosić
Plants 2025, 14(12), 1773; https://doi.org/10.3390/plants14121773 - 10 Jun 2025
Viewed by 501
Abstract
Biodeterioration, the alteration of materials by living organisms, affects approximately two-thirds of the world’s cultural heritage. When organisms colonize the surfaces, they induce physical and chemical changes that can lead to significant damage. Despite its relevance, this phenomenon remains understudied in Croatia. This [...] Read more.
Biodeterioration, the alteration of materials by living organisms, affects approximately two-thirds of the world’s cultural heritage. When organisms colonize the surfaces, they induce physical and chemical changes that can lead to significant damage. Despite its relevance, this phenomenon remains understudied in Croatia. This study aims to assess the deteriogenic vascular flora colonizing Croatian historical structures, including castles, towers, and archaeological remains, in relation to several environmental and anthropogenic factors: distance from the sea (0–1, 1–10, 10–65, and 65–165 km), elevation (0–50, 50–150, 150–300, and 300–600 m a.s.l.), exposure (north, south, east, west), and the state of conservation of the site (absent, low, good, excellent). Vegetation cover and floristic diversity, assessed using the Shannon Index, were primarily influenced by elevation and conservation status. As expected, vegetation cover decreased significantly, by 67.75%, from sites classified as ‘Absent’ to those with ‘Excellent’ conservation status (p < 0.001). To explain the observed differences in vegetation cover across the four altitudinal ranges, an analysis of plant life forms was carried out, revealing a wide variability and statistically significant patterns also related to the type and frequency of maintenance interventions. The potential risk posed by vascular plants was evaluated using the Hazard Index (HI), which revealed significant differences only for elevation and distance from the sea. The highest risk levels were recorded at mid-elevations (150–300 m), where the Hazard Index reached its maximum value (HI = 158). Exposure did not show a significant effect on biodeterioration processes. These findings provide new insights into plant-driven biodeterioration in Croatia and highlight the need for targeted conservation strategies to protect the country’s cultural heritage. Full article
(This article belongs to the Special Issue Advances in Vegetation History and Archaeobotany)
Show Figures

Figure 1

37 pages, 9314 KiB  
Article
A Data Imputation Approach for Missing Power Consumption Measurements in Water-Cooled Centrifugal Chillers
by Sung Won Kim and Young Il Kim
Energies 2025, 18(11), 2779; https://doi.org/10.3390/en18112779 - 27 May 2025
Viewed by 341
Abstract
In the process of collecting operational data for the performance analysis of water-cooled centrifugal chillers, missing values are inevitable due to various factors such as sensor errors, data transmission failures, and failure of the measurement system. When a substantial amount of missing data [...] Read more.
In the process of collecting operational data for the performance analysis of water-cooled centrifugal chillers, missing values are inevitable due to various factors such as sensor errors, data transmission failures, and failure of the measurement system. When a substantial amount of missing data is present, the reliability of data analysis decreases, leading to potential distortions in the results. To address this issue, it is necessary to either minimize missing occurrences by utilizing high-precision measurement equipment or apply reliable imputation techniques to compensate for missing values. This study focuses on two water-cooled turbo chillers installed in Tower A, Seoul, collecting a total of 118,464 data points over 3 years and 4 months. The dataset includes chilled water inlet and outlet temperatures (T1 and T2) and flow rate (V˙1) and cooling water inlet and outlet temperatures (T3 and T4) and flow rate (V˙3), as well as chiller power consumption (W˙c). To evaluate the performance of various imputation techniques, we introduced missing values at a rate of 10–30% under the assumption of a missing-at-random (MAR) mechanism. Seven different imputation methods—mean, median, linear interpolation, multiple imputation, simple random imputation, k-nearest neighbors (KNN), and the dynamically clustered KNN (DC-KNN)—were applied, and their imputation performance was validated using MAPE and CVRMSE metrics. The DC-KNN method, developed in this study, improves upon conventional KNN imputation by integrating clustering and dynamic weighting mechanisms. The results indicate that DC-KNN achieved the highest predictive performance, with MAPE ranging from 9.74% to 10.30% and CVRMSE ranging from 12.19% to 13.43%. Finally, for the missing data recorded in July 2023, we applied the most effective DC-KNN method to generate imputed values that reflect the characteristics of the studied site, which employs an ice thermal energy storage system. Full article
Show Figures

