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Abstract: Image deblurring is a fundamental image processing task, and research for efficient image
deblurring methods is still a great challenge. Most of the currently existing methods are focused
on TV-based models and regularization term construction; little efforts are paid to model proposal
and correlated algorithms for the fidelity term in fractional-order derivative space. In this paper,
we propose a novel fractional-order variational model for image deblurring, which can efficiently
address three different blur kernels. The objective functional contains a fractional-order gradient
fidelity term and a total generalized variation (TGV) regularization term, and it highlights the ability
to preserve details and eliminate the staircase effect. To solve the problem efficiently, we provide two
numerical algorithms based on the Chambolle-Pock primal-dual method (PD) and the alternating
direction method of multipliers (ADMM). A series of experiments show that the proposed method
achieves a good balance between detail preservation and deblurring compared with several existing
advanced models.

Keywords: fractional-order; fidelity term; total generalized variation; deblur

1. Introduction

Image deblurring aims to get a clean, sharp image from a noisy, blurred image. Blurs
can be observed in many fields such as out-of-focus blur in X-ray imaging because of the
poor localization of the point spread function and motion blur caused by the movement
of the person. Generally, the image blurring process can be modeled as the convolution
of an original clear image with a shift-invariant blur kernel plus additive Gaussian white
noise, i.e.,

f = Ku + n,

where u : Ω ⊂ R2 → R is the original clean image, K is the convolution operator, and n
is Gaussian noise with zero mean and variance σ2. According to whether the blur kernel
K is prior knowledge, the problem of image deblurring can be divided into non-blind
deblurring and blind deblurring. When K is known exactly, the problem is obtaining a
clean image u from the observed image f and prior knowledge K; when K is unknown,
the problem is estimating the blur kernel K first and then obtaining the clear image u from
image f .

For the restoration of a blurred image, scientists take advantage of some prior knowl-
edge of the unknown image u by adding a regularization term, which can be modeled
as follows:

min
u
{Φ(u) +

µ

2
‖Ku− f ‖2

2},

where ‖Ku− f ‖2 is called the fidelity term and Φ(u) is called the regularization term, and µ
is a tuning parameter to balance the weight between the fidelity term and the regularization
term. There are many methods that have been proposed for image restoration. Blind
deconvolution image restoration [1,2] performs image restoration based on degradation
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models and prior knowledge, so it can adapt to different types and degrees of image degra-
dation. However, blind deconvolution image restoration usually requires complex models
and algorithms to model and process the degradation process of images, which makes it
difficult to apply in practice. In addition, the unsuitability of inverse problems makes blind
deconvolution image restoration unable to guarantee the uniqueness of solutions. The PSF
restoration method [3,4] aims to reduce blur and noise in the image by calculating and
estimating PSF, thus restoring the sharpness and detail of the image. However, it is sensitive
to noise in the image, which may be amplified and affect the quality of the restored image.
An image recursive filter [5,6] is an effective image smoothing and denoising filter, which
calculates the value of the output pixel by the weighted average of the current pixel and its
neighbors. However, the design and optimization of the image recursive filter is relatively
complex, and there is a poor effect of noise suppression, which is easily introduces artifacts
or distortion. In the field of variation image restoration, the most famous model in image
restoration is the TV model, which is as follows:

min
u∈BV(Ω)

{∫
Ω
|Du|+ µ

2
‖Ku− f ‖2

2

}
.

Actually, TV was originally proposed in [7] for image denoising, and then it was ex-
tended to image deblurring in [8]. The TV model is a popular method that can effectively
reduce the noise and blur in the image, and also preserve the sharp edge and texture
detail of the image. However, TV regularization tends to get a piecewise constant so-
lution, and, therefore, it easily causes a staircase effect. In order to efficiently suppress
the staircase artifacts, numerous models with improved regularization terms have been
proposed. This includes high-order partial differential equations [9] and higher-order TV
methods (HOTV) [10], total variation regularization methods [11,12], sparsity regulariza-
tion models [13,14], and fractional-order TV (FOTV) models [15,16]. In addition, nonlocal
total variation (NLTV) [17,18] and block-matching 3-D (BM3D) [19,20] have been the most
promising deblurring methods for recovering texture. Although NLTV and BM3D have
shown good performance in image restoration, the NLTV functional minimization problem
has always been a difficult optimization problem because of its high computation com-
plexity and the non-differentiability, and the BM3D method has limited effectiveness in
processing high-noise images and motion-blurred images.

Another method to overcome the staircase effect is the total generalized variation
(TGV) regularization, which was firstly proposed by Bredies et al. as a penalty function
in [21]. As an extension of TV regularization, TGV has good properties such as rotational
invariance, lower semi-continuity, and convexity. The results show that the TGV reg-
ularization method can preserve the details of image edges and textures and suppress
the staircase effect. In addition, the scalar weight α = (α1, α0) of the second-order TGV
regularization model has multiple parameters, and better image restoration results can be
achieved by adjusting the parameters, so the TGV model has been extensively studied in
image restoration [22–25] and medical imaging [26]. It can be formulated as:

min
u
{TGV2

α(u) +
1

2λ
‖Ku− f ‖2

2}. (1)

Although the TGV regularization model has many advantages, it tends to amplify the
noise while restoring the image detail, creating artifacts or distortions, and due to the
sensitivity of parameters, it may lead to poor deblurring results or excessive smoothing
results (see [27,28]).

In this paper, aiming at achieving a good performance for image restoration, we
propose a fractional-order fidelity-based total generalized variation model (FTGV) for
image deblurring. The objective function takes the TGV as the regularization term that can
suppress staircase effect, preserve edges and a fractional-order gradient fidelity term to
preserve more details, and get a trade-off between edge preservation and blur removal by
adjusting the regularization parameters. Then, based on the non-smoothing of the regular-
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ization term of the variation model and the non-convexity of the fractional fidelity term,
we propose two optimization algorithms based on the primal-dual (PD) and alternating
direction multiplier (ADMM), which transform the fractional problem into subproblems
with less computation by introducing auxiliary variables, and finally solve the minimiza-
tion problem by alternate iteration strategy. By precisely adjusting step size parameters
and penalty parameters, the two algorithms are insensitive to the weights α = (α1, α0),
non-integer order γ, and balance parameters β in the variational model, and run faster,
thus making the model more robust and efficient.

