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Abstract: The issue of Electrical Impedance Tomography (EIT) is a well-known inverse problem that
presents challenging characteristics. In order to address the difficulties associated with ill-conditioned
inverses, regularization methods are typically employed. One commonly used approach is total
variation (TV) regularization, which has shown effectiveness in EIT. In order to meet the requirements
of real-time tracking, it is essential to acquire fast and reliable algorithms for image reconstruction.
Therefore, we present a modified second-order generalized regularization algorithm that enables
more-accurate reconstruction of organ boundaries and internal structures, to reduce EIT artifacts, and
to overcome the inability of the conventional Tikhonov regularization method in solving the step effect
of the medium boundary. The proposed algorithm uses the improved alternating direction method
of multipliers (ADMM) to tackle this optimization issue and adopts the second-order generalized
total variation (SOGTV) function with strong boundary-preserving features as the regularization
generalization function. The experiments are based on simulation data and the physical model of the
circular water tank that we developed. The results showed that SOGTV regularization can improve
image realism compared with some classic regularization.

Keywords: electrical impedance tomography; generalized total variation; TV regularization; inverse
problems

1. Introduction

EIT is a non-invasive imaging technology that reconstructs the electrical impedance
distribution inside an object by applying a small current to the object’s surface and mea-
suring the resulting voltage response [1]. Since the early 1980s, this technology has gained
significant attention in various fields including medicine, industry, and geophysics. Its
appeal lies in its non-radiation nature, cost-effectiveness, and real-time monitoring capabil-
ities. In the medical field, EIT finds applications in breast tumor detection, monitoring of
brain and abdominal bleeding, and measuring lung function [2].

EIT is a technology that utilizes the surface potential change exhibited by the area
being tested [3], along with an appropriate imaging algorithm, to obtain an image of the
impedance change in that area. Conductivity distribution changes are associated with
pathological changes and physiological activities such as tumors, hemorrhage, ischemia,
inflammation, etc. This technology offers several advantages over other methods for
monitoring lung injuries [4], including safety, the absence of radiation, real-time monitoring,
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and visual feedback. It can be effectively used for diagnosing lung diseases and monitoring
physiological activities, thereby contributing to the advancement of precision medicine.

The solution to the inverse problem is crucial for achieving the desired imaging effect
in EIT technology. It is also a challenging and widely discussed topic in this field. The
current difficulties in solving the EIT inverse problem can be summarized as follows: Linear
algorithms are known for their fast computation, but they may not accurately reconstruct
complex electrical impedance distributions [5]. On the other hand, nonlinear algorithms
offer more-accurate reconstructions, although they are computationally expensive and
often require good initial guesses [6]. Alternatively, deep-learning-based methods have
the potential to provide higher-quality reconstructions and can handle more-complex
scenarios [7]. However, these methods demand large amounts of training data and their
models are less interpretable.

1.1. Our Contribution

To address the issue of step effects in smooth areas and the loss of edge information
during image reconstruction using traditional regularization methods, this paper proposes
a SOGTV algorithm for EIT. The proposed method demonstrates superior performance
compared with traditional algorithms:

• We propose a SOGTV regularization algorithm that can more effectively smooth the
noise of EIT images while preserving the edge information of key lung structures.
Compared with traditional algorithms, the new algorithm preserves edges more
precisely when processing EIT data.

• To address the dual problem in the SOGTV regularization model, we propose an
improved ADMM that combines Nesterov gradient descent and variable orientation
multiplier (ADMM) methods. Our algorithm solves the model by leveraging the
equivalent form of SOGTV.

• To evaluate the effectiveness of the algorithm, we initially utilized simulation data
based on EIDORS for conducting the simulation experiments. Subsequently, we
employed the physical model of the circular water tank that we developed to validate
our findings. The imaging results clearly demonstrated that our algorithm is capable
of accurately identifying the perturbation position of the acrylic cylinder.

1.2. Related Work

During the process of solving the inverse problem of EIT, the amount of measured data
is significantly smaller than the amount of data to be solved. As a result, the reconstructed
image often has a poor resolution. The traditional Tikhonov regularization method, which is
based on the L2-norm [8], leads to blurred reconstructed images because it produces overly
smooth solutions. To address this issue, Liu et al. proposed an electrical impedance imaging
method that utilizes parameter level sets [9]. Their method greatly improves the resulting
image quality by reducing the number of unknown quantities. An effective implementation
of the merged total variation and Gauss–Newton algorithm has been accomplished to
reconstruct the image in the field of two-dimensional EIT [10]. For this investigation,
the process of reconstructing images relied on the utilization of 16 electrodes crafted from
copper (Cu) and a neighboring technique for data collection. Song et al. proposed a spatially
adaptive TV regularization method [11]. Their method utilizes the difference curvature, an
effective spatial feature metric, to identify planar and edge regions. It also employs various
image-reconstruction metrics to quantitatively evaluate the obtained reconstruction results,
resulting in better robustness and improved resolution for the reconstructed images [12].

In recent years, the development of neural networks has led to the emergence of
intelligent algorithms that can selectively train on targeted samples for specific tasks. This
approach allows for the utilization of prior knowledge obtained from training, thereby
improving the accuracy of model estimation and enhancing the quality of the obtained
images [13,14]. In terms of the speed of image reconstruction, although training the model
can be time consuming, once the model is trained, the actual image reconstruction process is
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a one-step imaging technique, which also enhances the imaging speed of the model [15,16].
However, as the demand continues to increase, the cost of training its related models is
also rising. This makes it impractical to directly implement these models in clinics and
general hospitals.