Figure 1

21 pages, 4153 KiB  
Article
Study on Risk Mitigation Measures for Atmospheric Storage Tank of Acrylic Acid Due to Abnormal Weather Conditions
by Gabgi Jeong, Minseo Nam, Jaeyoung Kim and Byung-Tae Yoo
Processes 2025, 13(5), 1607; https://doi.org/10.3390/pr13051607 - 21 May 2025
Viewed by 417
Abstract
This study analyzes the risks posed by high-temperature summer conditions to atmospheric storage tanks containing acrylic acid and proposes mitigation measures. Recent increases in heat waves and tropical nights have led to an increase in the temperatures of acrylic acid storage tanks. This [...] Read more.
This study analyzes the risks posed by high-temperature summer conditions to atmospheric storage tanks containing acrylic acid and proposes mitigation measures. Recent increases in heat waves and tropical nights have led to an increase in the temperatures of acrylic acid storage tanks. This temperature increase results in higher vapor pressure and promotes spontaneous polymerization, thereby increasing the risk of explosions in atmospheric storage tanks. Hazard and operability (HAZOP) analysis identified explosions due to pressure buildup as a major risk scenario. To mitigate this risk, a spray-tower system was introduced through a layer of protection analysis (LOPA), which effectively reduced the hazards associated with atmospheric storage tanks. Additionally, the removal of flame-arrester replacement operations not only achieves economic benefits, such as reduced replacement costs and labor time, but also enhances safety by eliminating worker exposure to hazardous chemicals. These findings have significant implications for improving safety at industrial sites and highlight the potential economic benefits of preventing chemical accidents. Full article
(This article belongs to the Special Issue Risk Assessment and System Safety in the Process Industry)
Show Figures

Figure 1

15 pages, 3559 KiB  
Article
Likely Technology Making the Ancient Cham Bricks Lightweight, Carvable, and Durable for Constructing Big Engraved Towers Lasting Thousands of Years: A Case Study of the Po Nagar Towers, Nhatrang, Vietnam
by Nguyen Thu Loan, Ung Thi Dieu Thuy, Luong Van Duong, Tran Thi Thu Huong, Ba Trung Toan, Maria Luisa Saladino, Francesco Armetta, Philippe Colomban, Dariusz Hreniak and Nguyen Quang Liem
Heritage 2025, 8(5), 173; https://doi.org/10.3390/heritage8050173 - 15 May 2025
Viewed by 1068
Abstract
The Po Nagar Towers (Thap Ba) complex, an iconic heritage site of Cham culture and a nationally recognized special relic, has stood in Nhatrang, Vietnam, for over a thousand years. We report here a preliminary analysis of original ancient Cham bricks from the [...] Read more.
The Po Nagar Towers (Thap Ba) complex, an iconic heritage site of Cham culture and a nationally recognized special relic, has stood in Nhatrang, Vietnam, for over a thousand years. We report here a preliminary analysis of original ancient Cham bricks from the Po Nagar Towers using a combination of appropriate characterization techniques, including X-ray fluorescence (XRF), X-ray diffraction (XRD), Raman micro-spectroscopy, thermal dilatometry, compressive strength testing, and water sorption. Mechanical properties and firing temperatures of the ancient bricks have been determined to support the discussion on the likely technology used to make them. Specifically, they were made from clay, sand, plagioclases/feldspar, and grog mixed with intentionally added carbon precursor (charcoal powder), then fired at temperatures between 800 °C and 1000 °C to form lightweight bricks with a mass density of 1.3–1.6 kg/dm3 and an open porosity of 18–25%. The ancient Cham bricks have their texture and porosity to meet the requirements of the thin rubbing joint technique in tower construction and to contribute to the carvability and durability of Cham towers. A comparison is made with the bricks for tower restoration during the 2000s. Full article
(This article belongs to the Section Materials and Heritage)
Show Figures

