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Abstract: Total fractional-order variation (TFOV) in image deblurring problems can
reduce/remove the staircase problems observed with the image deblurring technique by using
the standard total variation (TV) model. However, the discretization of the Euler–Lagrange equa-
tions associated with the TFOV model generates a saddle point system of equations where the
coefficient matrix of this system is dense and ill conditioned (it has a huge condition number). The
ill-conditioned property leads to slowing of the convergence of any iterative method, such as Krylov
subspace methods. One treatment for the slowness property is to apply the preconditioning technique.
In this paper, we propose a block triangular preconditioner because we know that using the exact
triangular preconditioner leads to a preconditioned matrix with exactly two distinct eigenvalues. This
means that we need at most two iterations to converge to the exact solution. However, we cannot use
the exact preconditioner because the Shur complement of our system is of the form S = K∗K + λLα

which is a huge and dense matrix. The first matrix, K∗K, comes from the blurred operator, while
the second one is from the TFOV regularization model. To overcome this difficulty, we propose two
preconditioners based on the circulant and standard TV matrices. In our algorithm, we use the flexible
preconditioned GMRES method for the outer iterations, the preconditioned conjugate gradient (PCG)
method for the inner iterations, and the fixed point iteration (FPI) method to handle the nonlinearity.
Fast convergence was found in the numerical results by using the proposed preconditioners.

Keywords: preconditioning technique; image deblurring; Krylov subspace methods; fractional
derivatives; Toeplitz and circulant matrices

1. Introduction

Although TV regularization is a commonly employed technique in image deblurring
problems [1–4], one significant drawback is the appearance of the “staircase effect”, wherein
edges are depicted as a sequence of steps rather than smooth transitions. This phenomenon
arises because TV regularization encourages the creation of piecewise constant regions,
which leads to the appearance of blocks around edges rather than accurately capturing
their continuous nature. As a result, researchers are actively investigating and advancing
alternative regularization techniques and algorithms to remove or reduce these “staircase
effects” and enhance the overall quality of image deblurring methods. An alternative
regularization approach is the TFOV model [5–8]. TFOV regularization presents a robust
method for enhancing image deblurring, offering a combination of benefits such as edge
preservation, flexibility, noise resilience, and reduction in staircase effects. Its effectiveness
has been substantiated in numerous studies, significantly contributing to the progression of
image deblurring techniques. However, when it comes to discretizing the Euler–Lagrange
equations of the TFOV-based model, a substantial nonlinear and ill-conditioned system
emerges. Efficiently solving such systems poses a considerable challenge for numerical
methods, even with the application of potent numerical algorithms like Krylov subspace
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methods, such as the generalized minimal residual (GMRES) and conjugate gradient (CG).
These methods tend to exhibit slow convergence in this context. One potential remedy to
address this slow convergence is the use of preconditioning techniques. Preconditioning
is a technique used to transform a linear system of the form Ax = b into another system
to improve the spectral properties of the system matrix. A preconditioner is a matrix P
that is easy to invert and the preconditioned matrix P−1 A shows good clustering behavior
for the eigenvalues. This is because rapid convergence is often associated with a clustered
spectrum of P−1 A. In the preconditioning technique, we solve P−1 Ax = P−1b instead of
solving the original Ax = b because the new system P−1 Ax = P−1b converges rapidly
when we use a suitable preconditioner. To apply the preconditioner matrix P within a
Krylov subspace method, we need to compute the multiplication of a matrix by a vector
of the form z = Pr at each iteration. Hence, evaluating this product must be cheap. In the
literature, several preconditioners are developed in [9] for a special linear system, such
as block preconditioners and constraint preconditioners. For diagonal preconditioners,
we can refer to Silvester and Wathen [10] and Wathen and Silvester [11]. For the block
triangular preconditioners, we can refer to Bramble and Pasciak [12] and [13–16], as well
as the references therein. For constraint preconditioners, see, for example, Axelsson and
Neytcheva [17]. Other preconditioners based on Hermitian/skew-Hermitian splitting are
studied in [18–20]. Recently, several new preconditioners for Krylov subspace methods
have been introduced. For example, Cao et al. [21] derived two block triangular Schur
complement preconditioners from a splitting of the (1, 1)-block of the two-by-two block
matrix. Chen and Ma [22] proposed a generalized shift-splitting preconditioner for saddle
point problems with a symmetric positive definite (1, 1)-block. Salkuyeh et al. [23] proposed
a modified generalized shift-splitting preconditioner where the (1, 1)-block is symmetric
positive definite and the (2, 2)-block matrix is symmetric positive semidefinite (not zero).
Very recently, block diagonal and block triangular splitting preconditioners were studded
by Beik et al. [24], and the authors introduced new variants of the splitting preconditioners
and obtained new results for the convergence of the associated stationary iterations and
new bounds for the eigenvalues of the corresponding preconditioned matrices. Moreover,
they considered inexact versions as preconditioners for flexible Krylov subspace methods.
A good survey of preconditioning techniques for general linear systems can be found
in [9,25,26].

In our paper, we consider the following two-by-two block nonlinear system of equations:[
In Kh
−K∗h λLα

h(Uh)

]
︸ ︷︷ ︸

A

[
Vh
Uh

]
︸ ︷︷ ︸

x

=

[
Zh
0

]
︸ ︷︷ ︸

b

. (1)

