Passive Seismic Surveys for a Simplified Experimental Dynamic Characterization of the Messina Bell Tower (Sicily, Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characterization
2.2. Bell Tower Experimental Dynamic Characterization
3. Results
3.1. Site Characterization
3.2. Bell Tower Experimental Vibration Frequencies and Mode Shapes Detection
3.3. Experimental Testing of Torsional and Rocking Mode
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HVSR | Horizontal-to-Vertical Spectral Ratio |
MASW | Multichannel Analysis of Seismic Wave |
RDM | Random Decrement Method |
SSR | Standard Spectral Ratio |
FFT | Fast Fourier Transform |
References
- Brincker, R.; Zhang, L.; Andersen, P. Modal identification from ambient responses using frequency domain decomposition. In Proceedings of the International Modal Analysis Conference (IMAC), San Antonio, TX, USA, 7–10 February 2000. [Google Scholar]
- Reynders, E. System identification methods for (operational) modal analysis: Review and comparison. Arch. Comput. Methods Eng. 2012, 19, 51–124. [Google Scholar] [CrossRef]
- Haindl, M.; Pantoja-Rosero, B.; Beyer, K.; Smith, I.F. Reducing uncertainties in response predictions of earthquake-damaged masonry buildings using data from image-based inspection. In Proceedings of the International Conference on Structural Analysis of Historical Constructions, Kyoto, Japan, 12–15 September 2023; pp. 835–848. [Google Scholar] [CrossRef]
- Nochebuena-Mora, E.; Mendes, N.; Lourenço, P.B.; Greco, F. Dynamic behavior of a masonry bell tower subjected to actions caused by bell swinging. Structures 2021, 34, 1798–1810. [Google Scholar] [CrossRef]
- Farrar, C.R.; Jauregui, D.A. Comparative study of damage identification algorithms applied to a bridge: I. Experiment. Smart Mater. Struct. 1998, 7, 704–719. [Google Scholar] [CrossRef]
- Peeters, B.; Maeck, J.; De Roeck, G. Vibration-based damage detection in civil engineering: Excitation sources and temperature effects. Smart Mater. Struct. 2001, 10, 518–527. [Google Scholar] [CrossRef]
- Carden, E.P.; Fanning, P. Vibration based condition monitoring: A review. Struct. Health Monit. 2004, 3, 355–377. [Google Scholar] [CrossRef]
- Tomić, I.; Vanin, F.; Beyer, K. Uncertainties in the seismic assessment of historical masonry buildings. Appl. Sci. 2021, 11, 2280. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Allemang, R.J. A correlation coefficient for modal vector analysis. In Proceedings of the 1st International Modal Analysis Conference (IMAC), Orlando, FL, USA, 8–10 November 1982. [Google Scholar]
- Ewins, D.J. Modal Testing: Theory, Practice and Application; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Tsiavos, A.; Sextos, A.; Stavridis, A.; Dietz, M.; Dihoru, L.; Alexander, N.A. Large-scale experimental investigation of a low-cost PVC ‘sand-wich’ (PVC-s) seismic isolation for developing countries. Earthq. Spectra 2020, 36, 1886–1911. [Google Scholar] [CrossRef]
- Brincker, R.; Ventura, C. Introduction to Operational Modal Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Peeters, B.; De Roeck, G. One-year monitoring of the Z24-Bridge: Environmental effects versus damage events. Earthq. Eng. Struct. Dyn. 2001, 30, 149–171. [Google Scholar] [CrossRef]
- Kareem, A.; Gurley, K. Damping in structures: Its evaluation and treatment of uncertainty. J. Wind. Eng. Ind. Aerodyn. 1996, 59, 131–157. [Google Scholar] [CrossRef]
- Castellaro, S.; Mulargia, F. How far from a building does the ground motion free field start? The cases of three famous towers and of a modern building. Bull. Seism. Soc. Am. 2010, 100, 2080–2094. [Google Scholar] [CrossRef]
- Castellaro, S. Soil and structure damping from single station measurements. Soil Dyn. Earthq. Eng. 2016, 90, 480–493. [Google Scholar] [CrossRef]
- Imposa, S.; Lombardo, G.; Panzera, F.; Grassi, S. Ambient Vibrations Measurements and 1D Site Response Modelling as a Tool for Soil and Building Properties Investigation. Geosciences 2018, 8, 87. [Google Scholar] [CrossRef]
