Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = total floating time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 23835 KB  
Article
Simulation-Based Structural Optimization of Composite Hulls Under Slamming Loads: A Transferable Methodology for Resilient Offshore Applications
by Giovanni Maria Grasso, Ludovica Maria Oliveri and Ferdinando Chiacchio
J. Mar. Sci. Eng. 2026, 14(3), 254; https://doi.org/10.3390/jmse14030254 - 26 Jan 2026
Viewed by 252
Abstract
The growing demand for floating offshore structures calls for lightweight, impact-resilient, and sustainable design approaches. This study explores the optimization of composite fibree layup in a 30 m hull subjected to slamming-type hydrodynamic loads. Although based on a recreational vessel, the model serves [...] Read more.
The growing demand for floating offshore structures calls for lightweight, impact-resilient, and sustainable design approaches. This study explores the optimization of composite fibree layup in a 30 m hull subjected to slamming-type hydrodynamic loads. Although based on a recreational vessel, the model serves as a transferable case for offshore applications such as wave energy devices, offshore wind platforms, and floating PV systems. A finite element method (FEM) model was developed using shell elements and a sinusoidal time-dependent pressure to simulate slamming events on the wet surface of the hull. The response was evaluated under different fiber orientation schemes, aiming to reduce structural mass while maintaining stress levels within safety margins. Results showed that strategic layup optimization led to a measurable reduction in total material usage, without compromising structural integrity. These outcomes suggest multiple advantages, including an approximately 14% reduction in raw material demand, which in turn facilitates for potential downsizing of propulsion systems and transportation energy due to lighter structures. Such improvements contribute indirectly to reduced emissions and operational costs. The methodology presented offers a replicable approach to composite optimization under transient marine loads, with relevance for sustainable offshore structural design. Full article
Show Figures

Figure 1

23 pages, 5168 KB  
Article
The Economic and Environmental Impacts of Floating Offshore Wind Power Generation in a Leading Emerging Market: The Case of Taiwan
by Yun-Hsun Huang and Yi-Shan Chan
Sustainability 2026, 18(2), 804; https://doi.org/10.3390/su18020804 - 13 Jan 2026
Viewed by 253
Abstract
Taiwan has set an ambitious target of net-zero carbon emissions by 2050, relying heavily on offshore wind capacity of 13.1 GW by 2030 and 40–55 GW by 2050. Floating offshore wind (FOW) is expected to play a central role in meeting these targets, [...] Read more.
Taiwan has set an ambitious target of net-zero carbon emissions by 2050, relying heavily on offshore wind capacity of 13.1 GW by 2030 and 40–55 GW by 2050. Floating offshore wind (FOW) is expected to play a central role in meeting these targets, particularly in deep-water areas where fixed-bottom technology is technically constrained. This study combined S-curve modeling for capacity projections, learning curves for cost estimation, and input–output analysis to quantify economic and environmental impacts under three deployment scenarios. Our findings indicate that FOW development provides substantial economic benefits, particularly under the high-growth scenario. During the construction phase through 2040, total output is projected to exceed NTD 1.97 trillion, generating more than NTD 1 trillion in gross value added (GVA) and over 470,000 full-time equivalent (FTE) jobs. By 2050, operations and maintenance (O&M) output is expected to reach approximately NTD 50 billion, supporting roughly 14,200 jobs and about NTD 13.8 billion in income. Annual CO2 reduction could reach up to 10.4 Mt by 2050 under the high-growth scenario, or about 6.86 Mt under the low-growth case, demonstrating the potential of FOW to drive industrial development while advancing national decarbonization. Full article
(This article belongs to the Special Issue Environmental Economics and Sustainability)
Show Figures