This system is obtained by discretizing the Euler-Lagrange equations associated with
TFOV in image deblurring problems, and the coefficient matrix of this system has a size
of 2n by 2n, where n := N2 and N is the number of pixels in the image. The coefficient
matrix of this system is non-symmetric, ill conditioned, dense, and huge. These properties
complicate the development of an efficient numerical algorithm. We know that using
direct methods for solving Equation (1) requires O(N3) and, hence, they are not applicable
here. For this system, iterative methods, like Krylov subspace methods, are applicable.
However, their convergence is too slow because they are sensitive to the condition numbers.
Hence, preconditioning is needed to accelerate the convergence of the Krylov subspace
methods. In this paper, we propose two block triangular preconditioners for Equation (1).
In the literature, it has been shown that such preconditioners are among the most effective
for solving problems of the saddle point type. Moreover, it is known that using the
exact triangular preconditioner leads to a preconditioned matrix with exactly two distinct
eigenvalues [25]. This means that we need at most two iterations to converge to the exact
solution. Since the coefficient matrix A is not symmetric, the suitable outer iterative method
is the GMRES method [27], and since the (2, 2)-block in the matrix A is symmetric positive
definite, the suitable inner iterative method is the CG method. However, using the GMRES
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Krylov subspace method as a preconditioner within a different Krylov subspace method
(the CG method) may lead to a changing preconditioner. In such cases, the preconditioner
matrix changes from step to step. For this reason, we use flexible GMRES (FGMRES) instead
of GMRES [27]. The flexibility here means that FGMRES is designed to be flexible in terms
of the choice of the inner Krylov subspace method and the choice of the preconditioner.
This flexibility allows FGMRES to adapt to different Krylov subspace methods. FGMRES
can be restarted after a certain number of iterations to control the memory usage and
computational cost, especially when solving multiple linear systems with different right-
hand sides. The main contributions of this work are follows:

• We propose two block triangular preconditioners and study the bounds of the eigenval-
ues of the preconditioned matrices. In addition, we demonstrate the effectiveness of our
algorithm in the numerical results by starting with the fixed point iteration (FPI) Method
as in [28] to linearize the nonlinear primal system

[
KTK + λLα

h(U
m)
]
Um+1 = KTZ, m =

0, 1, . . ., then we use the preconditioned conjugate gradient (PCG) method [29] for the
inner iterations. After that, we use FGMRES method for the outer iterations. We illustrate
the performance of our approach by calculating the peak signal-to-noise ratio (PSNR),
CPU-time, residuals and the number of iterations. Finally, we calculate the PSNR for
different values of the order of the fractional derivative, α, to show the impact of using
the TFOV model.

The remainder of this paper is organized as follows: Section 2 presents the mathe-
matical model of the image deblurring problem, different regularization models, three
definitions of the fractional derivative, and the Euler–Lagrange equations associated with
the TFOV model. System (1) is obtained at the end of this section. Section 3 presents all
theoretical contributions of this paper. Section 4 reports some numerical results that show
the efficiency of our preconditioners. Section 5 briefly states our conclusions.

2. Problem Setup

We know that blurring and noise affect the quality of the received image. To deblur an
image, we need a mathematical model of how it was blurred. The recorded image z and
the true (exact) image u are related by the equation

z = Ku + ε, (2)

where K denotes the following blurring operator:

(Ku)(x) =
∫

Ω
k(x, x′)u(x′)dx′, x ∈ Ω (3)

with translation-invariant kernel, k(x, x′) = k(x− x′), known as the point spread function
(PSF). ε is the additive noise function. Ω will denote a square in R2 on which the image
intensity is defined. When K is the identity operator, the problem (2) becomes image
de-noising. In this paper, we focus on de-blurring problem. The PSF function must be
known. However, if it is unknown, another technique named blind deconvolution can be
used [30]. The operator K is compact, so the problem (2) is ill-posed [31], and then the
resulting matrix systems from the discretization of this problem are highly ill-conditioned.
In this case, directly solving this problem is difficult. The most popular approach to obtain
a well-posed problem is to add a regularization term. Different regularization terms are
used in the literature, for example:

1. Tikhonov regularization [32] is used to stabilize the problem (2) and also called as
penalized least squares. In this case, the problem is then to find a u that minimize the
functional

F(u) =
1
2
‖ Ku− z ‖2 +λJ(u), (4)

with a small positive parameter λ called the regularization parameter that controls
the trade-off between the data fitting term (the first term) and the regularization term
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(the second term). ‖ · ‖ denotes the norm in L2(Ω). The functional J has to be known.
Common choices for the functional J are

J(u) =
∫

Ω
u2dx, (5)

the above functional gives what is known as Tikhonov regularization with the identity,
and

J(u) =
∫

Ω
| ∇u |2 dx, (6)

where | · | denotes Euclidean norm, and ∇ =
(

∂
∂x , ∂

∂y

)
. When u is discontinuous,

the functional in (5) often induces either oscillations or ringing. However, in the
functional (6), we need to assume that u is a smooth function. Although, this model
is easy to use and simple to calculate, it cannot preserve image edges. Hence, both
the above choices are unsuitable for image processing applications when we need to
recover sharp contrasts modeled by discontinuities in u [28].

2. Total Variation (TV): One of the most commonly used regularization models is the TV.
It was introduced for the first time [33] in edge-preserving image denoising by Rudin,
Osher and Fatemi (ROF) and it has improved in recent years for image de-noising,
de-blurring, in-painting, blind de-convolution, and processing [1–4,34–39]. When
using the TV model, the problem is then to find a u that minimizes the functional

F(u) =
1
2
‖ Ku− z ‖2 +λJTV(u), (7)

where
JTV(u) =

∫
Ω
| ∇u | dx. (8)

Note that, we do not require the continuity of u. Hence, (8) is a good regularization in
image processing. However, the Euclidean norm, | ∇u |, is not differentiable at zero.
Common modification is to add a small positive parameter β. The resulting is in the
modified functional:

JTV β(u) =
∫

Ω

√
| ∇u |2 +β2dx. (9)

The well-posedness of the above minimization problem (7) with the functional given
in (9) is studied and analyzed in the literature, such as in [1]. The success of using
TV regularization is that TV gives a balance between the ability to describe piecewise
smooth images and the complexity of the resulting algorithms. Moreover, the TV
regularization performs very well for removing noise/blur while preserving edges.
Despite the good contributions of the TV regularization mentioned above, it favors a
piecewise constant solution in the bounded variation (BV) space which often leads
to the staircase effect. Thus, stair casing remains one of the drawbacks of the TV
regularization. To remove the stair case effects, two modifications to the TV regu-
larization model have been used in the literature. The first approach is to higher
the order of the derivatives in the TV regularization term, such as the mean curva-
ture or a nonlinear combination of the first and second derivatives [40–45]. These
modifications remove/reduce the staircase effects and they are effective but they are
computationally expensive due to the increasing the order of the derivatives or due to
the nonlinearity terms. The second approach is to use the fractional-order derivatives
in the TV regularization terms as shown in [46,47].