Figure 1

24 pages, 26161 KiB  
Article
Using Ground Penetrating Radar (GPR) to Locate the Remains of the Jaundole (New Dahlen) Castle Near Riga, Latvia
by Philip Reeder and Harry Jol
Heritage 2025, 8(5), 161; https://doi.org/10.3390/heritage8050161 - 5 May 2025
Viewed by 757
Abstract
This study investigates the subsurface remains of Jaundole Castle, a 14th-century medieval fortress located on Dole Island near Riga, Latvia. The castle, which has left no visible surface ruins, is known only from historical documents and maps. To assess whether its buried remains [...] Read more.
This study investigates the subsurface remains of Jaundole Castle, a 14th-century medieval fortress located on Dole Island near Riga, Latvia. The castle, which has left no visible surface ruins, is known only from historical documents and maps. To assess whether its buried remains could be detected, a non-invasive ground penetrating radar (GPR) survey was carried out across five targeted grids. The results revealed multiple linear and circular anomalies consistent with historical records of the castle’s layout, including possible foundations of walls and towers. These findings demonstrate that GPR, when combined with historical map and image analysis, can effectively locate, and delineate lost architectural features. The integration of historical sources and geophysical data provides a replicable model for the investigation of other completely buried archaeological sites. This work contributes to the development of non-destructive prospection strategies and supports the planning of future archaeological excavations and conservation actions. Full article
(This article belongs to the Special Issue Unveiling the Past: Multidisciplinary Investigations in Archaeology)
Show Figures

Figure 1

18 pages, 8367 KiB  
Article
Passive Seismic Surveys for a Simplified Experimental Dynamic Characterization of the Messina Bell Tower (Sicily, Italy)
by Sabrina Grassi, Sebastiano Imposa and Gabriele Morreale
Appl. Sci. 2025, 15(9), 4973; https://doi.org/10.3390/app15094973 - 30 Apr 2025
Viewed by 400
Abstract
This study proposes a simplified approach for the experimental dynamic characterization of the historic Messina Bell Tower (northeastern Sicily) using passive seismic single-station surveys. The Horizontal-to-Vertical Spectral Ratio (HVSR) analysis identified a site resonance frequency of approximately 1.06 Hz, while the Multichannel Analysis [...] Read more.
This study proposes a simplified approach for the experimental dynamic characterization of the historic Messina Bell Tower (northeastern Sicily) using passive seismic single-station surveys. The Horizontal-to-Vertical Spectral Ratio (HVSR) analysis identified a site resonance frequency of approximately 1.06 Hz, while the Multichannel Analysis of Surface Waves (MASW) survey contributed to the characterization of the shear wave velocity profile, providing a coherent geophysical framework useful for structural dynamic analysis. Spectral ratios analysis revealed four distinct vibration modes, including a fundamental rocking mode (~1.4 Hz), a torsional mode (3.5 Hz), and two higher-frequencies flexural modes. The structure’s dynamic behavior, notably its sensitivity to torsion and rocking, is attributed to the deformable subsoil. Damping ratios estimated via the Random Decrement Method (RDM) were below 1%, consistent with the expected linear elastic response under ambient vibrations. The results show strong agreement with previous long-term monitoring, validating the effectiveness of passive seismic techniques for rapid, non-invasive assessment. This study demonstrates that streamlined, time-efficient methodologies are capable of delivering modal parameters consistent with those obtained from more extensive and resource-intensive monitoring campaigns, thereby providing a reliable and practical approach for the seismic vulnerability assessment of heritage structures. Full article
(This article belongs to the Special Issue Simplified Seismic Analysis of Complex Civil Structures)
Show Figures