The rest of this paper is organized as follows. In Section 2, we present a brief intro-
duction of TGV model, and then give the new deblurring model and the discrete form for
objection functional. We provide the numerical scheme based on the PD algorithm and
ADMM algorithm to solve the proposed model and analyze the convergence in Section 3.
Numerical experiments are shown to illustrate the performance of the proposed model in
Section 4.

2. Proposed Model

In this section, we first review the classic total generalized variation method (TGV)
and some notations. Afterwards, we give the new model for image deblurring and its
discrete form.

2.1. Review of TGV

The concept of total generalized variation (TGV) was proposed by Bredies et al. in [21].
The TGV of order k with positive weights α = (α0, α1, . . . , αk−1) is defined as:

TGVk
α(u) = sup{

∫
Ω

udivkvdx|v ∈ Ck
c (Ω, Symk(Rd)), ‖divjv‖ ≤ αj, j = 0, . . . , k− 1},

where Ck
c (Ω, Symk(Rd)) denotes the space of the compactly supported symmetric tensor

field and Symk(Rd) is the space of symmetric tensors on Rd, which has the form:

Symk(Rd) = {ξ : Rd × . . .×Rd → R
∣∣ξ is multilinear and symmetric}.

When k = 1, Sym1(Rd) = Rd, TGV1
1(u) = TV(u), thus it is clear that TGV is a general-

ization of TV, when k = 2, Sym2(Rd)) denotes the space of all symmetric Sd×d matrices.
Particularly, we take the second-order TGV [29] in the proposed model, it has form:

TGV2
α(u) = sup{

∫
Ω

udiv2wdx|w ∈ C2
c (Ω, Sym2(Rd), ‖w‖∞ ≤ α0, ‖divw‖∞ ≤ α1},

where (divw)i = ∑d
j=1

∂wij

∂xj
, div2w = ∑d

i,j=1
∂2wij

∂xixj
, 1 ≤ i ≤ d and the infinite norm are

defined as:

‖w‖∞ = sup
x∈Ω

(
d

∑
i,j=1
|wi,j(x)|2

)1/2

, ‖divw‖∞ = sup
x∈Ω

(
d

∑
i,j=1
|divw(x)|2

)1/2

.

In order to effectively use the PD algorithm and ADMM algorithm to solve the TGV
model, we need to establish topological equivalence form of the second-order TGV in terms
of l1 minimization by utilizing the Legendre–Fenchel transform [27]:

TGV2
(α1,α0)

(u) = min
u,w

α1‖∇u− w‖1 + α0‖ε(w)‖1,
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where ε(w) is a weak symmetric derivative and has the computational expression

ε(w) =
1
2
(∇w +∇wT). Specifically, the discrete gradient ∇, the symmetrized gradient ε,

and the corresponding divergence operators are defined as:

∇ : U → V,∇u =

(
∂+x u
∂+y u

)
,

ε : V →W, ε(v) =

 ∂+x v1
1
2
(∂+y v1 + ∂+x v2)

1
2
(∂+y v1 + ∂+x v2) ∂+y v2

,

div : V → U, divv = ∂−x v1 + ∂−y v2,

divh : W → V, divhw =

(
∂−x w11 + ∂−y w12
∂−x w12 + ∂−y w22

)
,

where ∂+x , ∂+y , ∂−x , and ∂−y are classic first-order forward backward discrete derivation
operators in the x-direction and y-direction. U, V, W are defined as:

U = C2
c (Ω,R), V = C2

c (Ω,R2), W = C2
c (Ω, S2×2).

When using the periodic boundary condition in the discrete derivation forms, it is easy to
see that ∇T = −div and εT = −divh.

2.2. The Proposed Model

As we all know, the fidelity term is the error between the restoration image and the
original image, but it always assumes that the signal or image is smooth and continuous,
which is impossible in the real world, and the integer-order fidelity term is only suitable
for modeling simple problems and can not effectively model complex phenomena, so
the restoration result is unsatisfactory. In order to improve these problems, domestic
and foreign researchers have proposed some models to improve the fidelity term, such
as iterative denoising and the back projection (IDBP) [30] algorithm. Ren et al. [31]
proposed an efficient derivative alternate direction multiplier (D-ADMM) algorithm based
on derivative space [32,33]. This algorithm can reduce the computation time and protect the
image details appropriately; however, the regularization term is based on TV regularization;
thus, the staircase effect is unavoidable. However, most of the existing models have poor
performance for textured image restoration.

Unlike the integral-order derivative operator, the fractional-order derivative at a point
depends on the characteristics of the whole function [34]; thus, the fractional derivative
operator has a non-local property. This good property is beneficial to improve texture
preservation performance [35,36]. Therefore, we choose the fractional gradient (0 < γ < 1)
as the fidelity term instead of the integer gradient. For comparison, we take the integer
gradient, namely, the classic TGV model (γ = 0) and the fractional gradient (0 < γ < 1),
in the experiment. We can observe from Figure 1 that the integer gradient model cannot
remove blur completely, but the fractional gradient model achieved good results in image
deblurring and texture preservation.

Based on the TGV model (1) and to further improve the quality of the image restoration,
we propose a fractional-order fidelity-based total generalized variation (FTGV) model for
image deblurring as follows:

min
u,w
{TGV2

α(u) +
β

2
‖∇γ(Ku− f )‖2

2}, (2)

where f is the noisy blurred image, K corresponds to the blurring matrix, (2) becomes the
denoise model when K is the identity operator, u is the result image after deblurring, and β
is the balance parameter. The effect of the first term can effectively protect the medium-
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and low-frequency components of the image, and the second term gets the deblurred
image close enough to the blurred image to achieve more details during image denoising
and deblurring.

(a) (b) (c)

Figure 1. Visualization in zoom for Lena image. (a) Noisy blurred image (disk blur with radius 5
and a Gaussian noise with σ = 0.1), (b) deblurred image of integer model, (c) deblurred image of
fractional model.