2.1. Fractional-Order Derivative in Image Deblurring

The most important advantage of using fractional differential equations is their nonlo-
cal property. The integer order differential operator is a local operator but the fractional
order differential operator is nonlocal. This means that the next state of a system depends
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not only on its current state but also upon all of its historical states. This is more realistic
and it is one reason why fractional calculus has become more and more popular.

In image deblurring problems, the blurring is considered nonlocal in some cases and
local in others depending on the cause of the blur. For example, if a body is moving while
the background is stationary, then the blur is local and in case the camera is moving then
the blur is nonlocal. The blurring operator is a convolution operator that depends on the
definition of the kernel functions. In the case of a moving camera, the blurring operator
involves each pixel in the image, which means that the blurring process is a nonlocal. The
bulrring is nonlocal, in this case, so it is appropriate to choose a regularization operator with
the same nonlocal property. This property is available in operators that contain fractional
derivatives. Comparative studies have shown that fractional-order differentials are more
reliable than the integer-order differentials for enhancing edges in image processing. A
similar trend has been observed for the texture and area-preserving properties. Therefore,
images processed by fractional differentials are clearer and have higher contrast [48]. This
approach is widely used in image processing [5–8,49,50]. These works have shown that the
fractional-order derivative performs well in achieving a satisfactory compromise between
avoiding staircasing and preserving important fine-scale features such as edges and textures.
In this paper, we compare the results of the usual TV model with the TFOV model for two
image deblurring problems. From Figures 1–6, we can see that the TFOV shows better edge
enhancement results than TV in some regions where we can observe that the PSNR at α = 1
is lower than PSNR at α > 1.

Example 1. We used the exact Golden House image plotted in Figure 9, the deblurred Golden
House image using the TV-model plotted in Figure 27, and the deblurred Golden House image
using the TFOV-model plotted in Figure 29. We took a vertical line almost in the middle of these
images and plotted the results of the cross sections in Figure 1. In Figure 1, we highlighted three
corners (boxes). From Figures 1–6, we can clearly see that the TFOV-based image deblurring results
are smoother than the TV-based image deblurring. Additionally, in each corner TV based image
deblurring creates a higher error than TFOV. This shows that TFOV-based image deblurring is
better and edge-preserving.

Exact

TV

FTV

Figure 1. Cross sections.
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Exact
TV
FTV

Figure 2. Right box.

Exact
TV
FTV

Figure 3. Middle box.
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Figure 4. Left box.
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Figure 5. TV-error.
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Figure 6. TFOV-error.

The numerical results in the above examples reflect good performance, and motivating
us to use the TFOV model in our preconditioners.

2.2. The TFOV-Model

Let BVα(Ω) denotes the space of functions of α-bounded variation on Ω defined by

BVα(Ω) :=
{

u ∈ L1(Ω)|TVα(u) < +∞
}

.

with the BVα norm ||u||BVα = ||u||L1 +
∫

Ω |∇
αu|dx. The parameter α represents the order

of the fractional derivatives, the fractional-order total variation of u, TVα is defined by

TVα(u) =
∫

Ω
|∇αu|dx := sup

φ∈T

∫
Ω
(−u divαφ)dx,

and divαφ = ∂αφ1
∂x + ∂αφ2

∂y , ∂αφ1
∂x and ∂αφ2

∂y denote the fractional-order derivative along the x
and y directions respectively. The space T denotes the space of special test functions

T :=
{

φ ∈ C`
0(Ω,R2)|φ(x)| ≤ 1, ∀x ∈ Ω

)
where |φ(x)| =

√
Σ2

i=1φ2
i and C`(Ω,R2) denote the space of α-order continuously differ-

entiable functions. Hence, when the TFOV- model is used, the problem is then to find a
u ∈ BVα(Ω) ∩ L2(Ω) that minimizes the functional

Fα(u) =
1
2
‖ Ku− z ‖2 +λJα

TV β(u) (10)

where Jα
TV β is called the modified total fractional-order variation and defined by

Jα
TV β(u) =

∫
Ω

√
| ∇αu |2 +β2dx, (11)

where |∇αu|2 = (Dα
xu)2 + (Dα

y u)2 where Dα
x , Dα

y are the fractional derivative operators
along the x and y directions respectively. Existence and uniqueness of a minimizer to the
above problem (10) with the functional (11) are studied and analyzed in the literature [8,51].

2.3. Fractional-Order Derivatives

Several definitions have been proposed for fractional-order derivatives [52–54]. We
shall present some of them below. For a systematic presentation of mathematics, a fractional-
order derivative is denoted as function operator Dα

[a,x], where a and x are the bounds of
the integrals, and α is the order of the fractional derivative such that 0 < n− 1 < α < n
where n = [α] + 1 and [·] is the greatest integer function.
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1. Riemann–Liouville (RL) definitions: The left- and right-sided RL derivatives of
order α of a function f (x) are given as follows:

Dα
[a,x] f (x) =

1
Γ(n− α)

(
d

dx

)n ∫ x

a
(x− t)n−α−1 f (t)dt (12)

and

Dα
[x,b] f (x) =

(−1)n

Γ(n− α)

(
d

dx

)n ∫ b

x
(t− x)n−α−1 f (t)dt (13)

where Γ(·) is the gamma function, defined by

Γ(z) =
∫ ∞

0
e−ttz−1dt.

2. Grünwald–Letnikov (GL) definitions: The left- and right-sided GL derivatives are
defined by

GDα
[a,x] f (x) = lim

h→0

Σ
[ x−a

h ]

j=0 (−1)jCj
α f (x− jh)

hα
(14)

and

GDα
[x,b] f (x) = lim

h→0

Σ
[ b−x

h ]

j=0 (−1)jCj
α f (x + jh)

hα
(15)

where

Cj
α =

α(α− 1) . . . (α− j + 1)
j!

. (16)

3. Caputo (C) definitions: The left- and right-sided Caputo derivatives are defined by

CDα
[a,x] f (x) =

1
Γ(n− α)

∫ x

a
(x− t)n−α−1 f (n)(t)dt (17)

and
CDα

[x,b] f (x) =
(−1)n

Γ(n− α)

∫ b

x
(t− x)n−α−1 f (n)(t)dt (18)

where f (n) denotes the nth-order derivative of function f (x).