- Grassi, S.; Imposa, S.; Patti, G.; Boso, D.; Lombardo, G.; Panzera, F. Geophysical surveys for the dynamic characterization of a cultural heritage building and its subsoil: The S. Michele Arcangelo Church (Acireale, eastern Sicily). J. Cult. Herit. 2019, 36, 72–84. [Google Scholar] [CrossRef]
- Grassi, S.; Barbano, M.S.; Pirrotta, C.; Morreale, G.; Imposa, S. Seismic Soil–Structure Interaction of Three Historical Buildings at the University of Catania (Sicily, Italy). Heritage 2022, 5, 3562–3587. [Google Scholar] [CrossRef]
- Imposa, S.; Cuomo, M.; Contrafatto, L.; Mineo, S.; Grassi, S.; Li Rosi, D.; Barbano, M.S.; Morreale, G.; Galasso, M.; Pappalardo, G. Engineering Geological and Geophysical Studies Supporting Finite Element Analysis of Historical Buildings after Dynamic Identification. Geosciences 2023, 13, 84. [Google Scholar] [CrossRef]
- Lentini, F.; Carbone, S.; Catalano, S. Messina (Provincia). Assessorato territorio. Servizio geologico. In Carta Geologica Della Provincia di Messina; S. El. Ca.: Firenze, Italia, 2000. [Google Scholar]
- Carbone, S.; Messina, A.; Lentini, F. Note Illustrative Della carta Geologica d’Italia Alla Scala 1: 50.000: Foglio 601; Dipartimento Difesa del Suolo, Servizio Geologico d’Italia; S. EL. CA.: Firenze, Italia, 2008; p. 170. [Google Scholar]
- Bard, P.Y.; Bouchon, M. The two-dimensional resonance of sediment-filled valleys. Bull. Seism. Soc. Am. 1985, 75, 519–541. [Google Scholar] [CrossRef]
- Cacciola, P.; Caliò, I.; Fiorini, N.; Occhipinti, G.; Spina, D.; Tombari, A. Seismic response of nonlinear soil-structure interaction systems through the Preisach formalism: The Messina Bell Tower case study. Bull. Earthq. Eng. 2022, 20, 3485–3514. [Google Scholar] [CrossRef]
- Park, C.B.; Miller, R.D.; Xia, J. Multichannel analysis of surface waves. Geophysics 1999, 64, 800–808. [Google Scholar] [CrossRef]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railw. Tech. Res. Inst. Q. Rep. 1989, 30, 25–33. [Google Scholar]
- SESAME. Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations. Measurements, Processing and Interpretation; WP12. Deliverable D23.12. 2005. Available online: http://sesame.geopsy.org/SES_Reports.htm (accessed on 3 November 2024).
- Di Giulio, G.; Cornou, C.; Ohrnberger, M.; Wathelet, M.; Rovelli, A. Deriving wavefield characteristics and shear-velocity profiles from two-dimensional small-aperture arrays analysis of ambient vibrations in a small-size alluvial basin, Colfiorito, Italy. Bull. Seism. Soc. Am. 2006, 96, 1915–1933. [Google Scholar] [CrossRef]
- Martorana, R.; Capizzi, P.; Avellone, G.; D’Alessandro, A.; Siragusa, R.; Luzio, D. Assessment of a geological model by surface wave analyses. J. Geophys. Eng. 2017, 14, 159–172. [Google Scholar] [CrossRef]
- Grassi, S.; Patti, G.; Tiralongo, P.; Imposa, S.; Aprile, D. Applied geophysics to support the cultural heritage safeguard: A quick and non-invasive method to evaluate the dynamic response of a great historical interest building. J. Appl. Geophys. 2021, 189, 104321. [Google Scholar] [CrossRef]
- Martorana, R.; Capizzi, P. Seismic and non-invasive geophysical surveys for the renovation project of Branciforte Palace in Palermo. Archaeol. Prospect. 2023, 30, 13–26. [Google Scholar] [CrossRef]
- Greś, S.; Döhler, M.; Dertimanis, V.; Chatzi, E. Sensor placement optimal for the precision of modal parameter estimation with subspace methods. J. Phys. Conf. Ser. 2024, 2647, 212009. [Google Scholar] [CrossRef]
- Castellaro, S.; Padrón, L.A.; Mulargia, F. The different response of apparently identical structures: A far-field lesson from the Mirandola 20th May 2012 earthquake. Bull. Earthq. Eng. 2014, 12, 2481–2493. [Google Scholar] [CrossRef]
- Ditommaso, R.; Vona, M.; Mucciarelli, M.; Masi, A. Identificazione dei modi rotazionali degli edifici mediante tecniche di misura di vibrazione ambientale. In Proceedings of the Atti del 27° Congresso Nazionale Gruppo Nazionale di Geofisica della Terra Solida, Trieste, Italia, 7–10 October 2008; ISBN 88-902101-3-3. [Google Scholar]