There has been a growing interest in the study of the fractional-order Sobolev–Poincaré
inequalities (see, for instance, [37,38] and the references therein). Let 1 ≤ p < ∞, γ ∈ (0, 1)
and Ω ⊂ Rn(n ≥ 2) be a bounded domain; Jonsson et al. [39] combined the classical
embedding theorems with fractional-order Sobolev spaces [40] and achieved the fractional
Sobolev–Poincaré inequality:∫

Ω
|u(x)− uΩ|pdx ≤ C

∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+pγ dydx, (3)

where the constant C > 0, uΩ = 1
|Ω|
∫

Ω u(x)dx is the average of u over Ω and the right
hand side is Wγ,p(Ω) seminorm.

Let u(x) = Ku− f in (3); then:

uΩ =
1
|Ω|

∫
Ω
(Ku− f )dx = 0. (4)

Thus, according to the computation of uΩ and the fractional poincaré inequality (3), we
know that the integer fidelity term ‖Ku− f ‖2 can be stronger controlled by its fractional
gradient. This inequality provides support for our model in theory.

Remark 1. We notice that the fractional Poincaré inequality becomes the classical Poincaré inequal-
ity when γ = 1 [41]: ∫

Ω
|u(x)− uΩ|pdx ≤ C

∫
Ω
|∇u(x)|pdx

holds for all u ∈W1,p(Ω).

2.3. Discrete Implementations of Gradient and Divergence

In this paper, there exists a gradient and divergence operator of fractional-order and
integer-order and their adjoint operators; thus, we give the discretization in the following.

For a real function u : Ω → R2, where Ω ⊂ R2 is a bounded open set, a spatial
rectangular partition (xm, yn) (for all m, n = 0, 1, ..., N − 1) of image domain Ω is defined.
In this paper, we adopt the G-L definition of the fractional-order derivatives Dα

xu and Dα
y u;

they can naturally be seen as the generalization of the finite difference scheme for the partial
derivatives, which can be defined as:

∇αu = (Dα
xu, Dα

y u), α ∈ R+.
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Thus, we consider the discretization form of the α-order fractional derivative at all points
of Ω along the x-direction and the y-direction by using equations:

Dα
xu(xm, yn) =

m

∑
i=0

wα
i u(xm−i, yn), (5)

Dα
y u(xm, yn) =

n

∑
j=0

wα
j u(xmyn−j). (6)

Using the relation (∇α)T = (−1)αdivα, the discrete form the fractional-order divergence
operator for a vector function p(x, y) = (p1(x, y), p2(x, y)) is given as:

divαp = (−1)α(∇α)Tp = (−1)α((Dα
x)

T p1 + (Dα
y)

T p2),

where

(Dα
x)

T p1(xm, yn) = (−1)m
N−m−1

∑
i=0

wα
i p1(xm+i, yn), (7)

(Dα
y)

T p2(xm, yn) = (−1)m
N−n−1

∑
j=0

wα
i p2(xi, yn+j), (8)

Here, wα
i = (−1)iCα

i , i = 0, 1, ..., N− 1, wα
j = (−1)jCα

j , j = 0, 1, ..., N− 1 and the coefficients

Cα
k are given by Cα

k =
Γ(α + 1)

Γ(k + 1)Γ(α + 1− k)
, where Γ(·) is the gamma function.

Proposition 1 ([42]). For any 0 < α < 1, the coefficients {wα
k}

k=0
∞ have the following properties:

(1)wα
0 = 1, wα

1 = −α < 0;
(2)− 1 ≤ wα

2 ≤ wα
3 ≤ · · · ≤ 0;

(3)∑∞
k=0 wα

k = 0;
(4)∑

p
k=0 wα

k ≤ 0(p ≥ 1).

In practice, all equations of fractional-order derivatives and their adjoint operators
along the x-direction in (5) and (7) can be written as the matrix form:

Dα
xu(x0, yn)

Dα
xu(x1, yn)

...

...
Dα

xu(xN−1, yn)

 =



wα
0 0 . . . . . . 0

wα
0 wα

1 . . . . . . 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
wα

N−1 . . . . . . . . . wα
0


︸ ︷︷ ︸

Bα
N



u(x0, yn)
u(x1, yn)

...

...
u(xN−1, yn)


︸ ︷︷ ︸

g

. (9)

Let U ∈ RN×N denote the solution matrix at all nodes (mh; nh), m, n = 0, 1, ..., N − 1,
corresponding to x-direction and y-direction spatial discretization nodes. Therefore, it
is clear that Dα

xU = Bα
NU. Similarly, the α-th order along the y-direction derivative of

u(x; y), (x, y ∈ [h, (N − 1)h]) is written as Dα
yU = U(Bα

N)
T . In addition, the adjoint opera-

tors can be written as: Dα∗
x U = (−1)m(Bα

N)
TU and Dα∗

y U = (−1)mUBα
N .
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Remark 2. When α = 1, Ck
1 = 0 for k > 1, the discrete fractional-order gradient and

divergence become:

Dxu(xm, yn) = u(xm, yn)− u(xm−1, yn),

Dyu(xm, yn) = u(xm, yn)− u(xm, yn−1),

(Dx)
T p1(xm, yn) = −(p1(xm, yn)− p1(xm+1, yn)),

(Dy)
T p2(xm, yn) = −(p2(xm, yn)− p2(xm, yn+1)),

which are classical backward and forward differences.

3. Algorithms

For the implementation of (2), we consider the discrete form:

min
u,w
{α1‖∇u− w‖1 + α0‖ε(w)‖1 +

β

2
‖∇γ(Ku)−∇γ f ‖2

2}, (10)

where β > 0 is a weighting parameter.
Because of the non-linearity and non-convexity of the proposed model (10), some

conventional methods, such as gradient descent method, conjugate gradient method, and
Newton method, are not applicable for solving our problem. Thus, we propose two
efficient numerical algorithms based on two popular optimization methods, i.e., PD and
ADMM; they have many good properties: fast and easy to compute, and not sensitive
with parameters.