2.4. Euler-Lagrange Equations

In this subsection, we present the Euler-Lagrange equations associated with the TFOV
in image de-blurring problem.

Theorem 1. If α ∈ (1, 2), the Euler-Lagrange equations for the functional given in (10) are:

K∗(Ku− z) + λLα(u)u = 0, in Ω

Dα−2

(
∇αu√

|∇αu|2 + β2

)
·~n = 0, Dα−1

(
∇αu√

|∇αu|2 + β2

)
·~n = 0, on ∂Ω,

(19)

where K∗ is the adjoint operator of the integral operator K and the nonlinear deferential operator
Lα(u) is given by:

Lα(u)w = (−1)n∇α.

(
∇αw√

|∇αu|2 + β2

)
. (20)
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Proof. Let ν ∈ Wα
1 (Ω) be a function. Then for u ∈ Wα

1 (Ω) ⊂ BVα(Ω), the first order
Gateaux derivative of the functional Fα(u) of (10) in the direction of ν is

∂Fα(u)ν
∂ν

= limt→0
Fα(u + tν)− Fα(u)

t
(21)

= lim
t→0

G1(u + tν)− G1(u)
t

+ lim
t→0

G2(u + tν)− G2(u)
t

,

where G1(u) = 1
2

∫
Ω(Ku− z)dx and G2(u) = λJα

TVβ(u). By using the Taylor series in the
direction of t, we have

∂Fα(u)ν
∂ν

=
∫

Ω
K∗(Ku− z)dx +

∫
Ω
(W.5α ν)dx, (22)

where W = λ ∇αu√
|∇αu|2+β2

. Now consider,

∫
Ω
(W.5α ν)dx = (−1)n

∫
Ω
(νCdivαW)dx (23)

−
n−1

∑
j=0

(−1)j
∫ 1

0
Dα+j−n
[a,b] W1

∂n−j−1ν(x)

∂xn−j−1
1

∣∣∣x1=1

x1=0
dx2 −

n−1

∑
j=0

(−1)j
∫ 1

0
Dα+j−n
[a,b] W2

∂n−j−1ν(x)

∂xn−j−1
2

∣∣∣x2=1

x2=0
dx1,

where we know that n = 2 for 1 < α < 2.
Case-I: If u(x)

∣∣∣
∂Ω

= b1(x) and ∂u(x)
∂n

∣∣∣
∂Ω

= b2(x), so
(

u(x) + tν(x)
)∣∣∣

∂Ω
= b1(x) and

∂

(
u(x)+tν(x)

)
∂n

∣∣∣
∂Ω

= b2(x). Then it suffices to take ν ∈ C1
0 (Ω,R), this implies

∂iν(x)
∂ni

∣∣∣
∂Ω

= 0, i = 0, 1,

⇒ ∂n−j−1ν(x)

∂xn−j−1
1

∣∣∣
x1=0,1

=
∂n−j−1ν(x)

∂xn−j−1
2

∣∣∣
x2=0,1

= 0, n− j− 1 = 0, 1.

Hence (22) reduces to (19).
Case-II: If ν ∈Wα

1 (Ω), then

∂n−j−1ν(x)

∂xn−j−1
1

∣∣∣
x1=0,1

6= 0,
∂n−j−1ν(x)

∂xn−j−1
2

∣∣∣
x2=0,1

6= 0, n− j− 1 = 0, 1.

So boundary terms in (23) can only become zero if

Dα+j−n
[a,b] W1

∣∣∣
x1=0,1

= Dα+j−n
[a,b] W2

∣∣∣
x2=0,1

= 0

⇒ Dα+j−nW.n = 0, j = 0, 1.

This completes the proof.

Note that (19) is a nonlinear integro-differential equation of elliptic type. Equation (19)
can be expressed as a nonlinear first order system [55]:

K∗Ku + λ∇α.~v = K∗z, (24)

−∇αu +
√
| ∇αu |2 +β~v =~0, (25)
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with the dual, or flux, variable

~v =
∇αu√

| ∇αu |2 +β
. (26)

We apply the Galerkin method to (24)–(25) together with the midpoint quadrature for the
integral term and cell-centered finite difference method for the derivative part.

2.5. Discretization of the Fractional Derivative

First, we divide the square domain Ω = (0, 1)× (0, 1) into N2 equal squares (cells)
where N denotes the number of equispaced partitions in the x or y directions. Then,
we follow the same discretization in [8,51]. We define a spatial partition (xk, yl) (for
all k, l = 0, 1, . . . , N + 1) of image domain Ω. Assume u has a zero Dirichlet boundary
condition, we consider the discretization of the α-order fractional derivative at the inner
point (xk, yl) (for all k, l = 0, 1, . . . , N) on Ω along the x-direction by using the shifted
Grünwald approximation approach [56,57]

Dα f (xk, yl) =
δα

0 f (xk, yl)

hα
+ O(h) =

1
2

(
δα
− f (xk, yl)

hα
+

δα
+ f (xk, yl)

hα

)
+ O(h)

=
1

2hα

(
Σk+1

j=0 ωα
j f l

k−j+1 + ΣN−k+2
j=0 ωα

j f l
k+j−1

)
+ O(h)

(27)

where f l
s = fs,l and ωα

j = (−1)j
(

α
j

)
j = 0, 1, . . . , N and ωα

0 = 1, ωα
j = (1− 1+α

j )ωα
j−1 for

j > 0. Observe from (27) that the first order estimate of the α-order fractional derivative
D[a,b]

α f (xk, yl) along the x-direction at the point (xk, yl) with a fixed yl is a linear com-
bination of N + 2 values f l

0, f l
1, . . . , f l

N , f l
N+1. After incorporating the zero boundary

condition in the matrix approximation of fractional derivative, all N equations of fractional
derivatives along the x direction in (27) can be written simultaneously in the matrix form

δα
0 f (x1, yl)

δα
0 f (x2, yl)

...

