Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = total variation (TV) regularization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7457 KiB  
Article
Three-Dimensional Imaging of High-Contrast Subsurface Anomalies: Composite Model-Constrained Dual-Parameter Full-Waveform Inversion for GPR
by Siyuan Ding, Deshan Feng, Xun Wang, Tianxiao Yu, Shuo Liu and Mengchen Yang
Appl. Sci. 2025, 15(15), 8401; https://doi.org/10.3390/app15158401 - 29 Jul 2025
Viewed by 115
Abstract
Civil engineering structures with damage, defects, or subsurface utilities create a high-contrast exploration environment. These anomalies of interest exhibit different electromagnetic properties from the surrounding medium, and ground-penetrating radar (GPR) has the potential to accurately locate and map their three-dimensional (3D) distributions. However, [...] Read more.
Civil engineering structures with damage, defects, or subsurface utilities create a high-contrast exploration environment. These anomalies of interest exhibit different electromagnetic properties from the surrounding medium, and ground-penetrating radar (GPR) has the potential to accurately locate and map their three-dimensional (3D) distributions. However, full-waveform inversion (FWI) for GPR data struggles to simultaneously reconstruct high-resolution 3D images of both permittivity and conductivity models. Considering the magnitude and sensitivity disparities of the model parameters in the inversion of GPR data, this study proposes a 3D dual-parameter FWI algorithm for GPR with a composite model constraint strategy. It balances the gradient updates of permittivity and conductivity models through performing total variation (TV) regularization and minimum support gradient (MSG) regularization on different parameters in the inversion process. Numerical experiments show that TV regularization can optimize permittivity reconstruction, while MSG regularization is more suitable for conductivity inversion. The TV+MSG composite model constraint strategy improves the accuracy and stability of dual-parameter inversion, providing a robust solution for the 3D imaging of subsurface anomalies with high-contrast features. These outcomes offer researchers theoretical insights and a valuable reference when investigating scenarios with high-contrast environments. Full article
Show Figures

Figure 1

29 pages, 1138 KiB  
Article
Regularized Kaczmarz Solvers for Robust Inverse Laplace Transforms
by Marta González-Lázaro, Eduardo Viciana, Víctor Valdivieso, Ignacio Fernández and Francisco Manuel Arrabal-Campos
Mathematics 2025, 13(13), 2166; https://doi.org/10.3390/math13132166 - 2 Jul 2025
Viewed by 207
Abstract
Inverse Laplace transforms (ILTs) are fundamental to a wide range of scientific and engineering applications—from diffusion NMR spectroscopy to medical imaging—yet their numerical inversion remains severely ill-posed, particularly in the presence of noise or sparse data. The primary objective of this study is [...] Read more.
Inverse Laplace transforms (ILTs) are fundamental to a wide range of scientific and engineering applications—from diffusion NMR spectroscopy to medical imaging—yet their numerical inversion remains severely ill-posed, particularly in the presence of noise or sparse data. The primary objective of this study is to develop robust and efficient numerical methods that improve the stability and accuracy of ILT reconstructions under challenging conditions. In this work, we introduce a novel family of Kaczmarz-based ILT solvers that embed advanced regularization directly into the iterative projection framework. We propose three algorithmic variants—Tikhonov–Kaczmarz, total variation (TV)–Kaczmarz, and Wasserstein–Kaczmarz—each incorporating a distinct penalty to stabilize solutions and mitigate noise amplification. The Wasserstein–Kaczmarz method, in particular, leverages optimal transport theory to impose geometric priors, yielding enhanced robustness for multi-modal or highly overlapping distributions. We benchmark these methods against established ILT solvers—including CONTIN, maximum entropy (MaxEnt), TRAIn, ITAMeD, and PALMA—using synthetic single- and multi-modal diffusion distributions contaminated with 1% controlled noise. Quantitative evaluation via mean squared error (MSE), Wasserstein distance, total variation, peak signal-to-noise ratio (PSNR), and runtime demonstrates that Wasserstein–Kaczmarz attains an optimal balance of speed (0.53 s per inversion) and accuracy (MSE = 4.7×108), while TRAIn achieves the highest fidelity (MSE = 1.5×108) at a modest computational cost. These results elucidate the inherent trade-offs between computational efficiency and reconstruction precision and establish regularized Kaczmarz solvers as versatile, high-performance tools for ill-posed inverse problems. Full article
Show Figures