Figure 1

24 pages, 866 KB  
Article
A GPU-CUDA Numerical Algorithm for Solving a Biological Model
by Pasquale De Luca, Giuseppe Fiorillo and Livia Marcellino
AppliedMath 2025, 5(4), 178; https://doi.org/10.3390/appliedmath5040178 - 8 Dec 2025
Viewed by 477
Abstract
Tumor angiogenesis models based on coupled nonlinear parabolic partial differential equations require solving stiff systems where explicit time-stepping methods impose severe stability constraints on the time step size. Implicit–Explicit (IMEX) schemes relax this constraint by treating diffusion terms implicitly and reaction–chemotaxis terms explicitly, [...] Read more.
Tumor angiogenesis models based on coupled nonlinear parabolic partial differential equations require solving stiff systems where explicit time-stepping methods impose severe stability constraints on the time step size. Implicit–Explicit (IMEX) schemes relax this constraint by treating diffusion terms implicitly and reaction–chemotaxis terms explicitly, reducing each time step to a single linear system solution. However, standard Gaussian elimination with partial pivoting exhibits cubic complexity in the number of spatial grid points, dominating computational cost for realistic discretizations in the range of 400–800 grid points. This work presents a CUDA-based parallel algorithm that accelerates the IMEX scheme through GPU implementation of three core computational kernels: pivot finding via atomic operations on double-precision floating-point values, row swapping with coalesced memory access patterns, and elimination updates using optimized two-dimensional thread grids. Performance measurements on an NVIDIA H100 GPU demonstrate speedup factors, achieving speedup factors from 3.5× to 113× across spatial discretizations spanning M[25,800] grid points relative to sequential CPU execution, approaching 94.2% of the theoretical maximum speedup predicted by Amdahl’s law. Numerical validation confirms that GPU and CPU solutions agree to within twelve digits of precision over extended time integration, with conservation properties preserved to machine precision. Performance analysis reveals that the elimination kernel accounts for nearly 90% of total execution time, justifying the focus on GPU parallelization of this component. The method enables parameter studies requiring 104 PDE solves, previously computationally prohibitive, facilitating model-driven investigation of anti-angiogenic therapy design. Full article
Show Figures

Figure 1

13 pages, 3612 KB  
Article
Spatial and Temporal Distribution of Large (1–5 mm) Microplastics on the Strandline of a Macrotidal Sandy Beach (Polzeath, Southwest England) and Their Association with Beach-Cast Seaweed
by Catherine Beale and Andrew Turner
Micro 2025, 5(3), 43; https://doi.org/10.3390/micro5030043 - 19 Sep 2025
Viewed by 869
Abstract
Microplastics (MPs) are ubiquitous and persistent contaminants of the marine environment, but a clear understanding of their cycling, fate, and impacts in coastal zones is lacking. In this study, large MPs (1–5 mm) were sampled spatially and temporally from the strandline of a [...] Read more.
Microplastics (MPs) are ubiquitous and persistent contaminants of the marine environment, but a clear understanding of their cycling, fate, and impacts in coastal zones is lacking. In this study, large MPs (1–5 mm) were sampled spatially and temporally from the strandline of a macrotidal, sandy beach (Polzeath) in southwest England. MPs encompassing a diversity of sources were categorised by morphology (foams, nurdles, biobeads, fragments, fibres, films) and quantified by number and mass, with a selection analysed for polymer type. A total of about 17,600 particles of around 350 g in mass were retrieved from 30 samples over a period of five months, with an abundance ranging from 35 and 2048 per m2. The space- and time-integrated average mass of MPs on the beach strandline was about 2 kg and was dominated (>90%) by fragments, nurdles, and biobeads of polyethylene or polypropylene construction. Nurdles, biobeads, fragments, and, to a lesser extent, fibres were correlated with strandline seaweed abundance, which itself was correlated with previous storm activity. Relationships with seaweed abundance were also supported by visible associations of these MP morphologies with macroalgal deposits through entanglement and adhesion. These observations, coupled with a lack of MPs below the sand’s surface (50 cm depth), suggest that the majority of MPs are transported from an offshore stock with floating organic debris, resulting in a transitory strandline repository and a habitat enriched with small plastics. Full article
Show Figures