...
δα

0 f (xN , yl)

 =

1
2hα



2ω1
α ω0

α + ω2
α ω3

α . . . ωN
α

ω0
α + ω2

α 2ω1
α . . . . . .

...

ω3
α . . . . . . . . . ω3

α

...
. . . . . . 2ω1

α ω0
α + ω2

α

ωN
α . . . ω3

α ω0
α + ω2

α 2ω1
α


︸ ︷︷ ︸

Bα
N



f l
1

f l
2
...
...

f l
N

.

From the definition of fractional-order derivative (27), for any 1 < α < 2, the coefficients
ωk

α have the following properties:

(1) ω0
α = 1, ω1

α = −α < 0, 1 ≥ ω2
α ≥ ω3

α ≥ . . . ≥ 0.
(2) ∑∞

k=0 ωk
α = 0, ∑m

k=0 ωk
α ≤ 0(m ≥ 1).

Hence by the Gershgorin circle theorem, we can derive that matrix Bα
N is a symmetric

and negative definite Toeplitz matrix (i.e., −Bα
N is a positive definite Toeplitz matrix). Let

U ∈ RN×N denote the solution matrix at all nodes (khx; lhy), k, l = 1, . . . , N corresponding
to x-direction and y-direction spatial discretization nodes. Denote by ~u ∈ RN2×1, the
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ordered solution vector of U. The direct and discrete analogue of differentiation of arbitrary
α order derivative is

ux
α = (IN ⊗ Bα

N)~u = Bx
α~u (28)

Similarly, all values of α-th order y-direction derivative of u(x; y) at these nodes are approx-
imated by

uy
α = (Bα

N ⊗ IN)~u = By
α~u, (29)

where

ux
α = (u11

α, . . . , uN1
α, u12

α, . . . , uNN
α)T , uy

α = (u11
α, . . . , u1N

α, u21
α, . . . , uNN

α)T , (30)

~u = u11, u12, . . . , uNN and ⊗ denotes the Kronecker product. For more details in the
discretization, we refer to [54,58]. Now, using the cell center finite difference Method
(CCFDM), the fractional discretization shown above, and using the fact that [(−1)n∇α·] is
the adjoint operator of the operator ∇α, then (24)–(25) leads to the following system

V + KhU = Z,

K∗hV − λ(Lα
hUm)Um+1 = 0, m = 0, 1, 2 . . . NF,

(31)

where NF is the number of Fixed-Point Iterations used to linearize the nonlinear term in
the square root in (26). The matrix Kh is obtained form using the midpoint quadrature for
the integral operator as follows:

(Ku)(xi, yj) ≈ [KhU]ij, i, j = 1, 2, . . . , N. (32)

with entries [KhU]ij,lm = h2k(xi − xj, yl − ym). With using the lexicographical order, Kh is
a block Toeplitz with Toeplitz block (BTTB) matrix. The need for BTTB property will be
discussed later in the paper. The discrete scheme of the matrix Lα

hU is given by:

(Lα(Um))Um+1 = [BN(D1(Um)) ◦ (BNUm+1)] + [(D2(Um) ◦ (Um+1BM))]BN (33)

where ◦ is the point wise multiplication and m is the m− th Fixed-Point Iteration. U is an
N×N-size reshaped matrix of the vector u and the matrices D1(Um) and D2(Um) are the di-
agonal of the Hadamard inverses of the non-zero matrices Bx

α(Um) and
By

α(Um) respectively.

2.6. Difficulties in TFOV-Model Compared to TV-Model

In this subsection, we compare the TFOV-system (1):[
In Kh
−K∗h λLα

h(Uh)

]
︸ ︷︷ ︸

Aα

[
Vh
Uh

]
︸ ︷︷ ︸

x

=

[
Zh
0

]
︸ ︷︷ ︸

b

,

and the following TV-system:[
In Kh
−K∗h λLh(Uh)

]
︸ ︷︷ ︸

A

[
Vh
Uh

]
︸ ︷︷ ︸

x

=

[
Zh
0

]
︸ ︷︷ ︸

b

. (34)

In the TFOV system (1), the fractional matrix Lα
h is obtained from discretizing a fractional

deferential operator and it is dense. The density property leads to an expensive matrix-
vector multiplication. In this case, the coefficient matrix Aα in the system (1) contains
three dense submatrices, while in TV system (34), the non-fractional matrix Lh is obtained
from discretizing a non-fractional deferential operator and it is a sparse matrix, then the
coefficient matrix A in the system (34) contains only two dense submatrices. Further,
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the Schur complement matrix associated with (1) is a sum of two dense matrices while
the Schur complement matrix associated with (34) is a sum of one dense matrix and one
sparse matrix.

3. Preconditioning Technique

In the literature, it has been shown that block triangular preconditioners are among
the most effective preconditioners for solving saddle point problems. In this paper, we
develop two block triangular preconditioners for solving (1). First, we present our main
preconditioner matrix [12] and its inverse:

P =

[
In K
0 −S

]
, P−1 =

[
In KS−1

0 −S−1

]
, (35)

where S = K∗K + λLα is the Schur complement matrix. We notice that the Schur comple-
ment matrix contains the product (K∗K) which is not a BTTB matrix. We know that a BTTB
matrix-vector product computation cost O(N log N) but using a BCCB extension. Since
this extension is not an easy task in some cases, the idea of using a circulant matrix as a pre-
conditioner for a Toeplitz matrix is needed. This idea was first proposed by Strang [59] and
Olkin [60] and extended by others to block Toeplitz systems for example Chan et al. [61].
Many researchers use Toeplitz preconditioners and block Toeplitz preconditioners for
Toeplitz systems. For instance, Chan et al. [62], and Lin and Fu-Rong [63]. Band Toeplitz
preconditioner and band BTTB preconditioner are proposed by Chan and Raymond [64]
and Serra and Stefano [65]. In Lin et al. [66], BTTB preconditioners for BTTB systems are
discussed. Several kinds of circulant preconditioners have been proposed to be good pre-
conditioners, see for instance [59,62,67–69]. Several kinds of circulant preconditioners have
been proposed and proven to be good preconditioners. Therefore, the PCG methods with
circulant preconditioners converge very fast when they are used to solve Toeplitz systems.
Motivated by these papers, we propose the following two block triangular preconditioners:

P1 =

[
In K
0 −S1

]
, P2 =

[
In K
0 −S2

]
, (36)

where S1 = (I + λLTV) and S2 = (C∗C + λLTV). Where I is the denoising operator, the
identity matrix is a circulant matrix, and LTV comes from discretaizing the TV model
(α = 1) which is a sparse matrix and C is the Strang circulant approximation of the matrix
K [59]. These circulant approximations are very important to allow us to use the FFT and
the convolution theorem. We know that all circulant matrices can be diagonalized by the
Fourier matrix, see [70]. Also using FFT and the convolution theorem will reduce the
cost of the computation from O(N2) into O(N log N). Moreover, all that is needed for
computation is the first column or the first row of the circulant matrix, which decreases
the amount of required storage. This reduction in the computations and storage leads to
efficient solvers for our problem (1).