Figure 1

22 pages, 2436 KiB  
Article
An Efficient Sparse Synthetic Aperture Radar Imaging Method Based on L1-Norm and Total Variation Regularization
by Zhiqi Gao, Huiying Ma, Pingping Huang, Wei Xu, Weixian Tan and Zhixia Wu
Electronics 2025, 14(13), 2508; https://doi.org/10.3390/electronics14132508 - 20 Jun 2025
Viewed by 362
Abstract
The continuous progress of synthetic aperture radar (SAR) imaging has led to a growing emphasis on the challenges involved in data acquisition and processing. And the challenges in data acquisition and processing have become increasingly prominent. However, traditional SAR imaging models are limited [...] Read more.
The continuous progress of synthetic aperture radar (SAR) imaging has led to a growing emphasis on the challenges involved in data acquisition and processing. And the challenges in data acquisition and processing have become increasingly prominent. However, traditional SAR imaging models are limited by their large demand for data sampling and slow image reconstruction speeds, which is particularly prominent in large-scale scene applications. To overcome these limitations, this study proposes an innovative L1-Total Variation (TV) regularization sparse SAR imaging algorithm. The submitted algorithm constructs an imaging operator and an echo simulation operator to achieve decoupling in the azimuth and range dimensions, respectively, as well as to reduce the requirement for sampling data. In addition, a Newton acceleration iterative method is introduced to the optimization process, aiming to accelerate the speed of image reconstruction. Comparative analysis and experimental validation indicate that the proposed sparse SAR imaging algorithm outperforms conventional methods in resolution, target localization, and clutter suppression. The results suggest strong potential for rapid scene reconstruction and real-time monitoring in complex environments. Full article
Show Figures

Figure 1

24 pages, 6467 KiB  
Article
Combining Kronecker-Basis-Representation Tensor Decomposition and Total Variational Constraint for Spectral Computed Tomography Reconstruction
by Xuru Li, Kun Wang, Yan Chang, Yaqin Wu and Jing Liu
Photonics 2025, 12(5), 492; https://doi.org/10.3390/photonics12050492 - 15 May 2025
Viewed by 299
Abstract
Energy spectrum computed tomography (CT) technology based on photon-counting detectors has been widely used in many applications such as lesion detection, material decomposition, and so on. But severe noise in the reconstructed images affects the accuracy of these applications. The method based on [...] Read more.
Energy spectrum computed tomography (CT) technology based on photon-counting detectors has been widely used in many applications such as lesion detection, material decomposition, and so on. But severe noise in the reconstructed images affects the accuracy of these applications. The method based on tensor decomposition can effectively remove noise by exploring the correlation of energy channels, but it is difficult for traditional tensor decomposition methods to describe the problem of tensor sparsity and low-rank properties of all expansion modules simultaneously. To address this issue, an algorithm for spectral CT reconstruction based on photon-counting detectors is proposed, which combines Kronecker-Basis-Representation (KBR) tensor decomposition and total variational (TV) regularization (namely KBR-TV). The proposed algorithm uses KBR tensor decomposition to unify the sparse measurements of traditional tensor spaces, and constructs a third-order tensor cube through non-local image similarity matching. At the same time, the TV regularization term is introduced into the independent energy spectrum image domain to enhance the sparsity constraint of single-channel images, effectively reduce artifacts, and improve the accuracy of image reconstruction. The proposed objective minimization model has been tackled using the split-Bregman algorithm. To evaluate the algorithm’s performance, both numerical simulations and realistic preclinical mouse studies were conducted. The ultimate findings indicate that the KBR-TV method offers superior enhancement in the quality of spectral CT images in comparison to several existing methods. Full article
(This article belongs to the Special Issue Biomedical Optics:Imaging, Sensing and Therapy)
Show Figures