Figure 1

18 pages, 24615 KiB  
Article
Perceptual-Preference-Based Touring Routes in Xishu Gardens Using Panoramic Digital-Twin Modeling
by Xueqian Gong, Zhanyuan Zhu, Li Guo, Yong Zhong, Deshun Zhang, Jing Li, Manqin Yao, Wei Yong, Mengjia Li and Yujie Huang
Land 2025, 14(5), 932; https://doi.org/10.3390/land14050932 - 25 Apr 2025
Viewed by 555
Abstract
Xishu Gardens, an exemplary narrative of classical Chinese gardens, faces challenges in preserving its commemorative spatial structures while accommodating modern visitors’ needs. While trajectory analysis is critical, existing studies struggle to interpret multi-dimensional perception-preference data owing to spatiotemporal mismatches in multi-source datasets. This [...] Read more.
Xishu Gardens, an exemplary narrative of classical Chinese gardens, faces challenges in preserving its commemorative spatial structures while accommodating modern visitors’ needs. While trajectory analysis is critical, existing studies struggle to interpret multi-dimensional perception-preference data owing to spatiotemporal mismatches in multi-source datasets. This study adopted an improved Ward–K-medoids hybrid clustering algorithm to analyze 885 trajectory samples and 34,384 synchronized data points capturing emotional valence, cognitive evaluations, and dwell time behaviors via panoramic digital twins across three heritage sites (Du Fu Thatched Cottage, San Su Shrine, and Wangjiang Tower Park). Our key findings include the following: (1) Axial bimodal patterns: Type I high-frequency looping paths (27.6–68.9% recurrence) drive deep exploration, in contrast to Type II linear routes (≤0.5% recurrence), which enable intensive node coverage. (2) Layout-perception dynamics: single-axis layouts maximize behavioral engagement (DFTC), free-form designs achieve optimal emotional-cognitive integration (WTP), and multi-axis systems amplify emotional-cognitive fluctuations (SSS). (3) Spatial preference hierarchy: entrance and waterfront zones demonstrate dwell times 20% longer than site averages. Accordingly, the proposed model synchronizes Type II peak-hour throughput with Type I off-peak experiential depth using dynamic path allocation algorithms. This study underscores the strong spatial guidance mechanisms of Xishu Gardens, supporting tourism management and heritage conservation. Full article
Show Figures

Figure 1

18 pages, 10940 KiB  
Article
Research on the Construction of Sino-Western Fusion Catholic Churches in China: A Case Study of a Catholic Church in Anqing
by Lei Yin, Dayu Yang, Yuliang Cui, Zixing Tang and Jiajian Bai
Buildings 2025, 15(6), 947; https://doi.org/10.3390/buildings15060947 - 17 Mar 2025
Viewed by 1158
Abstract
As an early vehicle for the spread of Western architectural culture in China, Catholic churches from the late 19th to the early 20th century exhibited unique Sino-Western fusion characteristics, serving as tangible witnesses to modern cultural encounters. This study focuses on the Anqing [...] Read more.
As an early vehicle for the spread of Western architectural culture in China, Catholic churches from the late 19th to the early 20th century exhibited unique Sino-Western fusion characteristics, serving as tangible witnesses to modern cultural encounters. This study focuses on the Anqing Catholic Church as a typical example and systematically analyzes its architectural translation strategies and the generation logic of fusion mechanisms through literature analysis, field research, typological analysis, and comparative research. This study shows that the church, based on the archetypes of Neoclassical and single-tower Gothic churches, constructs a localized translation system through five paths: site selection strategy, form adjustments, element replacement, technical integration, and spatial secularization. Our research further points out that churches with dual archetypes are mainly located in economically prosperous urban centers, with their spatial forms reflecting a fusion mechanism of “sacredness–regionalism–humanism”. While following religious space requirements, these churches adapt to the local environment and foster cultural identification through localized translation, reflecting the diverse perspectives of the architects. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 5937 KiB  
Article
Nonstationary Stochastic Responses of Transmission Tower-Line System with Viscoelastic Material Dampers Under Seismic Excitations
by Mingjing Chang, Bo Chen, Xiang Xiao and Yanzhou Chen
Materials 2025, 18(5), 1138; https://doi.org/10.3390/ma18051138 - 3 Mar 2025
Cited by 1 | Viewed by 753
Abstract
The excessive vibration or collapse of a transmission tower-line (TTL) system under seismic excitation can result in significant losses. Viscoelastic material dampers (VMDs) have been recognized as an effective method for structural vibration mitigation. Most existing studies have focused solely on the dynamic [...] Read more.
The excessive vibration or collapse of a transmission tower-line (TTL) system under seismic excitation can result in significant losses. Viscoelastic material dampers (VMDs) have been recognized as an effective method for structural vibration mitigation. Most existing studies have focused solely on the dynamic analysis of TTL systems with control devices under deterministic seismic excitations. Studies focusing on the nonstationary stochastic control of TTL systems with VMDs have not been reported. To this end, this study proposes a comprehensive analytical framework for the nonstationary stochastic responses of TTL systems with VMDs under stochastic seismic excitations. The analytical model of the TTL system is formulated using the Lagrange equation. The six-parameter model of VMDs and the vibration control method are established. Following this, the pseudo-excitation method (PEM) is applied to compute the stochastic response of the controlled TTL system under nonstationary seismic excitations, and a probabilistic framework for analyzing extreme value responses is developed. A real TTL system in China is selected to verify the validity of the proposed method. The accuracy of the proposed framework is validated based on the Monte Carlo method (MCM). A detailed parametric investigation is conducted to determine the optimal damper installation scheme and examine the effects of the service temperature and site type on stochastic seismic responses. VMDs can effectively suppress the structural dynamic responses, with particularly stable control over displacement. The temperature and site type have a notable influence on the stochastic seismic responses of the TTL system. The research findings provide important references for improving the seismic performance of VMDs in TTL systems. Full article
(This article belongs to the Special Issue From Materials to Applications: High-Performance Steel Structures)
Show Figures