4. Preconditioned GMRES Algorithm

In this section, we give a detailed algorithms for using our preconditioner P (P1 and
P2). In Algorithm 1, GMRES method is used to solve the linear system (1).

In Algorithm 1, in Steps 3 and 7, we need to solve a matrix times a vector of the form[
In K
0 −S

]
︸ ︷︷ ︸

P

[
x1
x2

]
︸ ︷︷ ︸

x

=

[
b1
b2

]
︸ ︷︷ ︸

b

, (37)

where S = S1 or S = S2. To do the above multiplications, we use the conjugate gradients
method as in Algorithms 2 and 3:
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Algorithm 1 Preconditioned GMRES Algorithm

1: Choose x0 as the initial guess
2: Compute r̃0 = b− Ax0

3: Solve P r0 = r̃0

4: Let β0 = ‖r0‖, and compute v(1) = r0/β0
5: for k = 1, 2, . . . until βk < τβ0 do
6: w̃(k+1)

0 = Av(k)

7: Solve P w(k+1)
0 = w̃(k+1)

0
8: for l = 1 to k do
9: hlk = 〈wl

(k+1), v(l)〉
10: wl

(k+1) = wl
(k+1) − hlkv(l)

11: end for
12: hk+1,k = w(k+1)

k+l /hk+1,k

13: Compute y(k) such that βk = ‖β0e1 − Ĥky(k)‖ is minimized, where
Ĥk = [hij]1≤i≤k+1≤,1≤j≤k and e1 = (1, 0, . . . , 0)T

14: end for
15: x(k) = x0 + Vky(k)

Algorithm 2 P1-Conjugate Gradient Method Algorithm.
1: x1 = x(1 : n) = b(1 : n)− Kx2;
2: S1 = P1(n + 1 : 2n, n + 1 : 2n);
3: b2 = b(n + 1 : 2n);
4: x2 = x(n + 1 : 2n)
5: Solve for x2 in the system −S1x2 = b2 using conjugate gradient method.

Algorithm 3 P2-Conjugate Gradient Method Algorithm.
1: x1 = x(1 : n) = b(1 : n)− Kx2;
2: S2 = P2(n + 1 : 2n, n + 1 : 2n);
3: b2 = b(n + 1 : 2n);
4: x2 = x(n + 1 : 2n);
5: Solve for x2 in the system −S2x2 = b2 using conjugate gradient method.

Eigenvalues Estimates

In this subsection, we need to study the eigenvalues of the exact preconditioned matrix
P−1 A. Since P−1 A and AP−1 are similar matrices, they have the same eigenvalues. Hence
we study the eigenvalues of the matrix AP−1.

Theorem 2. If the linear system (1) is left preconditioned by the matrix P, then the preconditioned
matrix is

AP−1 =

[
In 0
−K∗ −In

]
, (38)

and its minimal polynomial is (ν− 1)(ν + 1) where ν is the eigenvalue of the matrix AP−1.

Proof. Since AP−1 and P−1 A are similar, it is easy to study the eigenvalues of AP−1 instead
of P−1 A. From the form of AP−1, we notice that the preconditioned matrix has only two
distinct eigenvalues ±1 and then we notice that a minimal polynomial of degree at most
2. Hence, when Krylov subspace methods like FGMRES is used, then it converges in 2
iterations or less, in exact arithmetic. This property is of practical use when inexpensive
approximations of the Schur complement exist. However, when we approximate the
Schur complement matrix S by the matrix S1 or S2, we have the following eigenvalue
estimation.
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Theorem 3. If the linear system (1) is left preconditioned by the matrix P1 or P2, then the eigenval-
ues of the preconditioned matrices

A(P1)
−1 =

[
In 0
−K∗ −SS1

−1

]
, and A(P2)

−1 =

[
In 0
−K∗ −SS2

−1

]
(39)

are described as follows:
ν+ = {1}, and ν− ∈ [σ1, σn], (40)

where σ1 and σn are the minimum and the maximum eigenvalues of the matrix (−SS1
−1) or

(−SS2
−1).

Example 2. In this example, our aim is to verify that the bounds given in the above theorem are
matched. We take N = 16, i.e., n = (16)2 = 256 and we fix α = 1.4, β = 0.1, λ = 0.001. For
this task, we use the preconditioner P1 and we use the test image “Golden House”. We notice that
the positive eigenvalues are equal to one whereas the negatives are contained in the interval [σ1, σn]
where σ1 and σn are defined in the above theorem. In this example σ1

∼= −1.01 and σn ∼= −1. The
results of this example are plotted and shown in Figures 7 and 8. Moreover, in this experiment,
we find that the cond(A) = 3.2915× 104 and cond((P1)

−1 A) = 1.6219 which indicate that our
preconditioner is effective.
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Figure 7. Eigenvalues of A.
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Figure 8. Eigenvalues of (P1)
−1 A.
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From Figures 7 and 8, we notice that the preconditioned matrix has a good cluster-
ing behavior of the eigenvalues. The eigenvalues are clustering around 1 and −1. This
clustering verifies the above theorem guarantees fast convergence of the FGMRES method.