Remark 3. Obviously, ∇γ(Ku− f ) in (2) could be rewritten as (Bα
N(Ku− f ), (Ku− f )(Bα

N)
T)

in the condition of 2D space discrete for u ∈ RN×N and f ∈ RN×N , which is equivalent to
∇γ(Ku)−∇γ f , since the matrix Bα

N is linear. Then, the discrete form (10) is reasonable.

3.1. Augmented Lagrangian Algorithm

We utilize the alternating direction method of multipliers (ADMM) [43] to solve the
proposed model (10). For implementation, we need to introduce three auxiliary vari-

ables, z = (z1, z2) ∈ R2mn, h =

(
h1 h3
h3 h2

)
∈ R2mn×2, g ∈ Rmn; then, the problem (10) is

transformed into the following constrained problem:

min
u,w
{α1‖z‖1 + α0‖h‖1 +

β

2
‖∇γg−∇γ f )‖2

2}, (11)

s.t. z = ∇u− w, h = ε(w), g = Ku.

Then, the augmented Lagrangian functional corresponding to (11) is:

L(u, w; z, h, g; η, ξ, µ)

=α1‖z‖1 + α0‖h‖1 +
β

2
‖∇γg−∇γ f ‖2

2

− < η, z− (∇u− w) > +
δ3

2
‖z− (∇u− w)‖2

2

− < ξ, h− ε(w) > +
δ2

2
‖h− ε(w)‖2

2

− < µ, g− Ku > +
δ1

2
‖g− Ku‖2

2,

(12)

where η = (η1, η2) ∈ R2mn, ξ =

(
ξ1 ξ3
ξ3 ξ2

)
∈ R2mn×2, µ ∈ Rmn are Lagrange multipliers,

and δ1, δ2, δ3 > 0 are penalty parameters.
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In fact, the primal variables (u, w; z, h, g) cannot be easily computed, so we use alter-
native iterative strategy to compute them separately; then, for each variable:

uk+1 = argmin
u
L(u, wk; zk, hk, gk; ηk, ξk, µk);

wk+1 = argmin
w
L(uk, w; zk, hk, gk; ηk, ξk, µk);

zk+1 = argmin
z
L(uk, wk; z, hk, gk; ηk, ξk, µk);

hk+1 = argmin
h
L(uk, wk; zk, h, gk; ηk, ξk, µk);

gk+1 = argmin
g
L(uk, wk; zk, hk, g; ηk, ξk, µk);

ηk+1 = ηk − δ3(zk+1 − (∇uk+1 − wk+1));

ξk+1 = ξk − δ2(hk+1 − ε(wk+1));

µk+1 = µk − δ1(gk+1 − Kuk+1).

(13)

Next, we will solve each subproblem one by one.
Step 1: Computation of u. For the u-subproblem in (13), it can be given by:

uk+1 = argmin
u

δ3

2

∥∥∥zk − (∇u− wk)− ηk

δ3

∥∥∥2

2
+

δ1

2

∥∥∥gk − Ku− µk

δ1

∥∥∥2

2
. (14)

Then minimization problem (14) can be solved by:

uk+1 = (∇T∇+
δ1

δ3
KTK)−1

(
∇T
(

zk + wk − ηk

δ3

)
+

δ1

δ3
KT
(

gk − µk

δ1

))
with the periodic boundary condition of u, where ∇T∇ = ∇T

x∇x +∇T
y∇y, and KTK are

block circulant matrices and can be diagonalized by 2D discrete Fourier transform F , where
∇T is the adjoint of ∇, and KT is the adjoint kernel of K by rotating 90◦ clockwise. Thus,
we compute (14) by FFTs and IFFTs:

uk+1 = F−1

(F(∇T(zk + wk − ηk

δ3
)
)
+

δ1

δ3
F
(

KT(gk − µk

δ1
)
)

F (∇T∇) + δ1

δ3
F (KTK)

)
, (15)

where

F
(
∇T(zk + wk − ηk

δ3
)
)
= F (∇T

x ) ◦ F
(

zk
1 + wk

1 −
ηk

1
δ3

)
+F (∇T

y ) ◦ F
(

zk
2 + wk

2 −
ηk

2
δ3

)
,

and ◦ denotes componentwise multiplication.
Step 2: Computation of w. For the w-subproblem in (13), the functional can be

writen by:

wk+1 = argmin
w

δ3

2

∥∥∥zk − (∇uk+1 − w)− ηk

δ3

∥∥∥2

2
+

δ2

2

∥∥∥hk − ε(w)− ξk

δ2

∥∥∥2

2
. (16)

Then, for w1, w2, we have:δ3 I + δ2∇T
x∇x +

δ2

2
∇T

y∇y
δ2

2
∇T

y∇x

δ2

2
∇T

x∇y δ3 I + δ2∇T
y∇y +

δ2

2
∇T

x∇x

(wk+1
1

wk+1
2

)
=

(
gk

1
gk

2

)
, (17)
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where

(
gk

1
gk

2

)
=

−δ3(zk
1 −∇xuk −

ηk
1

δ3
) + δ2[∇T

x (hk
1 −

ξk
1

δ2
) +∇T

y (hk
3 −

ξk
3

δ2
)]

−δ3(zk
2 −∇xuk −

ηk
2

δ3
) + δ2[∇T

x (hk
3 −

ξk
3

δ2
) +∇T

y (hk
2 −

ξk
2

δ2
)]

.

Similar to the u-subproblem, we also use FFTs to solve subproblem (17). Applying FFTs to
both sides of (17) yields: (

Θ11 Θ12
Θ21 Θ22

)(
F (wk+1

1 )

F (wk+1
2 )

)
=

(
F (gk

1)
F (gk

2)

)
, (18)

where Θi,j, i, j = 1, 2 are diagonal matrices. Then, we use IFFTs to get w1, w2 from F (w1)
and F (w2).