Figure 1

19 pages, 1819 KiB  
Article
Adaptive Optics Retinal Image Restoration Using Total Variation with Overlapping Group Sparsity
by Xiaotong Chen, Yurong Shi and Hongsun Fu
Symmetry 2025, 17(5), 660; https://doi.org/10.3390/sym17050660 - 26 Apr 2025
Viewed by 317
Abstract
Adaptive optics (AO)-corrected retina flood illumination imaging technology is widely used for investigating both structural and functional aspects of the retina. Given the inherent low-contrast nature of original retinal images, it is necessary to perform image restoration. Total variation (TV) regularization is an [...] Read more.
Adaptive optics (AO)-corrected retina flood illumination imaging technology is widely used for investigating both structural and functional aspects of the retina. Given the inherent low-contrast nature of original retinal images, it is necessary to perform image restoration. Total variation (TV) regularization is an efficient regularization technique for AO retinal image restoration. However, a main shortcoming of TV regularization is its potential to experience the staircase effects, particularly in smooth regions of the image. To overcome the drawback, a new image restoration model is proposed for AO retinal images. This model utilizes the overlapping group sparse total variation (OGSTV) as a regularization term. Due to the structural characteristics of AO retinal images, only partial information regarding the PSF is known. Consequently, we have to solve a more complicated myopic deconvolution problem. To address this computational challenge, we propose an ADMM-MM-LAP method to solve the proposed model. First, we apply the alternating direction method of multiplier (ADMM) as the outer-layer optimization method. Then, appropriate algorithms are employed to solve the ADMM subproblems based on their inherent structures. Specifically, the majorization–minimization (MM) method is applied to handle the asymmetry OGSTV regularization component, while a modified version of the linearize and project (LAP) method is adopted to address the tightly coupled subproblem. Theoretically, we establish the complexity analysis of the proposed method. Numerical results demonstrate that the proposed model outperforms the existing state-of-the-art TV model across several metrics. Full article
(This article belongs to the Special Issue Computational Mathematics and Its Applications in Numerical Analysis)
Show Figures

Figure 1

23 pages, 62859 KiB  
Article
Seismic Random Noise Attenuation via Low-Rank Tensor Network
by Taiyin Zhao, Luoxiao Ouyang and Tian Chen
Appl. Sci. 2025, 15(7), 3453; https://doi.org/10.3390/app15073453 - 21 Mar 2025
Viewed by 433
Abstract
Seismic data are easily contaminated by random noise, impairing subsequent geological interpretation tasks. Existing denoising methods like low-rank approximation (LRA) and deep learning (DL) show promising denoising capabilities but still have limitations; for instance, LRA performance is parameter-sensitive, and DL networks lack interpretation. [...] Read more.
Seismic data are easily contaminated by random noise, impairing subsequent geological interpretation tasks. Existing denoising methods like low-rank approximation (LRA) and deep learning (DL) show promising denoising capabilities but still have limitations; for instance, LRA performance is parameter-sensitive, and DL networks lack interpretation. As an alternative, this paper introduces the low-rank tensor network (LRTNet), an innovative approach that integrates low-rank tensor approximation (LRTA) with DL. Our method involves constructing a noise attenuation model that leverages LRTA, total variation (TV) regularization, and weighted tensor nuclear norm minimization (WTNNM). By applying the alternating direction method of multipliers (ADMM), we solve the model and transform the iterative schemes into a DL framework, where each iteration corresponds to a network layer. The key learnable parameters, including weights and thresholds, are optimized using labeled data to enhance performance. Quantitative evaluations on synthetic data reveal that LRTNet achieves an average signal-to-noise ratio (SNR) of 9.37 dB on the validation set, outperforming Pyseistr (6.46 dB) and TNN-SSTV (6.10 dB) by 45.0% and 53.6%, respectively. Furthermore, tests on real field datasets demonstrate consistent enhancements in noise suppression while preserving critical stratigraphic structures and fault discontinuities. The embedded LRTA mechanism not only improves network interpretability, but also reduces parameter sensitivity compared to conventional LRA methods. These findings position LRTNet as a robust, physics-aware solution for seismic data restoration. Full article
Show Figures