Figure 1

39 pages, 20298 KiB  
Article
Performance Prediction of a Water-Cooled Centrifugal Chiller in Standard Temperature Conditions Using In-Situ Measurement Data
by Sung Won Kim and Young Il Kim
Sustainability 2025, 17(5), 2196; https://doi.org/10.3390/su17052196 - 3 Mar 2025
Cited by 1 | Viewed by 1339
Abstract
In this study, a regression model was developed using the thermo-regulated residual refinement regression model (TRRM) analysis method based on three years and four months of in situ data collected from two water-cooled centrifugal chillers installed in A Tower, Seoul, South Korea. The [...] Read more.
In this study, a regression model was developed using the thermo-regulated residual refinement regression model (TRRM) analysis method based on three years and four months of in situ data collected from two water-cooled centrifugal chillers installed in A Tower, Seoul, South Korea. The primary objective of this study was to predict the coefficient of performance (COP) of water-cooled chillers under various operating conditions using only the chilled water outlet temperature (T2) and the cooling water inlet temperature (T3). The secondary objective was to estimate the COP under standard temperature conditions, which is essential for the absolute performance evaluation of chillers. The collected dataset was refined through thermodynamic preprocessing, including the removal of missing values and outliers, to ensure high data reliability. Based on this refined dataset, regression analyses were conducted separately for four cases: daytime (09:00–21:00) and nighttime (21:00–09:00) operations of chiller #1 and chiller #2, resulting in the derivation of four final regression equations. The reliability of the final dataset was further validated by applying other regression models, including simple linear (SL), bi-quadratic (BQ), and multivariate polynomial (MP) regression. The performance of each model was evaluated by calculating the coefficient of determination (R2), coefficient of variation of root mean square error (CVRMSE), and the p-values of each coefficient. Additionally, the predicted COP values under the design and standard temperature conditions were compared with the measured COP values to assess the accuracy of the model. Error rates were also analyzed under scenarios where T2 and T3 were each varied by ±1 °C. To ensure robust validation, a final comparison was performed between the predicted and measured COP values. The results demonstrated that the TRRM exhibited high reliability and predictive accuracy, with most regression equations achieving R2 values exceeding 90%, CVRMSE below 5%, and p-values below 0.05. Furthermore, the predicted COP values closely matched the actual measured COP values, further confirming the reliability of the regression model and equations. This study provides a practical method for estimating the COP of water-cooled chillers under standard temperature conditions or other operational conditions using only T2 and T3. This methodology can be utilized for objective performance assessments of chillers at various sites, supporting the development of effective maintenance strategies and performance optimization plans. Full article
Show Figures