Step 3: Computation of z. The subproblem with respect to z can be written as:

zk+1 = argmin
z

α1‖z‖1 +
δ3

2

∥∥∥z− (∇uk+1 − wk+1)− ηk

δ3

∥∥∥2

2
. (19)

This is a typical l2 − l1 problem, which can be solved directly by a two-dimensional
shrinkage operation:

zk+1 = max

{∥∥∥∇uk+1 − wk+1 +
ηk

δ3

∥∥∥
2
− α1

δ3
, 0

} ∇uk+1 − wk+1 +
ηk

δ3∥∥∥∇uk+1 − wk+1 +
ηk

δ3

∥∥∥
2

. (20)

Step 4: Computation of h. For the h-subproblem, the minimization problem can be
given by:

hk+1 = argmin
h

α0‖h‖1 +
δ2

2

∥∥∥h− ε(wk+1)− ξk

δ2

∥∥∥2

2
, (21)

which can be solved directly by the following four-dimensional shrinkage operation:

hk+1 = max

{∥∥∥ε(wk+1) +
ξk

δ2

∥∥∥
2
− α0

δ2
, 0

} ε(wk+1) +
ξk

δ2∥∥∥ε(wk+1) +
ξk

δ2

∥∥∥
2

. (22)

Step 5: Computation of g. The subproblem with respect to g can be written as:

gk+1 = argmin
g

β

2
‖∇γg−∇γ f ‖2

2 +
δ1

2

∥∥∥g− Kuk+1 − µk

δ1

∥∥∥2

2
. (23)

To solve the g-subproblem in (13), we consider the Euler–Lagrange equation of (12) with
respect to g, which has the form:

β(∇γ)T(∇γg−∇γ f ) + δ1(g− Kuk+1 − µk

δ1
) = 0,
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where the operator (∇γ)T∇γ can be diagonalized by the fast Fourier fractional transform
(FFTs) with the periodic boundary condition; then, we can get:

gk+1 = F−1

( βF
(
(∇γ)T∇γ f

)
+ δ1F

(
Kuk+1 +

µk

δ1

)
βF ((∇γ)T∇γ) + δ1F (I)

)
. (24)

We summarize the FTGV-ADMM in Algorithm 1.

Algorithm 1: FTGV-ADMM algorithm to solve the proposed model.
Input: f .

1 Tuning parameter: α1, α0, β, γ, δ1, δ2, δ3 > 0.
2 Initialize: u0, w0, z0, h0, g0, η0, ξ0, µ0

3 Precompute: F (KTK),F (∇T∇),F ((∇γ)T∇γ).
4 while stopping criterion is not satisfied do
5 Compute uk+1 by (15);
6 Compute wk+1 by (18);
7 Compute zk+1 by (20);
8 Compute hk+1 by (22);
9 Compute gk+1 by (24);

10 ηk+1 = ηk − δ3(zk+1 − (∇uk+1 − wk+1));
11 ξk+1 = ξk − δ2(hk+1 − ε(wk+1));
12 µk+1 = µk − δ1(gk+1 − Kuk+1);
13 k = k + 1.
14 end

Output: u.

It is straightforward to see that FTGV-ADMM does not satisfy the convergence of
ADMM (proven by Eckstein and Bertsekas [44]), since the fidelity term of problem (10) is
non-convex. However, we can demonstrate the convergence of FTGV-ADMM by plotting
the Energy and MSE values with respect to the iteration in Section 4.

3.2. Primal-Dual Algorithm

For the purpose of applying the Chambolle-Pock primal-dual (PD) algorithm [45,46],
we need to rewrite the proposed model (10) as a minimax problem. Define:

A =

(
∇ −I
0 ε

)
, x =

(
u
w

)
, x̄ =

(
ū
w̄

)
, y =

(
p
q

)
,

and
F(Ax) = α1‖∇u− w‖1 + α0‖ε(w)‖1, G(x) =

β

2
‖∇γ(Ku)−∇γ f ‖2

2,

then the the proposed model (10) can be expressed as:

min
x
{F(Ax) + G(x)}; (25)

it follows from the property of convex conjugate F∗, and can be defined as:

F∗(y) =

{
0, if ‖y‖∞ ≤ 1,

+ ∞, otherwise.

Then the minimax problem of (10) is given as:
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min
u,w

max
p∈P,q∈Q

{< ∇u− w, p > −F∗(p)+ < ε(w), q > −F∗(q) +
β

2
‖∇γ(Ku)−∇γ f ‖2

2}, (26)

where P and Q are, respectively, expressed as follows:

P = {p = (p1, p2)
T∣∣|p(x)|∞ ≤ α1},

Q =

{
q =

(
q11 q12
q21 q22

)∣∣‖q‖∞ ≤ α0

}
,

where the infinite norm is defined as |p(x)|∞ = max
i,j
|pi,j| with |pi,j| =

√
(p1)

2
i,j + (p2)

2
i,j.

Similarly, it yields that ‖q(x)‖∞ = max
i,j
|qi,j| with

|qi,j| =
√
(q11)

2
i,j + (q12)

2
i,j + (q21)

2
i,j + (q22)

2
i,j.

Applying the Chambolle-Pock algorithm for the minimax problem (26) yields the
following iterative scheme:

pk+1 = argmax
p∈P

{< ∇ūk − w̄k, p > −F∗(p)− 1
2σ
‖p− pk‖2

2};

qk+1 = argmax
q∈Q

{< ε(w̄k), q > −F∗(q)− 1
2σ
‖q− qk‖2

2};

uk+1 = argmin
u
{< ∇u− w̄k, pk+1 > +

β

2
‖∇γ(Ku)−∇γ f ‖2 +

1
2τ
‖u− uk‖2

2}; (27)

wk+1 = argmin
w
{< ∇ūk+1 − w, pk+1 > + < ε(w), qk+1 > +

1
2τ
‖w− wk‖2

2};

ūk+1 = 2uk+1 − uk;

w̄k+1 = 2wk+1 − wk;

where σ, τ are positive tuning parameters. Then, we obtain the respective closed-form
solutions for subproblems in (27) one by one.

Specifically, for the p-subproblem and the q-subproblem, they have a closed-form
solution, given by:

pk+1 = ProjP[p
k + σ(∇ūk − w̄k)], (28)

qk+1 = ProjQ[q
k + σε(w̄k)], (29)

where ProjP and ProjQ denote the Euclidean projection on the convex sets P and Q, respec-
tively. They can be easily calculated by:

ProjP(p̃) =
p̃

max(|p̃|/α1, 1)
, ProjQ(q̃) =

q̃
max(|q̃|/α0, 1)

.