Figure 1

16 pages, 5341 KiB  
Article
A Sparse Representation-Based Reconstruction Method of Electrical Impedance Imaging for Grounding Grid
by Ke Zhu, Donghui Luo, Zhengzheng Fu, Zhihang Xue and Xianghang Bu
Energies 2024, 17(24), 6459; https://doi.org/10.3390/en17246459 - 22 Dec 2024
Cited by 1 | Viewed by 778
Abstract
As a non-invasive imaging method, electrical impedance tomography (EIT) technology has become a research focus for grounding grid corrosion diagnosis. However, the existing algorithms have not produced ideal image reconstruction results. This article proposes an electrical impedance imaging method based on sparse representation, [...] Read more.
As a non-invasive imaging method, electrical impedance tomography (EIT) technology has become a research focus for grounding grid corrosion diagnosis. However, the existing algorithms have not produced ideal image reconstruction results. This article proposes an electrical impedance imaging method based on sparse representation, which can improve the accuracy of reconstructed images obviously. First, the basic principles of EIT are outlined, and the limitations of existing reconstruction methods are analyzed. Then, an EIT reconstruction algorithm based on sparse representation is proposed to address these limitations. It constructs constraints using the sparsity of conductivity distribution under a certain sparse basis and utilizes the accelerated Fast Iterative Shrinkage Threshold Algorithm (FISTA) for iterative solutions, aiming to improve the imaging quality and reconstruction accuracy. Finally, the grounding grid model is established by COMSOL simulation software to obtain voltage data, and the reconstruction effects of the Tikhonov regularization algorithm, the total variation regularization algorithm (TV), the one-step Newton algorithm (NOSER), and the sparse reconstruction algorithm proposed in this article are compared in MATLAB. The voltage relative error is introduced to evaluate the reconstructed image. The results show that the reconstruction algorithm based on sparse representation is superior to other methods in terms of reconstruction error and image quality. The relative error of the grounding grid reconstructed image is reduced by an average of 12.54%. Full article
(This article belongs to the Special Issue Simulation and Analysis of Electrical Power Systems)
Show Figures

Figure 1

19 pages, 2523 KiB  
Article
Hyperspectral Image Denoising by Pixel-Wise Noise Modeling and TV-Oriented Deep Image Prior
by Lixuan Yi, Qian Zhao and Zongben Xu
Remote Sens. 2024, 16(15), 2694; https://doi.org/10.3390/rs16152694 - 23 Jul 2024
Cited by 4 | Viewed by 2290
Abstract
Model-based hyperspectral image (HSI) denoising methods have attracted continuous attention in the past decades, due to their effectiveness and interpretability. In this work, we aim at advancing model-based HSI denoising, through sophisticated investigation for both the fidelity and regularization terms, or correspondingly noise [...] Read more.
Model-based hyperspectral image (HSI) denoising methods have attracted continuous attention in the past decades, due to their effectiveness and interpretability. In this work, we aim at advancing model-based HSI denoising, through sophisticated investigation for both the fidelity and regularization terms, or correspondingly noise and prior, by virtue of several recently developed techniques. Specifically, we formulate a novel unified probabilistic model for the HSI denoising task, within which the noise is assumed as pixel-wise non-independent and identically distributed (non-i.i.d) Gaussian predicted by a pre-trained neural network, and the prior for the HSI image is designed by incorporating the deep image prior (DIP) with total variation (TV) and spatio-spectral TV. To solve the resulted maximum a posteriori (MAP) estimation problem, we design a Monte Carlo Expectation–Maximization (MCEM) algorithm, in which the stochastic gradient Langevin dynamics (SGLD) method is used for computing the E-step, and the alternative direction method of multipliers (ADMM) is adopted for solving the optimization in the M-step. Experiments on both synthetic and real noisy HSI datasets have been conducted to verify the effectiveness of the proposed method. Full article
Show Figures