The EIT electric field distribution is characterized by its soft field nature, resulting in a
nonlinear relationship between the boundary measurement voltage and the conductivity
distribution in the measured object field. Therefore, the inverse EIT problem is nonlinear [5].
Due to the nonlinearity of the EIT image-reconstruction problem, many solution algorithms,
such as the conjugate gradient method [17], attempt to linearly approximate this nonlinear
problem. However, this often leads to significant distortion in the resulting image. On the
other hand, although the least-squares method utilizes a nonlinear approach to solve the
problem, it is still a local optimization method. Consequently, it tends to encounter local
minimization problems, resulting in distortion in the reconstructed images [18]. To tackle
this problem, the Huber equation is employed to reconstruct the high-order total variation
(HOTV) optimization equation [19]. Gong et al. modified the Finite Element Method (FEM)
framework for EIT reconstruction by integrating total generalized variation (TGV) regu-
larization. They conducted reconstructions using both simulation and clinical data. The
initial findings suggested that, when compared to TV regularization, TGV regularization
enhances the generation of more-authentic images [20]. Additionally, auxiliary variables
and generalized Lagrange multipliers are introduced to decompose the optimization equa-
tion into two simpler subproblems. The fast alternating direction multipliers method is
then used to solve the problem. The algorithm demonstrates relatively fast convergence
and produces visually improved images while better preserving details, such as edges.

The following is a comparative summary of these regularization methods:

• Traditional TV regularization:
Strengths: Good at preserving edges by promoting sparsity in the first derivative of
the image. It is well-studied and understood within the community [21].
Weaknesses: Can lead to the ‘staircasing’ effect, where smooth transitions are turned
into piecewise constant regions. This effect is undesirable in EIT, where smooth
conductivity changes are common [22].

• Higher-order TV regularization (HOTV):
Strengths: Addresses some limitations of traditional TV, such as staircasing, by consid-
ering higher-order derivatives [23].
Weaknesses: May not be as effective at preserving fine details as second-order TV, and
the selection of regularization parameters becomes more complex [19].
Strengths:
Specifically designed to overcome staircasing by incorporating second-order deriva-
tives.
Balances the preservation of edges and smooth regions better than traditional TV,
particularly in EIT, where conductivity distributions can have complex structures [24].
Can be more robust to noise and data inconsistencies due to its higher-order nature.

So, we wanted to propose a method designed to overcome staircasing by incorporating
second-order derivatives and that balances the preservation of edges and smooth regions
better than traditional TV, particularly in EIT, where conductivity distributions can have
complex structures.

1.3. Paper Organization

The rest of this paper is organized as follows. Section 2 presents the mathematical
model of EIT. We introduce our proposed second-order generalized total variation (SOGTV)
algorithm in Section 3. In Section 4, we analyze the experiment. Concluding remarks are
given in Section 5.
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2. Methodology
2.1. The Mathematical Model of EIT

The image-reconstruction problem in EIT involves solving the inverse problem of
determining the conductivity distribution inside an object under test by solving for the
boundary current and boundary voltage of a low-frequency current field [25]. The EIT
system is depicted in Figure 1.

Figure 1. The framework of EIT image-reconstruction system.

In EIT, the current field is often treated as a quasistatic field, where the potential
distribution function and conductivity distribution function within this electric field region
satisfy the Laplace equation [26]. The forward operation of the positive EIT imaging
problem is used to model boundary voltages:

V = F(σ) (1)

where σ is the conductivity vector and F is the forward operator. The reconstruction process
is usually stabilized using regularization with the following equation:

σ̂rec = arg min
σ

1
2
∥F(σ)− Vmeas ∥2 + λG(σ) (2)

where Vmeas is the forward model prediction of the measured voltage F(σ), G(σ) is the
regularization function, λ is the hyperparameter controlling the level of regularization
applied, and ∥ · ∥ is the L2-norm. The function G(σ) is usually defined in the following
form:

G(σ) = ∥L(σ − σ∗)∥2 (3)

The regularization matrix L and the a priori estimate of the conductivity distribution
σ∗ are important components in this context. Various options for the matrix L include
unitary matrices, positive diagonal matrices, approximations of the first-order and second-
order differential operators, and the inverses of Gaussian matrices. From (2) and (3), we
obtain:

σ̂rec = arg min
σ

1
2
∥F(σ)− Vmeas ∥2 + λ∥L(σ − σ∗)∥2 (4)

The framework represented by this formula is called quadratic regularization because
of its use of the L2-norm. The optimization problem for the above framework can be solved
by replacing F(σ) with a linear approximation when making small changes to the initial
conductivity distribution σ0.

F(σ) ≈ F(σ0)− J(σ − σ0) (5)
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where J is the Jacobi matrix for the calculation of F(σ0) when the initial conductivity
estimate is σ0. Defining δσ = σ − σ0 and δV = F(σ) − Vmeas, the following formula
is obtained:

δσ =
(

JT J + λLT L
)−1

JTδV + λLT L
(

σ − σre f

)
(6)

This equation is iteratively solved by σi+1 = σi + δσ. The disadvantage is that this
technique does not reconstruct step changes, regardless of the choice of L. A smooth
solution is preferred.