Solutions for the u-subproblem and the w-subproblem can be obtained by solving the
corresponding Euler–Lagrange equation of the form:

uk+1 = uk + τ[divpk+1 + β(∇γ)T∇γKT(Kuk − f )], (30)

wk+1 = wk + τ(pk+1 + divhqk+1), (31)

where KT is the adjoint operator of K and (∇γ)T is the adjoint operator of ∇γ as above.
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We summarize the FTGV-PD in Algorithm 2. The convergence of FTGV-PD is guaran-
teed by the following proposition and by plotting the energy and MSE values with respect
to the iteration in Section 4.

Algorithm 2: FTGV-PD algorithm to solve the proposed model.
Input: f .

1 Tuning parameter: α1, α0, β, γ, σ, τ.
2 Initialize: u0, w0, p0, q0.
3 while stopping criterion is not satisfied do
4 Compute pk+1 by (28);
5 Compute qk+1 by (29);
6 Compute uk+1 by (30);
7 Compute wk+1 by (31);
8 ūk+1

l = 2uk+1 − uk;
9 w̄k+1 = 2wk+1 − wk;

10 k = k + 1.
11 end

Output: u.

The convergence result for the PD algorithm was proven by Chambolle and Pock
in [47,48] when G(x) is convex. However, in our problem of the loss the convexity of the
fidelity term G(x), we cannot get the convergence of the PD algorithm to the problem
(10) under normal circumstances unless G(x) is linearized, so we can solve the primal-
dual problem:

min
x

max
y
{< Ax, y > −F∗(y)+ < ∇G(x̄), x− x̄ >}; (32)

instead,
min

x
max

y
{< Ax, y > −F∗(y) + G(x)}. (33)

We get the following convergence result for problem (32):

Proposition 2. Let the sequence (xk, yk) be generated by (32). If we choose parameters τ
and σ satisfying

τσL2
A + τLG ≤ 1,

where L2
A = ‖A‖2

2, LG is the Lipschitz constant of G, then (xk, yk) converges to the saddle point
saddle-point of (10).

Proof of Proposition 2. Based on the analysis, we only need to estimate the parameters
LA and LG to enable the convergence of the proposed FTGV-PD algorithm, as well as to
provide guidance on choosing the appropriate values of the parameters τ and σ.

The norm of A can be estimated as follows:

‖Ax‖2
2 =

∥∥∥(∇u− w
ε(w)

)∥∥∥2

2
=
∥∥∥(∇ −I

0 ε

)(
u
w

)∥∥∥2

2
=
∥∥∥(∇ −I

0 ε

)∥∥∥2

2

∥∥∥(u
w

)∥∥∥2

2
.

Let ‖x‖2
2 =

∥∥∥(u
w

)∥∥∥2

2
= 1; then, we have ‖A‖2 =

∥∥∥(∇ −I
0 ε

)∥∥∥2
< 12 (see details in [27]).

For the Lipschitz constant LG, it can be estimated by:

‖∇G(u1)−∇G(u2)‖ = ‖β(∇γ)T∇γKTK(u1 − u2)‖ (34)

≤ ‖β(∇γ)T∇γKTK‖‖u1 − u2‖ (35)

≤ β‖K‖2‖∇γ‖2‖‖u1 − u2‖; (36)
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then, we get
LG ≤ β‖K‖2‖∇γ‖2.

Since ‖k ∗ u‖2 ≤ ‖k‖1‖u‖2 ([49]) and the GL definition of the fractional-order derivatives
∇γ

x u and ∇γ
y u can be described as the convolution of the weight coefficient (−1)lCγ

l
(represented as kl) and u, we, thus, have:

‖∇γu‖2
2 = ‖∇γ

x u‖2
2 + ‖∇

γ
y u‖2

2 ≤ 2‖k‖2
1‖u‖2

2,

where k = (k0, w1, . . . , kL−1) and kl = (−1)lCγ
l . For the special case of TV, i.e., γ = 1, L = 2,

we have L2 = ‖∇‖2 ≤ 8, which is consistent in [50]; hence, the upper bound of fractional
order ‖∇γ‖2 is 8.

Remark 4. Proposition 2 is a special case of theorem 1 in Chambolle and Pock [48]. Thus, we can
simply choose τ = 1/(LA + LG) and σ = 1/LA in our model.

4. Numerical Experiments

In this section, we will test the performance of the proposed model (2) with the
PD algorithm and ADMM algorithm, and also compare with some efficient visual and
analytical methods for image deblurring such as TGV [21], APE-TGV [28], D-TGV [33],
BM3D [19], and NLTV [18]. To evaluate the restoration results, we use these quantitative
measures, including the peak signal to noise ratio (PSNR), the mean square error (MSE),
and the structural similarity (SSIM) metric, which are commonly used in image processing.
The better quality image will have higher PSNR and SSIM, but lower MSE.

In experiments, we consider three common blur scenarios: motion blur, disk blur, and
average blur. The motion blur, disk blur, and average blur are generated by the MATLAB
built-in functions fspecial(‘motion’, 20, 50), fspecial(‘disk’, 5) and ones(9)/81, respectively.
Except for the blur, we also add the Gaussian noise with standard deviation 0.1 to the blurry
image. For illustration, six test images are presented in Figure 2 with different sizes. In all

experiments, we terminate two algorithms when
‖uk+1 − uk‖
‖uk‖

< 1e−4 or Maxiter = 2000.

(a) (b) (c) (d)

(e) (f)

Figure 2. Test images: (a) synthetic texture (256× 256), (b) brain (300× 281), (c) butterfly (256× 256),
(d) man (256× 256), (e) parrot (256× 256), and (f) Lena (256× 256).
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4.1. Comparison of Proposed Algorithms

In this subsection, we compare the efficiency of the two proposed algorithms, FTGV-
ADMM and FTGV-PD, by minimizing the same objective function (10). We optimize the
algorithmic parameters for each algorithm to achieve higher PSNR improvement, which are
listed in Table 1. The visual results are provided in Figures 3–5, and Tables 2 and 3 report
the restoration results in terms of PSNR and SSIM values, along with other contrastive
models. In addition, we plot the energy and MSE values with respect to the iteration in
Figures 6 and 7, and numerically demonstrate the convergence of each algorithm.