Figure 1

22 pages, 4874 KB  
Article
Impact of Non-Gaussian Winds on Blade Loading and Fatigue of Floating Offshore Wind Turbines
by Shu Dai, Bert Sweetman and Shanran Tang
J. Mar. Sci. Eng. 2025, 13(9), 1686; https://doi.org/10.3390/jmse13091686 - 1 Sep 2025
Cited by 1 | Viewed by 966
Abstract
This study introduces a novel methodology for estimating loading and fatigue damage in the blades of wind turbines, emphasizing non-Gaussian wind conditions’ impact. By calculating blade loading and fatigue using higher statistical moments of the irregular winds, the study demonstrates the significance of [...] Read more.
This study introduces a novel methodology for estimating loading and fatigue damage in the blades of wind turbines, emphasizing non-Gaussian wind conditions’ impact. By calculating blade loading and fatigue using higher statistical moments of the irregular winds, the study demonstrates the significance of non-Gaussian effects on loading and fatigue predictions. A two-step methodology is developed to synthesize non-Gaussian wind processes, integrating the TurbSim (version 1.5) and Hermite moment model transformation methods. These wind time histories are then utilized in a fully coupled simulation of a floating wind turbine, integrating with a blade beam model. Preliminary analysis of wind thrust and the blade root bending moment indicates non-Gaussian effects on aerodynamic loading. Further analysis of fatigue reveals that fatigue hot spots vary along the blade surface, depending on short-term wind conditions and long-term wind distribution, with total fatigue life estimated by summing the fatigue damage at each potential hot spot. The probability density function of long-term wind process is estimated by fitting the Weibull distribution to measured buoy data. The results show that variations in long-term wind speed distributions lead to an average fatigue life difference of about 1.3 years (16%). The Gaussian wind model overestimates fatigue life by roughly 1.5 years (18%) compared to the non-Gaussian model. This highlights the importance of considering both long-term wind distributions and short-term wind characteristics for accurate fatigue assessment. The findings provide valuable insights for the design and operation of floating offshore wind turbines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 3049 KB  
Article
SRoFF-Yolover: A Small-Target Detection Model for Suspicious Regions of Forest Fire
by Lairong Chen, Ling Li, Pengle Cheng and Ying Huang
Forests 2025, 16(8), 1335; https://doi.org/10.3390/f16081335 - 16 Aug 2025
Viewed by 839
Abstract
The rapid detection and confirmation of Suspicious Regions of Forest Fire (SRoFF) are critical for timely alerts and firefighting operations. In the early stages of forest fires, small flames and heavy occlusion lead to low accuracy, false detections, omissions, and slow inference in [...] Read more.
The rapid detection and confirmation of Suspicious Regions of Forest Fire (SRoFF) are critical for timely alerts and firefighting operations. In the early stages of forest fires, small flames and heavy occlusion lead to low accuracy, false detections, omissions, and slow inference in existing target-detection algorithms. We constructed the Suspicious Regions of Forest Fire Dataset (SRFFD), comprising publicly available datasets, relevant images collected from online searches, and images generated through various image enhancement techniques. The SRFFD contains a total of 64,584 images. In terms of effectiveness, the individual augmentation techniques rank as follows (in descending order): HSV (Hue Saturation and Value) random enhancement, copy-paste augmentation, and affine transformation. A detection model named SRoFF-Yolover is proposed for identifying suspicious regions of forest fire, based on the YOLOv8. An embedding layer that effectively integrates seasonal and temporal information into the image enhances the prediction accuracy of the SRoFF-Yolover. The SRoFF-Yolover enhances YOLOv8 by (1) adopting dilated convolutions in the Backbone to enlarge feature map receptive fields; (2) incorporating the Convolutional Block Attention Module (CBAM) prior to the Neck’s C2fLayer for small-target attention; and (3) reconfiguring the Backbone-Neck linkage via P2, P4, and SPPF. Compared with the baseline model (YOLOv8s), the SRoFF-Yolover achieves an 18.1% improvement in mAP@0.5, a 4.6% increase in Frames Per Second (FPS), a 2.6% reduction in Giga Floating-Point Operations (GFLOPs), and a 3.2% decrease in the total number of model parameters (#Params). The SRoFF-Yolover can effectively detect suspicious regions of forest fire, particularly during winter nights. Experiments demonstrated that the detection accuracy of the SRoFF-Yolover for suspicious regions of forest fire is higher at night than during daytime in the same season. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