2.2. TV Regularization

In the field of digital image processing, an image is commonly regarded as a function
that requires appropriate modeling. This involves finding the most-suitable function for
accurately describing and representing the image. Images often consist of various compo-
nents such as edges, textures, and noise, each with distinct characteristics. Therefore, it is
essential to identify function spaces that effectively capture these different characteristics.
Researchers utilize functions within these function spaces to model the various components
of an image. The TV regularization method, initially proposed by Rudin, has been widely
applied in image denoising [27]. Due to the excellent edge-preserving performance of
this method, it has been noticed and improved by a wide range of scholars in the field of
image processing.

Fully variational regularization has had a significant impact on image processing and
has greatly advanced the use of variational regularization methods in this field. However,
it also has limitations. Fully variational minimization tends to provide a minimal solution
for the binning constant, which makes it less effective in terms of preserving ‘oscillating’
details such as image textures. Additionally, it is prone to ‘step effects’ in the grayscale
gradient regions of the given image. To address the texture-preservation issue, Gilboa
introduced the nonlocal total variation (NLTV) regularization method, incorporating the
concept of nonlocal methods [28].

In response to the problem that the Tikhonov regularization method smooths edges,
resulting in a lower spatial resolution for the reconstructed image, a TV regularization
method based on L1 parametrization was introduced [29]. The TV regularization method
can enhance the stability of the solution when solving the EIT inverse problem, so as to sig-
nificantly enhance the resolution of the discrete medium, thus to preserve the discontinuity
of the boundary during the reconstruction process and enable the reconstruction of sharp
edges to produce sharper images with good edge-preservation performance. Additionally,
this method has a better temporal resolution for satisfying the real-time requirements
of EIT.

In the measured region Ω, the TV regularization term for the parameter σ can be
defined as:

TV(σ) =
∫

Ω
|∇σ|dΩ (7)

Figure 2 depicts the edge-preserving principle of TV regularization, which can help to
understand the edge-preservation properties highlighted by the above equation.
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Figure 2. Three different curves connecting points A and B have the same total variation of the
same magnitude.

Points A and B shown in Figure 2 are connected by three curves f1(x), f2(x), and
f3(x), and the TVs of the equations of the three curves have the same magnitude, which
can be expressed as:

TV( f ) =
∫ B

A
f ′(x)dx = f (B)− f (A) (8)

It can be seen that the same TV value allows for different expressions of the function
f (x), so when a discrete medium distribution is present in the measurement area, the TV
regularization method can effectively reconstruct the edge information and maintain sharp
edge characteristics. During EIT reconstruction, the total variance of the change in the
conductivity distribution g is used as a TV regularization function:

R(g) = TV(g) =
∫

Ω
|∇g|dΩ (9)

To derive the above equation:

R′(g) = TV(g) = ∇ ·
(

∇g
|∇g|

)
(10)

To prevent the case in which R(g) is not differentiable when ∇g = 0, a smooth
approximation is used to ensure the differentiability of R(g) and is expressed as:

R(g) = TVβ(g) =
∫

Ω

√
|∇g|+ βdΩ (11)

where β is a positive constant, whose discrete form can be expressed as:

TVβ(g) = ∑
i

√
∥Lig∥2

2 + β (12)

L is the sparse matrix corresponding to the change in conductivity distribution g. The
objective function of the TV regularization model can be expressed as:

S(g) =
1
2
∥Ag − bmeas ∥2

2 + TVβ(g) =
1
2
∥Ag − bmeas ∥2

2 + λ ∑
i

√
∥Lig∥2

2 + β (13)

where A denotes the sensitivity matrix. Equation (13) can be used to solve for the minimal
value of the above equation using Newton’s method, where the gradient function can be
expressed as follows:

S′(g) = AT(Ag − bmeas) + λLβ(g)g (14)
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where Lβ(g) = LT
(

diag
√
∥Lig∥2

2 + β

)−1
L and diag is a diagonal matrix. The Hessian

matrix of Equation (13) can be expressed as:

H(g) = AT A + λLβ(g) (15)

Therefore, the conductivity distribution can be solved for as follows:

gk+1 = gk − H(s)−1S′(g) (16)

Compared to the Tikhonov regularization method, the TV regularization algorithm
effectively captures edge information in discrete media and minimizes the smoothing effect
imposed on edges. However, in practical applications, the TV method tends to introduce
a ‘step effect’ in smooth areas while resolving sharp edges. This results in a decrease in
the overall resolution of the reconstructed image, which limits the applicability of the TV
method in EIT. In this study, we propose further improvement and optimization for the TV
regularization method to enhance the resolution of reconstructed images.

3. Our Proposed Method

The fully variational regularization problem, which often leads to step effects, can
be addressed by incorporating higher-order derivatives [30]. In the literature, several
approaches are available for introducing higher-order derivatives. One commonly used
method is the TGV proposed by Bredies [31], which combines first-order [32] and higher-
order derivative information. TGV effectively preserves image edge details and suppresses
step effects, making it successful in applications such as image denoising and MRI [33,34].

Suppose that u ∈ W1,1(Ω) =
{

u ∈ L1(Ω) | ∇u ∈ L1(Ω,Rn)
}

, and define the following:

Φ(u) = sup
ξ

{∫
Ω
⟨∇u, div(ξ)⟩Rn dx | ξ ∈ C2

c
(
Ω,Rn×n), ∥ξ∥∞ ⩽ 1

}
(17)

where

ξ =


ξ1
ξ2
...