Table 1. The parameter values for numerical experiments on all test images.

Model Image Type I II III

TGV(α1, α0, β) All images (1,2,35) (1,2,35) (1,2,35)
APE-TGV (α1, α0, β) All images (1,3,0.3) (1,3,0.3) (1,3,0.3)

DTGV (α1, α0, µ) Texture image (1,2,2000) (1,2,2000) (1,2,2000)
Other images (5,10,2000) (5,10,2000) (5,10,2000)

FTGV-ADMM All images (0.1,0.2,0.7,5000) (0.1,0.2,0.7,5000) (0.1,0.2,0.7,5000)

FTGV-PD Texture image (0.1,0.2,0.8,150) (0.1,0.2,0.8,2500) (0.1,0.2,0.8,2500)
Other images (5,10,0.8,150) (10,20,0.8,2500) (10,20,0.8,2500)

Table 2. Quantitative comparison with three blur kernels. Bold values indicate the best result.

Figure Methods I II III
PSNR/SSIM PSNR/SSIM PSNR/SSIM

Texture

TGV 22.59/0.8937 18.91/0.7436 19.82/0.6964
APE-TGV 28.34/0.9729 25.83/0.9335 24.01/0.8763

D-TGV 29.03/0.9776 24.17/0.9162 22.77/0.8588
FTGV-ADMM 30.99/0.9850 27.66/0.9536 25.06/0.9080

FTGV-PD 24.75/0.9442 26.70/0.9502 24.75/0.9174

Butterfly

TGV 26.74/0.8826 27.30/0.9069 25.93/0.8759
APE-TGV 37.01/0.9814 34.29/0.9747 33.12/0.9668

D-TGV 35.72/0.9665 34.20/0.9627 31.70/0.9477
FTGV-ADMM 38.48/0.9812 35.24/0.9741 34.09/0.9688

FTGV-PD 26.38/0.9285 34.67/0.9681 32.58/0.9571

Table 3. Quantitative comparison with three blur kernels. Bold values indicate the best result.

Figure Methods I II III
PSNR/SSIM PSNR/SSIM PSNR/SSIM

Brain

TGV 30.45/0.8173 28.96/0.9219 28.26/0.8959
APE-TGV 39.90/0.9899 37.07/0.9861 34.53/0.9765

D-TGV 38.72/0.9097 36.67/0.9583 33.76/0.9512
FTGV-ADMM 41.88/0.9747 38.26/0.9721 36.45/0.9729

FTGV-PD 29.67/0.7967 37.11/0.9753 34.26/0.9656

Man

TGV 28.57/0.8566 27.24/0.8229 26.54/0.8000
APE-TGV 35.71/0.9641 33.26/0.9409 31.42/0.9225

D-TGV 36.50/0.9643 33.78/0.9444 31.98/0.9228
FTGV-ADMM 37.50/0.9710 34.28/0.9492 32.60/0.9335

FTGV-PD 29.28/0.8657 33.35/0.9395 31.66/0.9169
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(a) (b) (c)

(d) (e) (f)

Figure 3. (a) Motion blurred image; (b–f) deblurred images by TGV, APE-TGV, D-TGV, FTGV-ADMM,
and FTGV-PD.

(a) (b) (c)

(d) (e) (f)

Figure 4. (a) Disk blurred image; (b–f) deblurred images by TGV, APE-TGV, D-TGV, FTGV-ADMM,
and FTGV-PD.
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(a) (b) (c)

(d) (e) (f)

Figure 5. (a) Average blurred image; (b–f) deblurred images by TGV, APE-TGV, D-TGV, FTGV-
ADMM, and FTGV-PD.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. First row: iteration-varying of MSE for motion blur. (a) texture, (b) butterfly, (c) brain,
(d) man. Second row: iteration-varying of energy for motion blur. (e) texture, (f) butterfly, (g) brain,
(h) man.

FTGV-ADMM does not satisfy the convergence of ADMM and, hence, for any penalty
parameter, δ > 0 is not available. Actually, different choices about δ could influence the
convergent speed of the algorithms. In our experiments, we set a satisfying rule of thumb
for deblurring based on experience δ1 = δ2 = δ3 = 0.01.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. First row: iteration-varying of MSE for disk blur. (a) texture, (b) butterfly, (c) brain, (d) man.
Second row: iteration-varying of Energy for disk blur. (e) texture, (f) butterfly, (g) brain, (h) man.

In Tables 2 and 3, we find that FTGV-ADMM has the highest PNSR value and com-
petitive SSIM value for the texture image, butterfly image, brain image, and man image.
FTGV-PD achieved slightly lower results than FTGV-ADMM in the PSNR value for disk
blur and average blur. Unfortunately, we notice that FTGV-PD achieves bad results on
motion blur for all test images, whether it is the texture image or natural images. In the
visualization aspect, FTGV-ADMM achieves better recovery results than FTGV-PD overall.

The results provided in Figure 6 show that FTGV-ADMM has the lowest MSE value
and the fewest iterations for all test images. On the contrary, FTGV-ADMM requires more
iterations to obtain a smaller MSE. We observe that FTGV-ADMM is the fastest algorithm
to minimize the energy because it costs less iterations. In terms of the disk blur presented
in Figure 7, FTGV-PD owns the lowest MSE and less iterations for the texture image than
FTGV-ADMM, but FTGV-ADMM has the fastest rate to obtain the lowest MSE for other
three images. In addition, FTGV-PD is the fastest and best algorithm to minimize the
energy. Although FTGV-ADMM has brief oscillations occurring during the descent process
of energy, it did not affect the convergence result. For average blur, we get the same results
as disk blur, so we omit it.

Next, we illustrate how the fractional order γ affects the image restoration referred
to in Figure 8, which plots the largest PSNR value as a function of fractional order γ. The
experimental results show that the fractional order γ in the fidelity term can avoid the
staircase effect and get more detailed structures by choosing suitable orders.