Figure 1

13 pages, 2782 KiB  
Article
Richardson–Lucy Iterative Blind Deconvolution with Gaussian Total Variation Constraints for Space Extended Object Images
by Shiping Guo, Yi Lu and Yibin Li
Photonics 2024, 11(6), 576; https://doi.org/10.3390/photonics11060576 - 20 Jun 2024
Viewed by 1707
Abstract
In ground-based astronomical observations or artificial space target detections, images obtained from a ground-based telescope are severely distorted due to atmospheric turbulence. The distortion can be partially compensated by employing adaptive optics (pre-detection compensation), image restoration techniques (post-detection compensation), or a combination of [...] Read more.
In ground-based astronomical observations or artificial space target detections, images obtained from a ground-based telescope are severely distorted due to atmospheric turbulence. The distortion can be partially compensated by employing adaptive optics (pre-detection compensation), image restoration techniques (post-detection compensation), or a combination of both (hybrid compensation). This paper focuses on the improvement of the most commonly used practical post-processing techniques, Richardson–Lucy (R–L) iteration blind deconvolution, which is studied in detail and improved as follows: First, the total variation (TV) norm is redefined using the Gaussian gradient magnitude and a set scheme for regularization parameter selection is proposed. Second, the Gaussian TV constraint is proposed to impose to the R–L algorithm. Last, the Gaussian TV R–L (GRL) iterative blind deconvolution method is finally presented, in which the restoration precision is visually increased and the convergence property is considerably improved. The performance of the proposed GRL method is tested by both simulation experiments and observed field data. Full article
(This article belongs to the Special Issue Adaptive Optics: Methods and Applications)
Show Figures

Figure 1

33 pages, 14542 KiB  
Article
Hyperspectral Image Mixed Noise Removal via Double Factor Total Variation Nonlocal Low-Rank Tensor Regularization
by Yongjie Wu, Wei Xu and Liangliang Zheng
Remote Sens. 2024, 16(10), 1686; https://doi.org/10.3390/rs16101686 - 9 May 2024
Cited by 5 | Viewed by 1862
Abstract
A hyperspectral image (HSI) is often corrupted by various types of noise during image acquisition, e.g., Gaussian noise, impulse noise, stripes, deadlines, and more. Thus, as a preprocessing step, HSI denoising plays a vital role in many subsequent tasks. Recently, a variety of [...] Read more.
A hyperspectral image (HSI) is often corrupted by various types of noise during image acquisition, e.g., Gaussian noise, impulse noise, stripes, deadlines, and more. Thus, as a preprocessing step, HSI denoising plays a vital role in many subsequent tasks. Recently, a variety of mixed noise removal approaches have been developed for HSI, and the methods based on spatial–spectral double factor and total variation (DFTV) regularization have achieved comparable performance. Additionally, the nonlocal low-rank tensor model (NLR) is often employed to characterize spatial nonlocal self-similarity (NSS). Generally, fully exploring prior knowledge can improve the denoising performance, but it significantly increases the computational cost when the NSS prior is employed. To solve this problem, this article proposes a novel DFTV-based NLR regularization (DFTVNLR) model for HSI mixed noise removal. The proposed model employs low-rank tensor factorization (LRTF) to characterize the spectral global low-rankness (LR), introduces 2-D and 1-D TV constraints on double-factor to characterize the spatial and spectral local smoothness (LS), respectively. Meanwhile, the NLR is applied to the spatial factor to characterize the NSS. Then, we developed an algorithm based on proximal alternating minimization (PAM) to solve the proposed model effectively. Particularly, we effectively controlled the computational cost from two aspects, namely taking small-sized double factor as regularization object and putting the time-consuming NLR model before the main loop with fewer iterations to solve it independently. Finally, considerable experiments on simulated and real noisy HSI substantiate that the proposed method is superior to the related state-of-the-art methods in balancing the denoising effect and speed. Full article
(This article belongs to the Special Issue Remote Sensing: 15th Anniversary)
Show Figures