5. Numerical Results

In this section, we experimentally study the performance of the FGMRES method
with the proposed preconditioners P1 and P2. In the following numerical experiments, we
implement Algorithms 1–3, and we take the zero vector to be the initial guess. We stopped
the outer iterations (FGMRES) when the residuals satisfies ‖b− Axk‖ < 10−7 ‖ b ‖ where
xk = (vk, uk) is the solution vector in the k− th iteration. We used only one iteration of the
Fixed-Point Iteration method to linearize the nonlinear term and then we used the PCG for
the inner iterations and it is stopped when the tolerance is 10−9. No restarting is used for
FGMRES algorithm. For this purpose, two famous 128× 128 test images, called Retinal
Image and Golden House are used in the experiments, as shown in Figures 9 and 10 and
they are blurred by the motion kernel as shown in Figure 11.
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Figure 9. Golden house image.
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Figure 10. Retinal image.
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Figure 11. Shape of the kernel.
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In order to show the performance of the proposed preconditioners, we need to calculate
the PSNR which is commonly used in the signal processing field. It can be calculated by
the following formula:

PSNR(ue, ud) = 10 log

 n max1≤i,j≤n | ue |

∑nx
i=1 ∑nx

j=1

(
ueij − udij

)2

 (41)

where ue and ud are the exact and deblurred images, respectively. Bigger PSNR means
better deblurring performance.

5.1. The Parameters β and λ Selecting

The value of the parameters β and λ also play a vital role in the performance of the
numerical technique used for the image deblurring model. Small values of β affect the
convergence rate of the iterations in the numerical technique but do not change the quality
of the deblurred images. We have chosen β = 1, β = 0.1 and β = 0.01 which are commonly
used in the literature [28]. We noticed no significant difference in the results between
these values. Regarding the values of the regularization parameters λ, we have chosen λ
small enough, 10−3, 10−5 10−6 and 10−8 to ensure the best deblurring performance of the
corresponding deblurring model. These values are commonly used in the literature [28].

Example 3. In this example, we show the impact of our preconditioners on the convergence speed
of the FGMRES algorithm for the fractional-order image deblurring problem. We fix N = 128,
β = 0.1, and the regularization parameter λ = 0.001. No restarting is used for the FGMRES
algorithm and it is stopped when the tolerance is 10−7. We use the test image “Golden House”. In

each FGMRES iteration, the logarithm of ||r
(k) ||2

||r(0) ||2
is calculated and then plotted for different values

of the regularization parameter λ in Figures 12 and 13.
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Figure 12. Residual versus iterations number when λ = 1× 10−3.
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Figure 13. Residual versus iterations number when λ = 1× 10−5.

In Figures 12 and 13, we show the algorithm of the ratio of the current residual norm to
the initial residual norm, plotted against the number of FGMRES iteration, for different values
of the regularization parameter λ. NP stands for FGMRES without preconditioners, P1 stands
for FGMRES with the preconditioner P1 and P2 stands for FGMRES with the preconditioner
P2. The results in Figures 12 and 13 show that our block triangular preconditioners P1 and P2
significantly accelerate the convergence of FGMRES, compared to FGMRES without preconditioners.
Additionally, P1 outperforms P2.

Example 4. In this example, we show the effectiveness of our proposed preconditioners in deblurring
images. We used two blurred images (of size 128× 128) shown in Figures 14 and 15. We select the
following parameters: α = 1.8, β = 1, and λ = 0.00001. We used our preconditioners P1 and P2 to
deblur the images and the results are shown in Figures 16–23.

blured image psnr = 22.978
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Figure 14. Golden house image (blurred).

From Figures 16–23, the results show that our preconditioners are effective in deblurring
images, with significant improvement in the PSNR. For example, the PSNR of deblurred image in
Figure 16 is 49.41, compared to the PSNR 22.978 for the blurred image in Figure 23.
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blured image psnr = 22.738
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Figure 15. Retinal image (blurred).

deblured image psnr = 43.899
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Figure 16. Using P1 with α = 1.

deblured image psnr = 43.815
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Figure 17. Using P2 with α = 1.

deblured image psnr = 49.41
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Figure 18. Using P1 with α = 1.8.
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deblured image psnr = 47.253

20 40 60 80 100 120

20

40

60

80

100

120

Figure 19. Using P2 with α = 1.8.

deblured image psnr = 42.926
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Figure 20. Using P1 with α = 1.

deblured image psnr = 41.173
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Figure 21. Using P2 with α = 1.

deblured image psnr = 46.013
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Figure 22. Using P1 with α = 1.8.
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deblured image psnr = 44.879
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Figure 23. Using P2 with α = 1.8.

Example 5. In this example, we compare the total CPU-time (in seconds) required for the conver-
gence of the FGMRES with and without our proposed preconditioners P1 and P2. The results are
shown in Table 1 for different N, α, β, λ.

Table 1. The CPU time comparison of GMRES and FGMRES.

Parameters Iterations CPU-Time

N α λ β NP P1 P2 NP P1 P2

32 1.3 10−3 1 53 30 32 3.44 1.88 1.98

64 1.8 10−8 0.1 301 166 194 39.71 20.97 20.55

128 1.6 10−6 0.01 178 68 91 76.64 35.86 38.22

From Table 1, the results show that both P1 and P2 can significantly reduce the CPU-time
required for convergence, compared to FGMRES without preconditioners. For example, for N = 128,
α = 1.6, β = 0.01, and λ = 10−6, the CPU-time for FGMRES without preconditioning is 76.64 s,
while the CPU-time for FGMRES with P1 is 35.86 s and the CPU-time for FGMRES with P2 is
38.22. Overall, the results show our proposed preconditioners P1 and P2 are effective in accelerating
the convergence of FGMRES for the fractional-order image deblurring problem. This can lead to
significant reductions in CPU-time, which is important for practical applications.

5.2. GMRES versus FGMRES

In this experimental result, we compared the performance of GMRES and FGMRES
with our preconditioner P1 using the following parameters: N = 64, α = 1.4, β = 0.1, and
λ = 10−5. We used the test image “Golden House”. We used both GMRES and FGMRES.
In this example, both GMRES and FGMRES were stopped when the tolerance was 10−7

and no restarting is used. The comparison results are shown in Figure 24, where P1GM
stand for GMRES with P1 and P1FG stands for FGMRES with P1. As shown in the figure,
FGMRES is performed slightly better than GMRES.