Figure 1

19 pages, 13346 KiB  
Article
Study on Fluctuating Wind Characteristics and Non-Stationarity at U-Shaped Canyon Bridge Site
by Zhe Sun, Zhuoyi Zou, Jiaying Wang, Xue Zhao and Feng Wang
Appl. Sci. 2025, 15(3), 1482; https://doi.org/10.3390/app15031482 - 31 Jan 2025
Viewed by 812
Abstract
To investigate the non-stationary characteristics of the wind field at the U-shaped canyon bridge site and its impact on fluctuating wind characteristics, a wind observation tower was installed near a cable-stayed bridge. The Augmented Dickey–Fuller (ADF) test was employed to assess the stationarity [...] Read more.
To investigate the non-stationary characteristics of the wind field at the U-shaped canyon bridge site and its impact on fluctuating wind characteristics, a wind observation tower was installed near a cable-stayed bridge. The Augmented Dickey–Fuller (ADF) test was employed to assess the stationarity of wind speed series, while the discrete wavelet transform (DWT) was applied to reconstruct the time-varying mean wind and analyze its effect on fluctuating wind characteristics. Results indicate that wind speeds in this region exhibit bimodal distribution characteristics, with the Weibull-Gamma mixed distribution model providing the best fit. The proportion of non-stationary samples increases with height. Autocorrelation function (ACF), partial autocorrelation function (PACF) tests, and power spectral density (PSD) analysis determined the optimal wavelet decomposition level for wind speed in this region. Analysis of non-stationary samples using db10 wavelet reconstruction reveals that the stationary wind speed model overestimates turbulence intensity but underestimates the turbulence integral scale. The downwind spectrum deviates from the Kaimal spectrum in both low- and high-frequency bands, whereas the vertical spectrum aligns well with the Panofsky spectrum. The findings demonstrate that the wavelet reconstruction method more accurately captures fluctuating wind characteristics under the complex terrain conditions of this canyon area. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

23 pages, 5918 KiB  
Article
Upscaling Tower-Based Net Ecosystem Productivity to 250 m Resolution with Flux Site Distribution Considerations
by Qizhi Han, Liangyun Liu and Xinjie Liu
Remote Sens. 2025, 17(3), 426; https://doi.org/10.3390/rs17030426 - 26 Jan 2025
Cited by 1 | Viewed by 1046
Abstract
Net ecosystem productivity (NEP) is an extremely important flux for terrestrial ecosystems, indicating the value of net ecosystem exchange (NEE) between terrestrial ecosystems and the atmosphere, excluding carbon fluxes from disturbances. Leveraging flux network NEE annual measurements, this study focuses on upscaling the [...] Read more.
Net ecosystem productivity (NEP) is an extremely important flux for terrestrial ecosystems, indicating the value of net ecosystem exchange (NEE) between terrestrial ecosystems and the atmosphere, excluding carbon fluxes from disturbances. Leveraging flux network NEE annual measurements, this study focuses on upscaling the tower-based NEP to a global 250 m resolution dataset with flux site distribution considerations. Firstly, the data augmentation method was presented to address issues related to the uneven spatial distribution of flux sites. Secondly, a random forest model was developed for NEP estimation using the optimized tower-based NEP and remotely sensed and meteorological gridded sample sets, giving an R2 value of 0.73 and an RMSE value of 149.83 gC m−2 yr−1. Finally, a global NEP product at a 250 m resolution was generated (2001–2022, average 13.79 PgC yr−1) and evaluated. In summary, we present a solution to the overestimation of global NEP by data-driven methods, producing a long-time-series, high-resolution NEP dataset that is more comparable to atmospheric inversion results. This dataset enhances comparability with atmospheric inversion results, thereby boosting our confidence in conducting a consistency analysis of terrestrial carbon sinks across different methods within the framework. Full article
Show Figures