From Figure 8, we can notice that for motion blur, the optimal order occurs at
γ ∈ {0.1–0.8}; it is obvious that we get the lowest PSNR value when γ = 0.9 for all test
images. For the disk blur, the optimal order occurs at γ = 0.8, where test images have the
highest PSNR value. The trend of curve of the average blur is roughly the same as with
the disk blur, so it is omitted. Thus, we use the fractional orders γ = 0.7 or γ = 0.8 in our
experiments to obtain a higher PSNR through simple adjustments.

Overall, as FTGV-ADMM involves the least number of parameters, and is suitable
for all blur types and images compared to the FTGV-PD, we will use it for the rest of
the experiments.
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(a) (b)

Figure 8. The influence of the fractional-orders γ on restored results. (a) PSNR values for different γ

on motion blur. (b) PSNR values for different γ on disk blur.

4.2. Comparison of Other TGV-Based Methods

To demonstrate that the model based on the fractional-order fidelity term has better
capability in texture restoration than other fidelity-based models for images with rich tex-
ture and nature images, we compare the proposed model (2) with TGV [21], APE-TGV [28],
and D-TGV [33] for three different blur kernels and the standard deviation 0.1 Gaussian
noise. To fairly compare, the parameters of the comparison models are selected according
to the recommendations of the corresponding paper through adjusting them appropriately
to get better results and the best PSNR; the choice of parameters is listed in Table 1. We
provide results in Figures 3–5 and Tables 2 and 3.

As we can see in Figures 3b, 4b, and 5b, TGV could not eliminate blur completely. The
images restored by APE-TGV in Figures 3c, 4c, and 5c were over-smoothed, in which the
texture structure was lost. The D-TGV model has advantages in maintaining structures, but
it tends to lose some texture details and create some artifacts. From Figures 3–5, it is easy to
find that the restoration result of D-TGV is visually inferior to APE-TGV for the texture
image. This means that D-TGV and APE-TGV are imperfect under certain circumstances.
However, the proposed model with the ADMM algorithm (FTGV-ADMM) overcome these
drawbacks and gets a better balance between deblurring completely and restoring more
image details; see Figures 3e, 4e, and 5e.

Tables 2 and 3 report that FTGV-ADMM is comprehensively superior to other models
in terms of PSNR. For example, it is 8.4 db, 2.65 db, and 1.69 db higher than the TGV,
APE-TGV, and D-TGV for the texture image damaged by motion blur. This demonstrates
the superiority of FTGV-ADMM.

4.3. Comparison with BM3D and NLTV

In this subsection, we demonstrate the performance of FTGV-ADMM with the famous
blockmatching and 3D filtering (BM3D) method and the nonlocal TV (NLTV) for solving the
image deblurring problem. In this paper, we use the preconditioned Bregmanized operator
splitting (PBOS) method proposed by Zhang and Burger et al. [18]. Other parameters of
the method are selected as suggested by the authors, but the regularization parameter µ is
adjusted to obtain the highest PSNR value.

Four images are used in this example. They are corrupted by motion blur and disk blur
and Gaussian noise. The experimental results are displayed in Figures 9–12 and Table 4.

From Table 4, we can see that FTGV-ADMM achieves the best PSNR and SSIM values,
which are far higher than the BM3D and NLTV methods. The visual quality of the deblurred
results by the NLTV method is too over-smooth, and it produces obvious artifacts; see
enlarged zoom Figures 9i, 10i, 11i and 12i. The BM3D method is one of the best existing
deblurring methods for Gaussian blurs and out-of-focus blurs, but the restoration image
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is still a little smooth and many details have been lost, which can be seen in the enlarged,
zoomed Figures 9h, 10h, 11h and 12h. Most importantly, FTGV-ADMM overcomes these
difficulties and achieves higher visual quality.

Table 4. Quantitative comparison of BM3D, NLTV, and FTGV-ADMM.

Figure Methods PSNR SSIM

Figure 9
BM3D 36.67 0.9563
NLTV 33.76 0.9392

FTGV-ADMM 38.66 0.9761

Figure 10
BM3D 37.68 0.9575
NLTV 35.31 0.9467

FTGV-ADMM 38.65 0.9717

Figure 11
BM3D 32.21 0.9183
NLTV 29.12 0.8251

FTGV-ADMM 34.28 0.9492

Figure 12
BM3D 33.65 0.9580
NLTV 30.47 0.9219

FTGV-ADMM 38.48 0.9812

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Performance comparison of the proposed method with BM3D and NLTV for the Lena
image. The red squares are marked for zooming. First row: (a) original image; (b) motion blurred
image; (c–e) deblurred image by BM3D, NLTV, and FTGV-ADMM. Second row: (f–j) corresponding
enlarged version of (a–e).

(a) (b) (c) (d) (e)

Figure 10. Cont.
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(f) (g) (h) (i) (j)

Figure 10. Performance comparison of the proposed method with BM3D and NLTV for the parrot
image. The red squares are marked for zooming. First row: (a) original image; (b) disk blurred noisy
image; (c–e) deblurred image by BM3D, NLTV, and FTGV-ADMM. Second row: (f–j) corresponding
enlarged version of (a–e).
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Figure 11. Performance comparison of the proposed method with BM3D and NLTV for the man
image. The red squares are marked for zooming. First row: (a) original image; (b) disk blurred noisy
image; (c–e) deblurred image by BM3D, NLTV, and FTGV-ADMM. Second row: (f–j) corresponding
enlarged version of (a–e).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12. Performance comparison of the proposed method with BM3D and NLTV for the but-
terfly image. The red squares are marked for zooming. First row: (a) original image; (b) motion
blurred noisy image; (c–e) deblurred image by BM3D, NLTV, and FTGV-ADMM. Second row: (f–j)
corresponding enlarged version of (a–e).
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5. Conclusions

The paper studies a novel image deblurring model that is applicable to three different
blur kernels. The new model contains a fidelity term in fractional-order derivative space,
which has the ability to preserve details, eliminate the staircase effect, and has a total
generalized variation (TGV) regularization term. We propose two optimal numerical
algorithms based on the PD method and the ADMM method to overcome the non-convex
and non-differentiability of the new variational model. The experiment results show that
our model is both quantitatively and qualitatively better than other advanced models.
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