ξn

 =


ξ1,1 ξ1,2 · · · ξ1,n
ξ2,1 ξ2,2 · · · ξ2,n

...
...

...
ξn,1 ξn,2 · · · ξn,n

,

div(ξ) =


div(ξ1)
div(ξ2)

...
div(ξn)

 =


∑n

k=1
∂ξ1,k
∂xk

...

∑n
k=1

∂ξn,k
∂xk


ξi,j : Ω → R, ∥ξ∥∞ = supx∈Ω

√
∑d

i,j=1 ξ2
i,j(x)0.

Equation (17) defines a full variational component for ∇u, which is considered as a
second-order fully variational component. Additionally, based on Equation (17), the space
of second-order bounded variational functions can be defined as follows:

BV2(Ω) =
{

u ∈ W1,1(Ω) | Φ(u) < +∞
}

(18)

Φ(u) = sup
ξ

{∫
Ω

u div2(ξ)dx | ξ ∈ C2
c
(
Ω,Rn×n), ∥ξ∥∞ ⩽ 1

}
(19)
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As a further generalization, for u(x) ∈ L1(Ω), its second-order generalized fully
variational component can be defined as follows:

TGV2
α(u) = sup

ξ

{∫
Ω

u div2(ξ)dx |ξ∈C2
c(Ω,Sym2(Rn))

∥ξ∥∞⩽α0,∥div(ξ)∥∞⩽α1

}
(20)

α = (α0, α1)
T ∈ R2

+ is the weight vector and C2
c

(
Ω, Sym2(Rn)

)
is a symmetric tensor

field with a tight support.
The generalized complete variational fraction of order k can be described more broadly

as follows [31]. For a positive integer k ∈ Z+ and α = (α0, · · · , αk−1)
T ∈ Rk

+, we define a
generalized fully variational fraction of order k as follows:

TGVk
α(u) = sup

ξ


∫

Ω
u divk(ξ)dx |

ξ ∈ Ck
c

(
Ω, Symk(Rn)

)
,∥∥∥divj(ξ)

∥∥∥
∞
⩽ α1, j = 0, 1, · · · , k − 1

 (21)

Consequently, the following definition describes the space of generalized complete
variational functions of order k.

BGVk
α(Ω) =

{
u ∈ L1(Ω)

∣∣∣TGVk
α(u) < +∞

∣∣∣} (22)

The definition of TGVk
α(u) provides restrictions with various weights for each divj(ξ), as

shown in Equation (21). The weights α = (α0, · · · , αk−1)
T tend to have a significant influence

on the outcomes yielded in practical computations; thus, it must be carefully chosen.
Although the definition in Equation (21) is used for general values of k ∈ Z+, for

two-dimensional images, TGV1
α(u) or TGV2

α(u) is more commonly utilized. In fact, we
have that Symk(Rn) = Rn and α ∈ R+ when k = 1:

TGV1
α(u) = αTV(u) (23)

The following second-order generalized full-variance regularization model is sug-
gested using the second-order generalized full variance concept described above:

min
u

{
E(u) = TGV2

α(u) +
λ

2
∥ f − Au∥2

2

}
(24)

where f ∈ L2(Ω) is the observed image with noise; A is the degeneracy operator; and
Ω ⊂ Rn is the image support domain.

The SOGTV, as defined in Equation (14), is challenging to compute. Unlike the first-
order generalized TV TGV1

α(u), which focuses solely on variance [32], the second-order
generalized TV also accounts for covariance and constant terms [35]. This necessitates
the calculation of additional derivatives and second-order partial derivatives, making its
formulation more intricate and computationally demanding. Specifically, TGV2

α(u) involves
determining the Hessian matrix of the image function and, subsequently, computing its
eigenvalues and eigenvectors. This computational process requires a significant amount
of computation and may not be feasible for large-scale problems. Moreover, the TGV2

α(u)
regularization term might result in excessively smooth solutions or introduce artifacts in the
reconstructed image. However, the second-order generalized full variance can offer more
comprehensive information and effectively capture the intricate details and variations in
the images and data. As a result, to achieve enhanced computational efficiency, a simplified
and easily computable representation of the second-order generalized full variance is
commonly employed in practical calculations, as explained in [36].

For the sake of simplicity, we denote U = C2
c (Ω,R), W = C2

c
(
Ω,R2),
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E = C2
c

(
Ω, Sym2(Rn)

)
, and div ξ = w. Then,

TGV2
α(u) = max

u∈V,ξ∈E
{⟨u, div w⟩ | div ξ = w, ∥ξ∥∞ ⩽ α0, ∥w∥∞ ⩽ α1} (25)

where w =

(
w1
w2

)
, ξ =

(
ξ11 ξ12
ξ21 ξ22

)
, div ξ =

(
∂xξ11 + ∂xξ12
∂xξ21 + ∂xξ22

)
.