25 pages, 4591 KB  
Article
Dynamic Response Analysis of a New Combined Concept of a Spar Wind Turbine and Multi-Section Wave Energy Converter Under Operational Conditions
by Jiahao Xu, Ling Wan, Guochun Xu, Jianjian Xin, Wei Shi, Kai Wang and Constantine Michalides
J. Mar. Sci. Eng. 2025, 13(8), 1538; https://doi.org/10.3390/jmse13081538 - 11 Aug 2025
Cited by 1 | Viewed by 958
Abstract
To achieve the ‘zero carbon’ target, offshore renewable energy exploration plays a key role in many countries. Offshore wind energy and wave energy are both important offshore renewable energies. With the target to reduce the cost of energy, a new combined wind and [...] Read more.
To achieve the ‘zero carbon’ target, offshore renewable energy exploration plays a key role in many countries. Offshore wind energy and wave energy are both important offshore renewable energies. With the target to reduce the cost of energy, a new combined wind and wave energy converter is proposed in this work. The new concept consists of a spar-type floating wind turbine and a multi-section pitch-type wave energy converter (WEC). The WEC is attached to the spar column and consists of multiple sections with different lengths to absorb wave energy at different wave frequencies, i.e., multi-band absorption. Through multi-band wave energy absorption, the total power is expected to increase. In addition, through synergetic design, the dynamic motions of the platform are expected to decrease. In this paper, a fully coupled numerical model of the concept is established, based on the hybrid time–frequency-domain simulation framework. The frequency-domain hydrodynamic properties were transferred to the time domain. Then, the dynamic performance of the combined concept under wind–wave conditions was studied, especially under operational conditions. Mechanical couplings among multiple floating bodies were taken into account. To demonstrate the WEC effects on the floating wind turbine, the dynamic performance of the combined wind–wave energy converter concept was compared with the segregated floating wind turbine, with a focus on motions and output power. It was expected that the average overall output power of the multi-section WEC could be above 160 kW. The advantages of the combined concept are demonstrated. Full article
(This article belongs to the Special Issue Optimized Design of Offshore Wind Turbines)
Show Figures

Figure 1

30 pages, 15347 KB  
Article
Research on Optimization Design of Ice-Class Ship Form Based on Actual Sea Conditions
by Yu Lu, Xuan Cao, Jiafeng Wu, Xiaoxuan Peng, Lin An and Shizhe Liu
J. Mar. Sci. Eng. 2025, 13(7), 1320; https://doi.org/10.3390/jmse13071320 - 9 Jul 2025
Cited by 1 | Viewed by 1454
Abstract
With the natural evolution of the Arctic route and advancements in related technologies, the development of new green ice-class ships is becoming a key technological breakthrough for the global shipbuilding industry. As a special vessel form that must perform icebreaking operations and undertake [...] Read more.
With the natural evolution of the Arctic route and advancements in related technologies, the development of new green ice-class ships is becoming a key technological breakthrough for the global shipbuilding industry. As a special vessel form that must perform icebreaking operations and undertake long-distance ocean voyages, an ice-class ship requires sufficient icebreaking capacity to navigate ice-covered water areas. However, since such ships operate for most of their time under open water conditions, it is also crucial to consider their resistance characteristics in these environments. Firstly, this paper employs linear interpolation to extract wind, wave, and sea ice data along the route and calculates the proportion of ice-covered and open water area in the overall voyage. This provides data support for hull form optimization based on real sea state conditions. Then, a resistance optimization platform for ice-class ships is established by integrating hull surface mixed deformation control within a scenario analysis framework. Based on the optimization results, comparative analysis is conducted between the parent hull and the optimized hull under various environmental resistance scenarios. Finally, the optimization results are evaluated in terms of energy consumption using a fuel consumption model of the ship’s main engine. The optimized hull achieves a 16.921% reduction in total resistance, with calm water resistance and wave-added resistance reduced by 5.92% and 27.6%, respectively. Additionally, the optimized hull shows significant resistance reductions under multiple wave and floating ice conditions. At the design speed, calm water power and hourly fuel consumption are reduced by 7.1% and 7.02%, respectively. The experimental results show that the hull form optimization process in this paper can take into account both ice-region navigation and ice-free navigation. The design ideas and solution methods can provide a reference for the design of ice-class ships. Full article
Show Figures