- Grimaz, S.; Barazza, F.; Malisan, P. Misure all’interno degli edifici. In A Cura di M. Mucciarelli, Tecniche Speditive per la Stima Dell’amplificazione Sismica e Della Dinamica Degli Edifici-Studi Teorici ed Applicazioni Professionali; Aracne: Rome, Italy, 2011; pp. 195–209. ISBN 978-88-548-4495-7. [Google Scholar]
- Code, P. Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings; EN 1998-1; European Committee for Standardization (CEN): Brussels, Belgium, 2005. [Google Scholar]
- Rohmer, O.; Santisi d’Avila, M.P.; Bertrand, E.; Regnier, J. Rocking motion analysis using structural identification tools. Geotechnics 2023, 3, 601–623. [Google Scholar] [CrossRef]
- Cole, H.A. On-Line Failure Detection and Damping Measurement of Aerospace Structures by Random Decrement Signatures (No. NASA-CR-2205); NASA: Washington, DC, USA, 1973. [Google Scholar]
- Dunand, F.; Bard, P.Y.; Chatelain, J.L.; Gueguen, P.; Vassail, T.; Farsi, M.N. Damping and frequency from randomec method applied to in-situ measurements of ambient vibrations: Evidence for effective soil structure interaction. In Proceedings of the 12th European Conference on Earthquake Engineering, London, UK, 9–13 September 2002; Paper No. 868. Elsevier Science Ltd.: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Tamura, Y. Amplitude dependency of damping in buildings and critical tip drift ratio. Int. J. High-Rise Build. 2012, 1, 1–13. [Google Scholar] [CrossRef]
Mode | fSSR Vertical A | fSSR Vertical B | fSSR Vertical C | Average Δf (%) | ||||
---|---|---|---|---|---|---|---|---|
NS | EW | NS | EW | NS | EW | NS | EW | |
1—rocking | 1.406 Hz | 1.406 Hz | 1.438 Hz | 1.406 Hz | 1.438 Hz | 1.406 Hz | 1.53% | n/a |
2—torsion | 3.531 Hz | 3.5 Hz | 3.531 Hz | 3.5 Hz | 3.531 Hz | 3.5 Hz | n/a | n/a |
3—1st flexural | 5.531 Hz | 5.531 Hz | 5.719 Hz | 5.531 Hz | 5.688 Hz | 5.531 Hz | 2.23% | n/a |
4—2st flexural | 9.25 Hz | 9.063 Hz | 9.281 Hz | 9.125 Hz | 9.375 Hz | 9.063 Hz | 0.9% | 0.47% |
Frequency (Hz) | Central Displacement (δavg) mm | Lateral Displacement (δmax) mm | Component | Δ |
---|---|---|---|---|
3.531 | 0.0000066276 | 0.0000931505 | N-S | 14.05 |
3.5 | 0.0000092254 | 0.0000971741 | E-W | 10.53 |
fSSR | Cacciola et al. [25] | Δf (%) | |||||
---|---|---|---|---|---|---|---|
Mode | fNS (Hz) | fEW (Hz) | Mode | fEXP (Hz) | fFEM (Hz) | (fSSR − fEXP)/fEXP | (fSSR − fFEM)/fFEM |
1—rocking | 1.406 | 1-translational Y | 1.37 | 1.36 | 2.6% | 3.4% | |
1.438 | 2-translational X | 1.43 | 1.44 | 0.6% | −0.1% | ||
2—torsion | 3.531 | 3.5 | 3-torsional | 3.35 | 2.90 | 4.5% | 20.7% |
3—1st flexural | 5.688 | 4-translational X | n/a | 5.07 | n/a | 12.2% | |
5.531 | 5-translational Y | n/a | 5.19 | n/a | 6.6% | ||
6-vertical | n/a | 8.05 | n/a | n/a | |||
4—2nd flexural | 9.375 | 9.063 | n/a | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grassi, S.; Imposa, S.; Morreale, G. Passive Seismic Surveys for a Simplified Experimental Dynamic Characterization of the Messina Bell Tower (Sicily, Italy). Appl. Sci. 2025, 15, 4973. https://doi.org/10.3390/app15094973
Grassi S, Imposa S, Morreale G. Passive Seismic Surveys for a Simplified Experimental Dynamic Characterization of the Messina Bell Tower (Sicily, Italy). Applied Sciences. 2025; 15(9):4973. https://doi.org/10.3390/app15094973
Chicago/Turabian StyleGrassi, Sabrina, Sebastiano Imposa, and Gabriele Morreale. 2025. "Passive Seismic Surveys for a Simplified Experimental Dynamic Characterization of the Messina Bell Tower (Sicily, Italy)" Applied Sciences 15, no. 9: 4973. https://doi.org/10.3390/app15094973
APA StyleGrassi, S., Imposa, S., & Morreale, G. (2025). Passive Seismic Surveys for a Simplified Experimental Dynamic Characterization of the Messina Bell Tower (Sicily, Italy). Applied Sciences, 15(9), 4973. https://doi.org/10.3390/app15094973