Figure 1

19 pages, 12647 KiB  
Article
Non-Invasive Techniques for Monitoring Cultural Heritage: Change Detection in Dense Point Clouds at the San Pietro Barisano Bell Tower in Matera, Italy
by Carmen Fattore, Sara Porcari, Arcangelo Priore and Vito Domenico Porcari
Heritage 2025, 8(1), 14; https://doi.org/10.3390/heritage8010014 - 30 Dec 2024
Viewed by 1100
Abstract
This study examines change detection techniques in dense point clouds for the purpose of cultural heritage preservation, with a particular focus on the San Pietro Barisano Bell Tower in Matera, Italy. Dense point clouds, obtained via laser scanning, offer detailed 3D representations of [...] Read more.
This study examines change detection techniques in dense point clouds for the purpose of cultural heritage preservation, with a particular focus on the San Pietro Barisano Bell Tower in Matera, Italy. Dense point clouds, obtained via laser scanning, offer detailed 3D representations of heritage structures, facilitating the precise monitoring of changes over time. The investigation uses a variety of change detection algorithms, including the Iterative Closest Point (ICP) algorithm, which is renowned for its robust registration capabilities in aligning point clouds with high accuracy. The combination of ICP with deviation analysis and feature-based methods allows for the effective identification of alterations, including deformations, material loss, and surface degradation. This methodology establishes a comprehensive framework for the monitoring of cultural heritage, thereby enabling timely and targeted preservation efforts. The results emphasise the substantial contribution of dense point cloud analysis to the enhancement of heritage management and the safeguarding of vulnerable architectural sites. Full article
Show Figures

Figure 1

17 pages, 2917 KiB  
Article
Sensitivity and Uncertainty Analysis of the GeeSEBAL Model Using High-Resolution Remote-Sensing Data and Global Flux Site Data
by Shunjun Hu, Changyan Tian and Ping Jiao
Water 2024, 16(20), 2978; https://doi.org/10.3390/w16202978 - 18 Oct 2024
Viewed by 1102
Abstract
Actual evapotranspiration (ETa) is an important component of the surface water cycle. The geeSEBAL model is increasingly being used to estimate ETa using high-resolution remote-sensing data (Landsat 4/5/7/8). However, due to surface heterogeneity, there is significant uncertainty. By optimizing [...] Read more.
Actual evapotranspiration (ETa) is an important component of the surface water cycle. The geeSEBAL model is increasingly being used to estimate ETa using high-resolution remote-sensing data (Landsat 4/5/7/8). However, due to surface heterogeneity, there is significant uncertainty. By optimizing the quantile values of the reverse-modelling automatic calibration algorithm (CIMEC) endpoint-component selection algorithm under extreme conditions through 212 global flux sites, we obtained the optimized quantile values of 11 vegetation types of cold- and hot-pixel endpoint components (Ts and NDVI). Based on the observation data of the global FLUXNET tower, the sensitivity of 20 parameters in the improved geeSEBAL model was determined through Sobol’s sensitivity analysis. Among them, the parameters dT and SAVI,hot were confirmed as the most sensitive parameters of the algorithm. Subsequently, we used the differential evolution Markov chain (DE-MC) method to analyse the uncertainty of the parameters in the geeSEBAL model used the posterior distribution of the parameters to modify the sensitive parameter values or ranges in the improved geeSEBAL model and to simulate the daily ETa. The results indicate that by analysing the end element components of the geeSEBAL model (Ts and NDVI), quantile numerical optimization and parameter optimization can be performed. Compared with the original algorithm, the improved geeSEBAL model has significantly improved simulation performance, as shown by higher R2 values, higher NSE values, smaller bias values, and lower RMSE values. The most suitable values of the predefined parameter Zoh were determined, and the reanalysis of meteorological data inputs (relative humidity (RH), temperature (T), wind speed (WS), and net radiation (Rn)) was also found to be an important source of uncertainty for the accurate estimation of ETa. This study indicates that optimizing the quantiles and key parameters of the model end component has certain potential for further improving the accuracy of the geeSEBAL model based on high-resolution remote-sensing data in estimating the ETa for various vegetation types. Full article
(This article belongs to the Special Issue Agricultural Water-Land-Plant System Engineering)
Show Figures

Figure 1

Back to TopTop