For any closed set B, if its demonstrative function is defined as

χB(x) =

{
0, x ∈ B
∞, x /∈ B

(26)

χ|0|(·) = −minv⟨y, ·⟩, we have

TGV2
α(u) = max

∥ξ∥∞⩽α0,ξ∈E
∥v∥∞⩽α1,w∈W

(
⟨u, div w⟩+ min

p∈W
⟨p, w − div ξ⟩

)
= min

p∈W
max

∥ξ∥∞⩽α0,ξ∈E
∥v∥∞⩽α1,w∈W

⟨u, div w⟩+ ⟨p, w − div ξ⟩

= min
p∈W

max
∥ξξ

⟨∇u ⩽ ∥0, ξ ∈ E = w⟩+ ⟨p, w⟩+ ⟨ε̄(p), ξ⟩

= min
p∈W

max
∥ξ∥∞⩽α0,ξ∈E

⟨p −∇u, w⟩+ ⟨ε̄(p), ξ⟩

∥w∥∞ ⩽ α1, w ∈ W

= min
p∈W

α1∥∇u − p∥1 + α0∥ε̄(p)∥1

= min
p∈W

α1

∫
Ω

√√√√ 2

∑
j=1

(
∇ju(x)− pj(x)

)2 dx + α0

∫
Ω

√√√√ 2

∑
j,k=1

(ε̄(p)(x))2
l,k dx

(27)

This leads to a relatively concise equivalent expression for TGV2
α(u), namely

TGV2
α (u) = min

p∈C2
c (Ω,Rn)

α1∥∇u − p∥1 + α0∥ε(p)∥1 (28)

where

ε(p) =

 ∂p1
∂x

1
2

(
∂p1
∂y +

∂p2
∂x

)
1
2

(
∂p1
∂y +

∂p2
∂x

)
∂p2
∂y

, p = (p1, p2) ∈ C2
c

(
Ω,R2

)
(29)

Equation (28) reveals that TGV2
α(u) can be understood as a combination of two reg-

ularization terms. The first term in Equation (28) demonstrates that p approximates ∇u
and acts as a constraint on the first-order derivative of u. The second term imposes a con-
straint on the first-order derivative of p in all directions, which is equivalent to imposing a
constraint on the second-order derivative of u. In the smoothed region, the second term
suppresses the step effect, while the first term enables the preservation of edges at the
image’s boundaries. The parameters α0 and α1 represent the weights assigned to the two
canonical terms in the composite function. However, the selection of these weights in
practical problems remains an open question.
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The second-order generalized fully variational regularization model can be expressed
using the above second-order generalized fully variational equivalence expression, which
helps with solving the model. We have proposed an improved alternating direction of
multipliers method (ADMM) algorithm for solving the SOGTV problem by combining the
accelerated Nesterov [37] and the Fast-ADMM [38].

min
u,p

α1∥∇u − p∥1 + α0∥ε(p)∥1 +
λ

2
∥ f − Au∥2

2 (30)

where f ∈ L2(Ω) is the observed image with noise, A is the degeneracy operator, and
Ω ⊂ Rn is the image support domain.

∇u =
[
Qxu, Qyu

]T, p = [p1, p2]
T, (31)

ε(p) =
[

Qx p1
1
2
(
Qx p2 + Qy p1

)
1
2
(
Qx p2 + Qy p1

)
Qy p2

]
(32)

where Qx and Qy denote the first-order derivative operators along the x and y directions,

respectively. Variables y = [y1, y2]
T = ∇u − p and z =

[
z1 z3
z3 z2

]
= ε(p) are introduced,

and then, the above optimization problem can be equivalently expressed as{
minu,p α1∥y∥1 + α0∥z∥1 +

λ
2 ∥ f − Au∥2

2

s. t. y = ∇u − p, z = ε(p)
(33)

Then, the incremental Lagrange function is

L(u, p, y, z, v, w) = α1∥y∥1 + α0∥z∥1 +
λ

2
∥ f − Au∥2

2

+
µ1

2
∥y − (∇u − p) + v∥2

2 −
µ1

2
∥v∥2

2 +
µ2

2
∥z − ε(p) + w∥2

F −
µ2

2
∥w∥2

F

(34)

The augmented Lagrange function L(u, p, y, z, v, w) of the given formula is minimized
using the improved ADMM. This method yields the following iterative format:

yk+1 = arg minγ α1∥y∥1 +
µ1
2

∥∥∥y −
(
∇uk − pk

)
+ vk

∥∥∥2

F

zk+1 = arg minz α0∥z∥1 +
µ2
2

∥∥∥z − ε̄
(

pk
)
+ wk

∥∥∥2

F

uk+1 = arg minu
λ
2 ∥ f − Au∥2

2 +
µ1
2

∥∥∥yk+1 −
(
∇u − pk

)
+ vk

∥∥∥2

F

pk+1 = arg minp
µ1
2

∥∥∥yk+1 −
(
∇uk+1 − p

)
+ vk

∥∥∥2

2
+ µ2

2

∥∥∥zk+1 − ε(p) + wk
∥∥∥2

F
vk+1 = vk + yk+1 −

(
∇uk+1 − pk+1

)
wk+1 = wk + zk+1 − ε

(
pk+1

)
(35)

Solve the y subproblem, via the nonlinear contraction operator, as follows,

yk+1 = Shrink2

(
∇uk − pk − vk, α1/µ1

)
(36)

where Shrink2(a, µ) = max{∥a∥2 − µ, 0} a
∥a∥2

.
For the z subproblem, the closed-form solution can be obtained similarly:

zk+1 = ShinkF

(
ε̄
(

pk
)
− wk, α0/µ2

)
(37)

where Shrink F(b, µ) = max{∥b∥F − µ, 0} b
∥b∥F

.
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For the u subproblem, it is necessary to solve its Euler–Lagrange equation as shown
below: (