Figure 1

25 pages, 5480 KB  
Article
Functional Trait Responses of Brasenia schreberi to Water and Soil Conditions Reveal Its Endangered Status
by Jingyu Yao, Zhenya Liu, Junbao Yu, Yun Zhang, Rui Xu, Jiahua Li, Yang Xu and Mei Sun
Plants 2025, 14(13), 2072; https://doi.org/10.3390/plants14132072 - 7 Jul 2025
Viewed by 962
Abstract
[Background] Brasenia schreberi is a perennial floating leaf aquatic plant with high ecological protection value and potential for economic development, and thus, its endangered mechanisms are of great concern. The rapid endangerment of this species in modern times may be primarily attributed to [...] Read more.
[Background] Brasenia schreberi is a perennial floating leaf aquatic plant with high ecological protection value and potential for economic development, and thus, its endangered mechanisms are of great concern. The rapid endangerment of this species in modern times may be primarily attributed to the deterioration of water and soil environmental conditions, as its growth relies on high-quality water and soil. [Objective] Exploring the responses of B. schreberi to water and soil conditions from the perspective of functional traits is of great significance for understanding its endangered mechanisms and implementing effective conservation strategies. [Methods] This study was conducted in the Tengchong Beihai Wetland, which has the largest natural habitat of B. schreberi in China. By measuring the key functional traits of B. schreberi and detecting the water and soil parameters at the collecting sites, the responses of these functional traits to the water and soil conditions have been investigated. [Results] (1) The growth status of B. schreberi affects the expression of its functional traits. Compared with sporadic distribution, B. schreberi in continuous patches have significantly higher stomatal conductance, intercellular CO2 concentration, transpiration rate, and vein density, while these plants have significantly smaller leaf area and perimeter. (2) Good water quality directly promotes photosynthetic, morphological, and structural traits. However, high soil carbon, nitrogen, and phosphorus contents can inhibit the photosynthetic rate. The net photosynthetic rate is significantly positively correlated with dissolved oxygen content, pH value, ammonia nitrogen, and nitrate nitrogen contents in the water, as well as the magnesium, zinc, and silicon contents in the soil. In contrast, the net photosynthetic rate is significantly negatively correlated with the total phosphorus content in water and the total carbon, total nitrogen, and total phosphorus content in the soil. (3) Leaf area and perimeter show positive correlations with various water parameters, including the depth, temperature, pH value, dissolved oxygen content, ammonium nitrogen, and nitrate nitrogen content, yet they are negatively correlated with total phosphorus content, chemical oxygen demand, biological oxygen demand, and permanganate index of water. [Conclusions] This study supports the idea that B. schreberi thrives in oligotrophic water environments, while the notion that fertile soil is required for its growth still needs to be investigated more thoroughly. Full article
(This article belongs to the Special Issue Aquatic Plants and Wetland)
Show Figures