Figure 1

24 pages, 5011 KiB  
Article
A Sparse SAR Imaging Method for Low-Oversampled Staggered Mode via Compound Regularization
by Mingqian Liu, Jie Pan, Jinbiao Zhu, Zhengchao Chen, Bingchen Zhang and Yirong Wu
Remote Sens. 2024, 16(8), 1459; https://doi.org/10.3390/rs16081459 - 20 Apr 2024
Cited by 8 | Viewed by 1554
Abstract
High-resolution wide-swath (HRWS) imaging is the research focus of the modern spaceborne synthetic-aperture radar (SAR) imaging field, with significant relevance and vast application potential. Staggered SAR, as an innovative imaging system, mitigates blind areas across the entire swath by periodically altering the radar [...] Read more.
High-resolution wide-swath (HRWS) imaging is the research focus of the modern spaceborne synthetic-aperture radar (SAR) imaging field, with significant relevance and vast application potential. Staggered SAR, as an innovative imaging system, mitigates blind areas across the entire swath by periodically altering the radar pulse repetition interval (PRI), thereby extending the swath width to multiples of that achievable by conventional systems. However, the staggered mode introduces inherent challenges, such as nonuniform azimuth sampling and echo data loss, leading to azimuth ambiguities and substantially impacting image quality. This paper proposes a sparse SAR imaging method for the low-oversampled staggered mode via compound regularization. The proposed method not only effectively suppresses azimuth ambiguities arising from nonuniform sampling without necessitating the restoration of missing echo data, but also incorporates total variation (TV) regularization into the sparse reconstruction model. This enhances the accurate reconstruction of distributed targets within the scene. The efficacy of the proposed method is substantiated through simulations and real data experiments from spaceborne missions. Full article
(This article belongs to the Special Issue Spaceborne High-Resolution SAR Imaging)
Show Figures

Figure 1

20 pages, 4499 KiB  
Article
A Second-Order Generalized Total Variation with Improved Alternating Direction Method of Multipliers Algorithm for Electrical Impedance Tomography Reconstruction
by Ruwen Zhao, Chuanpei Xu, Wei Mo and Zhibin Zhu
Appl. Sci. 2024, 14(4), 1485; https://doi.org/10.3390/app14041485 - 12 Feb 2024
Cited by 2 | Viewed by 1402
Abstract
The issue of Electrical Impedance Tomography (EIT) is a well-known inverse problem that presents challenging characteristics. In order to address the difficulties associated with ill-conditioned inverses, regularization methods are typically employed. One commonly used approach is total variation (TV) regularization, which has shown [...] Read more.
The issue of Electrical Impedance Tomography (EIT) is a well-known inverse problem that presents challenging characteristics. In order to address the difficulties associated with ill-conditioned inverses, regularization methods are typically employed. One commonly used approach is total variation (TV) regularization, which has shown effectiveness in EIT. In order to meet the requirements of real-time tracking, it is essential to acquire fast and reliable algorithms for image reconstruction. Therefore, we present a modified second-order generalized regularization algorithm that enables more-accurate reconstruction of organ boundaries and internal structures, to reduce EIT artifacts, and to overcome the inability of the conventional Tikhonov regularization method in solving the step effect of the medium boundary. The proposed algorithm uses the improved alternating direction method of multipliers (ADMM) to tackle this optimization issue and adopts the second-order generalized total variation (SOGTV) function with strong boundary-preserving features as the regularization generalization function. The experiments are based on simulation data and the physical model of the circular water tank that we developed. The results showed that SOGTV regularization can improve image realism compared with some classic regularization. Full article
Show Figures

Figure 1

23 pages, 2326 KiB  
Article
A Fractional-Order Fidelity-Based Total Generalized Variation Model for Image Deblurring
by Juanjuan Gao, Jiebao Sun, Zhichang Guo and Wenjuan Yao
Fractal Fract. 2023, 7(10), 756; https://doi.org/10.3390/fractalfract7100756 - 13 Oct 2023
Viewed by 1600
Abstract
Image deblurring is a fundamental image processing task, and research for efficient image deblurring methods is still a great challenge. Most of the currently existing methods are focused on TV-based models and regularization term construction; little efforts are paid to model proposal and [...] Read more.
Image deblurring is a fundamental image processing task, and research for efficient image deblurring methods is still a great challenge. Most of the currently existing methods are focused on TV-based models and regularization term construction; little efforts are paid to model proposal and correlated algorithms for the fidelity term in fractional-order derivative space. In this paper, we propose a novel fractional-order variational model for image deblurring, which can efficiently address three different blur kernels. The objective functional contains a fractional-order gradient fidelity term and a total generalized variation (TGV) regularization term, and it highlights the ability to preserve details and eliminate the staircase effect. To solve the problem efficiently, we provide two numerical algorithms based on the Chambolle-Pock primal-dual method (PD) and the alternating direction method of multipliers (ADMM). A series of experiments show that the proposed method achieves a good balance between detail preservation and deblurring compared with several existing advanced models. Full article
Show Figures