λAT A + µ1Q∗
xQx + µ1Q∗

yQy

)
uk+1 =λAT f + µ1Q∗

x

(
yk+1

1 + p1 + vk
1

)
+

µ1Q∗
y

(
yk+1

2 + p2 + vk
2

) (38)

To obtain the solution of the p subproblem, the following equation must be solved:

(
µ1 I + µ2Q∗

xQx + µ2Q∗
yQy

)
pk+1

1 + µ2Q∗
yQx pk+1

2

=µ1

(
Qxuk+1 − yk+1

1 − vk
1

)
+ µ2Q∗

x

(
zk+1

1 + wk
1

)
+ µ2Q∗

y

(
zk+1

3 + wk
3

)
(

µ1 I + µ2Q∗
xQx + µ2Q∗

yQy

)
pk+1

2 + µ2Q∗
xQy pk+1

1

=µ1

(
Qyuk+1 − yk+1

2 − vk
2

)
+ µ2Q∗

y

(
zk+1

2 + wk
2

)
+ µ2Q∗

x

(
zk+1

3 + wk
3

)
(39)

Since both the differential operation and its conjugate operation can be calculated
using convolution, the above formula can be computed in the Fourier transform domain by
leveraging the fast Fourier transform [39].

F11 = µ11 + µ2F (Dx)
∗ ◦ F (Qx) + µ2F

(
Qy
)∗ ◦ F(Qy

)
F12 = µ2F

(
Qy
)∗ ◦ F (Qx)

F12 = µ2F (Qx)
∗ ◦ F

(
Qy
)

E1 = µ1

(
F (Qx) ◦ F

(
uk+1

)
−F

(
yk+1

1 − vk
1

))
+ µ2F (Qx)

∗ ◦ F
(

zk+1
1 + wk

1

)
+ µ2F

(
Qy
)∗ ◦ F(zk+1

3 + wk
3

)
E2 = µ1

(
F
(
Qy
)
◦ F

(
uk+1

)
−F

(
yk+1

2 − vk
2

))
+ µ2F

(
Qy
)∗ ◦ F(zk+1

2 + wk
2

)
+ µ2F (Qx)

∗ ◦ F
(

zk+1
3 + wk

3

)

(40)

Then,  pk+1
1 = F−1

(
F11◦◦E1−F12◦E2

F11◦◦F11−F12◦F21

)
pk+1

2 = F−1
(

F11◦E2−F21◦E1
F11◦◦F11−F12◦F21

) (41)

In the formula, F and F−1 represent the two-dimensional fast Fourier transform and
its inverse transform, respectively. The ◦ symbol denotes the point multiplication operation
between matrix elements, and the division operation mentioned here refers to the ‘point
division’ operation.

The following Algorithm 1 is obtained for solving the second-order generalized fully
variational regularization model.
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Algorithm 1 The algorithm of the second-order generalized regularization model for EIT.

Input:
Observe an EIT image f with parameters λ > 0, µ1, and µ2 > 0 given the iteration
termination conditions;
Init: u(0) = f , p0 =

(
p0

1, p0
2
)
= (0, 0), v0 =

(
v0

1, v0
2
)
= 0, w0

0 = 0;
Master Iterator: For k = 0, 1, 2..., calculate as follows

1: Calculate yk+1 = Shrink2

(
∇uk − pk − vk, α1/µ1

)
;

2: zk+1 = ShinkF

(
ε̄
(

pk
)
− wk, α0/µ2

)
;

3: Solve the equations
(

λAT A + µ1Q∗
xQx + µ1Q∗

yQy

)
uk+1 = λAT f + µ1Q∗

x(y
k+1
1 + p1 +

vk
1) + µ1Q∗

y

(
yk+1

2 + p2 + vk
2

)
, and obtain uk+1;

4: Calculate pk+1
1 = F−1

(
F11◦◦E1−F12◦E2

F11◦◦F11−F12◦F21

)
, pk+1

2 = F−1
(

F11◦E2−F21◦E1
F11◦◦F11−F12◦F21

)
;

5: Update vk+1 = vk + yk+1 −
(
∇uk+1 − pk+1

)
;

6: Update wk+1 = wk + zk+1 − ε̄
(

pk+1
)

;

7: When u(k + 1) satisfies the given iteration termination condition, record k∗ = k + 1 as
the terminal iteration. Otherwise, set k := k + 1, and proceed to step (1) to continue the
iterative process.

Output:
Generate EIT image u(k∗).

4. Experiment
4.1. Metrics

To assess the quality of the EIT image-reconstruction method proposed in this study,
we compared the EIT effect of this algorithm with those of four widely used EIT image-
reconstruction algorithms. The evaluations of these algorithms are based on three param-
eters: the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM),
and learned perceptual image patch similarity (LPIPS).

4.1.1. Peak Signal-to-Noise Ratio

The PSNR is a metric used to evaluate image quality [40]. It measures the reference
value of image quality between the maximum signal and the background noise. When
given a grayscale image I and a noise image K of size m × n, the mean-squared error (MSE)
formula is used.

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (42)

The PSNR is defined as follows:

PSNR = 10 · log10

(
MAX2

I
MSE

)
(43)

The units of the PSNR are decibels, and a higher value indicates less image distortion.
Typically, a PSNR higher than 40 dB suggests that the image quality is nearly identical
to the original image. A range of 30–40 dB usually indicates an acceptable image quality
distortion loss level. However, a PSNR between 20 and 30 dB signifies relatively poor
image quality, while a PSNR lower than 20 dB indicates significant image distortion.