In the following numerical result, we show the comparison of our TFOV-based algo-
rithm with TV-based algorithm [28].
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Figure 24. FGMRES vs. GMRES.

Example 6. In this example, we compare our TFOV- based algorithm with the TV-based algorithm
on the nontextured peppers image. We use a Gaussian kernel with standard deviation σ = 1.5. The
results are shown in Figures 25–30. The size of each subfigure is 256× 256. The subfigures are as
follows: (a) exact image (b) blurry image (c) deblurred image by TV (d) deblurred image by NP (e)
deblurred image by P1 and (f) deblurred image P2. For numerical calculations, we used the motion
kernel. For the TV-based method we used β = 1 and λ varying from 10−2 to 10−4, according
to [28]. The parameters for TFOV-based method are listed in Table 2. For comparison we used three
different values of N: 64, 128 and 256. Their corresponding blurred PSNRs are 20.1827, 20.1124
and 20.5531 respectively. For the stopping criteria of the numerical methods, we used tolerance
tol = 10−7.

Remark 1.

1. Figures 27–30 are almost similar, indicating that all methods generate the same quality
results.

2. From Figures 31–33, we can clearly see the effectiveness of preconditioning. For all values
of N, the number of P1 and P2 iterations is much lower than the number of TFOV-based NP
and TV-based P1 iterations to reach the required accuracy tol = 10−7. The later fixed-point
iterations also have similar results.

3. From Table 2, we observed that the PSNR by the TFOV-based PGMRES method is almost the
same as that of the ordinary TFOV-based GMRES method, but much higher than that of the
TV-based P1 method for all values of N. However, the P1 and P2 methods generate this better
PSNR in much fewer iterations. For example, to achieve a better PSNR the P1 method needs
only 18 iterations, and the P2 method needs only 20 iterations for N = 64. However, the NP
method needs 120+ iterations to get the same PSNR. The TV-based P1 method also takes 120+
iterations to get its lower PSNR. The same is the case for other values of N. This means that
the TFOV-based FGMRES method is faster than the TFOV-based GMRES and TV-based P1
methods.
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Figure 25. Peppers image (exact).

Figure 26. Peppers image (blurred).

Figure 27. Using TV (α = 1).

Figure 28. Using NP.
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Figure 29. Using P1 with α = 1.9.

Figure 30. Using P2 with α = 1.9.

Figure 31. N = 64.

Figure 32. N = 128.
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Figure 33. N = 256.

Table 2. The PSNR Comparison of TV, NP, P1 and P2.

Parameters Iterations Deblurred PSNR

N α λ β TV (α = 1) NP P1 P2 TV (α = 1) NP P1 P2

64 1.6 10−4 1 120+ 120+ 20 18 47.2230 48.6422 49.0131 48.9233

128 1.8 10−4 1 120+ 120+ 40 22 45.2243 46.0352 46.8526 46.8957

256 1.9 10−7 1 120+ 120+ 60 38 40.3331 44.1220 44.6277 44.6241

Example 7. In this example, we utilized satellite images used by Chowdhury et al. [71]. The images
underwent deliberate blurring and were corrupted by Poisson noise, resulting in the presence of
blurring artifacts. To achieve the blurring, we applied a kernel with specific parameters, namely, we
used the Gaussian build in kernel “ f special(′gaussian′, 9, sqrt(3))′′. The introduction of Poisson
noise to the image presents a substantial challenge for most deblurring techniques, as this type of
noise frequently occurs in scenarios involving photon counting across various imaging methods.
Simultaneously, blurring is an inevitable consequence due to the underlying physical principles of
the imaging system, which can be thought of as the convolution of the image with a point spread
function. For the sake of comparison, we chose to employ the non-blind fractional order TV-based
algorithm (NFOV) proposed by Chaudhury et al. [71]. The restored satellite images can be seen in
Figures 34–38, with each image sized at 128× 128. We configured the parameters for the NFOV
method as specified in the reference by Chowdhury et al. [71]. For comparison, we have used two
different values of N. These are 64 and 128. Their corresponding blurred PSNR are 20.2985 and
20.4559 respectively. The computational technique’s stopping criterion is determined by a tolerance
value of tol = 10−7. Additional details regarding this experiment can be located in Table 3.

Remark 2. Upon examining Figures 35–38 and Table 3, it becomes apparent that the results
generated by all methods are virtually indistinguishable. Nevertheless, our proposed methods
(GMRES and FGMRES) exhibit slightly higher PSNR values while demanding significantly less
CPU time. This observation underscores the improved efficiency and speed of our suggested methods
(GMRES and FGMRES) in comparison to the NFOV technique.

Table 3. The PSNR Comparison of NFOV, NP, P1 and P2.

Parameters Iterations Deblurred PSNR

N α λ β NFOV NP P1 P2 NFOV NP P1 P2

64 1.7 10−4 1 120+ 120+ 41 26 25.9869 26.5625 26.7861 26.8283

128 1.9 10−7 1 120+ 120+ 65 45 24.1417 25.1908 25.4312 25.6952
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Figure 34. Satel image (blurred).

Figure 35. Using NFOV.

Figure 36. Using NP.
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Figure 37. Using P1 with α = 1.9.

Figure 38. Using P2 with α = 1.9.

6. Conclusions

In this paper we have proposed two block triangular preconditioners for solving the
generalized saddle point system which is derived from discretizing the Euler Lagrange
equations associated with the TFOV in image de-blurring based problems. We have
investigated the performance of the proposed preconditioners with the FGMRES method.
We have tested this method on three types of digital images. We have also compared
our algorithm with TV based algorithm. Our experiments show that the block triangular
preconditioners are very effective. We have also shown that our technique improves
the quality of the reconstruction images via calculation of the PSNR. We showed the
performance of both GMRES and FGMRES with our proposed preconditioner and we
concluded that FGMRES is slightly better than GMRES. Few iterations and CPU-time are
needed to obtain a fast rate of convergence and good de-blurring performance. Circulant
approximations are used in the first term of the Shur complement to reduce the cost of the
computation from O(N2) into O(N log N) and reduce the storage. The spectrums of the
preconditioned matrices are clustered around 1 and −1.
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