Figure 1

11 pages, 2440 KiB  
Article
Detection of Fatigue Cracks for Concrete Structures by Using Carbon Ink-Based Conductive Skin and Electrical Resistance Tomography
by Chenning Cai, Shaolin Chen and Lina Liu
Sensors 2023, 23(20), 8382; https://doi.org/10.3390/s23208382 - 11 Oct 2023
Cited by 2 | Viewed by 1646
Abstract
Concrete is among the most widely used structural materials in buildings and bridges all over the world. During their service life, concrete structures may inevitably display cracks due to long-term fatigue loads, leading to the degradation of structural integrity. Thus, it is very [...] Read more.
Concrete is among the most widely used structural materials in buildings and bridges all over the world. During their service life, concrete structures may inevitably display cracks due to long-term fatigue loads, leading to the degradation of structural integrity. Thus, it is very important to detect cracks and their growth in concrete structures using an automated structural health monitoring system. In this paper, experimental research on crack detection and imaging of concrete structures by using sensing skin and electrical resistance tomography (ERT) is presented. Carbon ink is screen-printed on the surface of concrete as a conductive material to form sensing skins. With these sensing skins, when cracks occur on or near the surface, it breaks the continuity of the sensing skins and significantly reduces conductivity in cracking areas. Then, after exciting small currents in sensing skins and measuring related voltage data, an inverse analysis based on total variation (TV) regularization is adopted to reconstruct tomographic images showing conductivity changes in sensing skins, to detect the occurrence and growth of cracks. The effectiveness of conductive sensing skins and our related crack detection method is validated in experimental studies on a concrete beam subjected to fatigue tests. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

29 pages, 1311 KiB  
Article
Preconditioning Technique for an Image Deblurring Problem with the Total Fractional-Order Variation Model
by Adel M. Al-Mahdi
Math. Comput. Appl. 2023, 28(5), 97; https://doi.org/10.3390/mca28050097 - 22 Sep 2023
Cited by 6 | Viewed by 2107
Abstract
Total fractional-order variation (TFOV) in image deblurring problems can reduce/remove the staircase problems observed with the image deblurring technique by using the standard total variation (TV) model. However, the discretization of the Euler–Lagrange equations associated with the TFOV model generates a saddle point [...] Read more.
Total fractional-order variation (TFOV) in image deblurring problems can reduce/remove the staircase problems observed with the image deblurring technique by using the standard total variation (TV) model. However, the discretization of the Euler–Lagrange equations associated with the TFOV model generates a saddle point system of equations where the coefficient matrix of this system is dense and ill conditioned (it has a huge condition number). The ill-conditioned property leads to slowing of the convergence of any iterative method, such as Krylov subspace methods. One treatment for the slowness property is to apply the preconditioning technique. In this paper, we propose a block triangular preconditioner because we know that using the exact triangular preconditioner leads to a preconditioned matrix with exactly two distinct eigenvalues. This means that we need at most two iterations to converge to the exact solution. However, we cannot use the exact preconditioner because the Shur complement of our system is of the form S=K*K+λLα which is a huge and dense matrix. The first matrix, K*K, comes from the blurred operator, while the second one is from the TFOV regularization model. To overcome this difficulty, we propose two preconditioners based on the circulant and standard TV matrices. In our algorithm, we use the flexible preconditioned GMRES method for the outer iterations, the preconditioned conjugate gradient (PCG) method for the inner iterations, and the fixed point iteration (FPI) method to handle the nonlinearity. Fast convergence was found in the numerical results by using the proposed preconditioners. Full article
Show Figures

Figure 1

Back to TopTop