4.1.2. Structural Similarity Index Measure

The SSIM is a metric used to quantify the similarity between two digital images [41].
It is commonly employed to evaluate the quality of a distorted image when compared to an
undistorted reference image. Assuming that the original image is x and the reconstructed
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image is y, the SSIM between the two images is evaluated from their brightness, contrast,
and structure. The formula for the SSIM is as follows:

SSIM(x, y) = [l(x, y)]α[c(x, y)]3[s(x, y)]γ (44)

In the formula, x represents the reconstructed image, while y represents the original
image. The brightness is denoted as l(x, y); the contrast is c(x, y); the structure is s(x, y).

l(x, y) =
2µxµy + c1

µx2 + µy2 + c1
(45)

c(x, y) =
2σxσy + c2

σx2 + σy2 + c2
(46)

s(x, y) =
2σxy + c3

σx2 + σy2 + c3
(47)

where µx and µy are the mean values of x and y respectively, σx
2 is the variance of x, σy

2 is
the variance of y, σxy is the covariance of x and y. c1 = (k1 L)2, c2 = (k2 L)2, c3 = c2/2 are
constant values, and L is a range of pixel values. Let k1 = 0.01, k2 = 0.03, and L = 255. The
values of α, β, and γ are all greater than 0. Let α = β = γ = 1, then the simplified SSIM
equation is as follows:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µx2 + µy2 + c1

)(
σx2 + σy2 + c2

) (48)

4.1.3. Learned Perceptual Image Patch Similarity

The LPIPS [42], also known as the ‘perceptual loss’, is a metric used to quantify the
difference between two images. This metric focuses on learning the inverse mapping
between the generated images and ground truths, which helps the generator learn how to
reconstruct real images from fake images. It prioritizes the perceptual similarity between
the generated and real images, making it more aligned with human perception than
traditional methods such as L2/PSNR, the SSIM, and the FSIM. A lower LPIPS value
indicates a higher similarity between the two images, while a higher value indicates a
greater difference.

The LPIPS equation is as follows:

d(x, x0) = ∑
l

1
HlWl

∑
h,w

∥∥∥wl ⊙
(

ŷl
hw − ŷl

0hw

)∥∥∥2

2
(49)

where d is the distance between x and x0. The feature stack is extracted from the L’th layer
and unit-normalized in the channel dimension. The vector wl is used to deflate the number
of active channels, and finally, the L2 distance is calculated. Finally, it is averaged over the
space and summed over the channels.

4.2. Results

This paper aims to evaluate and compare the effectiveness of the second-order TV
algorithm with the existing classic algorithms in terms of their numerical performance. To
achieve this, the EIT simulation experiments were conducted using the pyEIT environment
in Python 3.10 [43]. The experiment was performed on a Windows 10 64-bit operating sys-
tem, with an Intel Core i7-10510U CPU 1.80 GHz–2.30 GHz processor and 16 GB of memory.
The test data consisted of chest contour point coordinates obtained from EIDORS’s chest
simulation, utilizing simulation data from 16 full-electrode adjacent excitation modes [44].

Figure 3 displays the reconstructed images obtained using five regularization methods:
Singular-Value Decomposition (SVD) [45], TV [46], Accelerated TV [47], total variation
Augmented Lagrangian Alternating Direction Algorithm (TVAL3) [48], and our SOTV



Appl. Sci. 2024, 14, 1485 14 of 20

method. Upon comparisons, it became evident that the TGV regularization method pro-
duced an image with a minimal ladder effect to the naked eye, unlike SVD and TV. The
SVD regularization method yielded the lowest image quality, with oversmoothed edges. In
comparison to SVD, the TV regularization method significantly improved the reconstructed
image quality and better preserved the edge features. The TVAL3 method outperformed
the former two methods, particularly in terms of artifact removal. However, all these meth-
ods still exhibited a step effect. Nevertheless, the SOTV regularization method effectively
reduced the step effect observed in the TV regularization method and avoided the excessive
edge smoothing effects in the SVD and TVAL3 regularization methods.

Figure 3. Reconstruction results produced by the 5 different algorithms.

The analysis described above was based solely on visual judgments and does not
establish strong credibility. Therefore, it was necessary to use the two imaging index
evaluation methods mentioned in Table 1 to evaluate the specific imaging quality of each
method. The two optimal indicators corresponding to the four methods are highlighted
in bold black font. The PSNR value of the image reconstructed by the four methods
indicated that the SOTV algorithm had the highest PSNR value, demonstrating that it
was significantly better than the other three algorithms in terms of suppressing the step
effect. Similarly, the calculated LPIPS values also supported this point, as the LPIPS value
of the TGV algorithm was the smallest among the four algorithms for the three different
models, indicating higher image similarity. However, the LPIPS values of the SVD and TV
algorithms were relatively high, suggesting low similarity between the original image and
the reconstructed image.
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Table 1. Numerical results reconstructed by different methods for different models.

Model 1 Model 2 Model 3 Model 4

SVD

PSNR 33.8807 33.393 33.3803 33.7289

SSIM 0.8446 0.8439 0.8104 0.3016

LPIPS 0.2557 0.275 0.2852 0.3179

TV

PSNR 33.3527 33.6744 33.5414 33.5869

SSIM 0.8623 0.8711 0.8242 0.8228

LPIPS 0.2449 0.2285 0.2811 0.2905

Accelerated TV

PSNR 34.0245 33.5931 33.5596 33.5742

SSIM 0.8612 0.8526 0.8269 0.8367

LPIPS 0.2292 0.254 0.2737 0.2499

TVAL3

PSNR 34.468 33.388 33.5291 34.0917

SSIM 0.8773 0.8824 0.8482 0.8421

LPIPS 0.1831 0.2085 0.2782 0.2687

Ours

PSNR 34.5091 33.7087 33.6526 34.136

SSIM 0.8858 0.8894 0.8513 0.8516

LPIPS 0.1657 0.2143 0.247 0.2588

The experiment setup is shown in Figure 4. To replicate the impedance disturbance of
the lungs, we constructed a circular water tank physical model in Figure 5a. The model
consisted of sixteen electrodes placed at separate holes on the same level of the tank. These
electrodes were made of brass pillars with excellent conductivity. To ensure proper sealing
and prevent any leakage of experimental liquid that could affect the test results, double-
sided silicone rings were used at the holes. The water tank was filled with a solution
composed of water and sodium chloride, with a mass ratio of 1000:3 [49], to mimic the
environment of biological tissue solution in Figure 5b. Additionally, a 4 cm acrylic cylinder
was immersed in the sodium chloride solution within the water tank to simulate the
disturbance of intracerebral hemorrhage (Figure 5c).

The experimental process involved fully stirring the prepared sodium chloride solution
to ensure an even distribution. The solution was then left to settle for a specific period of
time before being transferred into an acrylic cylinder. Once the sodium chloride solution
was stable, the excitation current was set to 1 mA, and data were collected at a frequency
of 100 kHz. Following the processing and conversion of the acquired data into the pyEIT
format, the following Figure 6 was produced.
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Figure 4. An EIT experimental setup. (a) Measured graph of constant current source output current.
(b) Resistor loop circuit diagram.

Figure 5. (a) Physical model of a circular sink. (b) Homogenized sodium chloride solution. (c) With
acrylic column.

Figure 6. Visualization of a circular sink with acrylic cylinders using a physical model.

Based on the data provided in Table 2, it is clear that our algorithm surpassed the other
methods when considering the evaluation indicators of the SSIM and LPIPS. It secured the
second position in terms of the PSNR. Although all three methods produced reconstructed
images with artifacts, the ones generated by SOGTV demonstrated the most-effective
reduction of these artifacts. It is important to acknowledge that actual measurements
may be susceptible to errors in measurement, errors in the model, and interference from
environmental noise. As a result, the signal-to-noise ratio of the measured voltage was
reduced, leading to a lower quality of the actual reconstructed image compared to the
simulated calculation. This further strengthened the conclusion that SOGTV provides
superior imaging quality.
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Table 2. Indexes for evaluating tank experiments.

PSNR SSIM LPIPS

SVD 33.7745 0.8142 0.2416
TV 33.6126 0.8083 0.2254

Accelerated TV 33.5852 0.7946 0.2287
TVAL3 33.4770 0.7930 0.2313
Ours 33.7061 0.8194 0.2235

At last, to validate the convergence of the algorithm proposed, numerical experiments
were performed. We used the model in Figure 6 and reconstructed the EIT image with
three algorithms. As shown in Figure 7, the variation in CF as the number of iterations
progressed is demonstrated. As the number of iterations increased, CF approached zero.
The CF is calculated as follows [50].

Out k =
1
2
∥Ag − bmeas ∥2

2 + TVβ(g)

CF =
|Outk − Outk−1|

Outk−1

Figure 7. Convergence rate of the three algorithms (Accelerated TV, TVAL3, SOGTV).

From Figure 7, the SOGTV algorithm has a faster convergence rate compared with Ac-
celerated TV and TVAL3. The imaging results demonstrated that our algorithm effectively
identified the perturbation position of the acrylic cylinder. Although some artifacts were
still present, a comparison of the relevant indicators confirmed that our imaging quality
surpassed that of the other algorithms. This lays a solid foundation for future imaging stud-
ies. The research and enhancement of algorithms contribute to new ideas in this field. EIT
finds application in various medical imaging fields including lung imaging, breast imaging,
and brain monitoring. It serves as a valuable complement to other imaging technologies
like X-ray, CT, and MRI due to its advantages in real-time monitoring, non-invasiveness,
and cost-effectiveness.

5. Conclusions

This paper proposes a SOGTV algorithm for EIT-based lung imaging. The algorithm
was evaluated by comparisons with the SVD, TV, Accelerated TV, and TVAL3 algorithms
using experimental simulation models with different sizes and shapes. We developed
the physical model of the circular water tank to validate our algorithm. The experimen-
tal results demonstrated that the SOGTV algorithm achieved both stable solutions and



Appl. Sci. 2024, 14, 1485 18 of 20

improved image boundary contrast and sharpness levels compared to those of full-variance-
regularized images. The proposed algorithm presents a viable solution for the advancement
of electrical impedance imaging in lung research. The effectiveness of our algorithm was
verified through simulation experiments and tank experiments. However, the algorithm
still has some shortcomings that need to be addressed due to limited experimental con-
ditions. Further optimization is required to improve its performance. Additionally, the
algorithm needs improvement in terms of generalization, as it currently struggles to ac-
curately image multi-objective water tank models with complex target conditions. To
enhance the generalization ability, it is recommended to increase the dataset or further
refine the algorithm.
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