Figure 1

16 pages, 1891 KB  
Article
Effect of Pre-Freezing 18 °C Holding Time on Post-Thaw Motility and Morphometry of Cryopreserved Boar Epididymal Sperm
by Mamonene Angelinah Thema, Ntuthuko Raphael Mkhize, Maleke Dimpho Sebopela, Mahlatsana Ramaesela Ledwaba and Masindi Lottus Mphaphathi
Animals 2025, 15(12), 1691; https://doi.org/10.3390/ani15121691 - 7 Jun 2025
Cited by 1 | Viewed by 1631
Abstract
The study investigated the sperm motility and morphometry of pre-freeze and post-thaw boar epididymal semen cooled at increasing holding times at 18 °C. A total of 50 testes of heterogeneous boars were collected (5 testes/day) from the local abattoir and transported to the [...] Read more.
The study investigated the sperm motility and morphometry of pre-freeze and post-thaw boar epididymal semen cooled at increasing holding times at 18 °C. A total of 50 testes of heterogeneous boars were collected (5 testes/day) from the local abattoir and transported to the laboratory at 5 °C within 30 min after slaughter. Semen was retrieved from the caudal part of the epididymis using the slicing float-up method, diluted with Beltsville Thawing Solution extender, pooled in a 50 mL centrifuge tube/5 testes/day, and cooled at 18 °C. Following each holding time (0, 3, 6, 9, 12, 24, and 48 h), the cooled semen sample was re-suspended with Fraction A extender and stored at 5 °C for an additional 45 min. A cooled resuspended semen sample was then diluted with Fraction B extender, loaded into 0.25 mL straws, and frozen using liquid nitrogen vapour. Thawing was accomplished by immersing the semen straws in warm (37 °C) water for 1 min and the samples were evaluated for sperm motility and morphometry traits using the computer-assisted sperm analyzer system. The data were analyzed using variance analysis. Descriptive statistics were used to assess sperm morphometry, establishing the minimum and maximum values. Boar epididymal sperm survived for up to 48 h when held at 18 °C. Furthermore, the highest post-thawed sperm motility rates were observed in semen frozen after 3 h of holding time, with a sperm total motility of 85.9%, a progressive motility of 60.3%, and a rapid motility of 33.2%, as compared to other holding times (p < 0.05). The acceptable ranges for pre-freeze and post-thawed sperm morphology were head length (8.4–9.1 µm), width (4.4–4.8 µm), area (29.9–38.2 µm2), perimeter (20.1–23.7 µm), midpiece width (1.1–2.8 µm), and sperm shape, were consistent regardless of the holding time. A holding time of 3 h enhances the cryoresistance of sperm cooled at 18 °C. Therefore, these findings suggest that boar epididymal sperm can be effectively conserved and can maintain fertilization capability when cooled for 3 h at 18 °C before freezing. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

19 pages, 2863 KB  
Article
Data Mining to Evaluate the Effect of Eichhornia crassipes and Lemna minor in the Phytoremediation of Wastewater in the Canton of Milagro
by Denny William Moreno Castro, Omar Orlando Franco Arias, Juan Diego Valenzuela Cobos, Daniel Prieto Sánchez and Cícero Pimenteira
Water 2025, 17(10), 1551; https://doi.org/10.3390/w17101551 - 21 May 2025
Cited by 2 | Viewed by 1495
Abstract
The constant increase in industrialization and urbanization has led to the regular discharge of wastewater into the environment in excessive amounts, which has caused significant impacts on both human and wildlife ecosystems. The sustainable management and treatment of wastewater, whether of industrial or [...] Read more.
The constant increase in industrialization and urbanization has led to the regular discharge of wastewater into the environment in excessive amounts, which has caused significant impacts on both human and wildlife ecosystems. The sustainable management and treatment of wastewater, whether of industrial or domestic origin, represents a crucial challenge in this century. In this study, phytoremediation was employed as a wastewater treatment strategy using two species of aquatic macrophytes: water hyacinth (Eichhornia crassipes) and duckweed (Lemna minor). The study was conducted over seven consecutive evaluation periods, with five-day intervals between each. The objective was to apply the multivariate HJ-Biplot methodology to evaluate the effects of phytoremediation of two species of aquatic microphytes on the physicochemical characteristics of wastewater from Milagro canton, Ecuador. Additionally, a microbiological analysis was conducted to determine the effectiveness of the floating macrophytes. The analysis was based on the measurement of various physicochemical parameters, such as pH, electrical conductivity (EC), dissolved oxygen (DO), oxidation–reduction potential (ORP), salinity, total dissolved solids (TDSs), biochemical oxygen demand (BOD), chemical oxygen demand (COD), hardness, and temperature. The results showed that the highest efficiency in pollutant removal was achieved with duckweed (Lemna minor) in five out of nine measured parameters, suggesting that this species was the most effective compared to the control sample and Eichhornia crassipes. The capacity of these macrophytes for wastewater treatment was confirmed by this study. To ensure effective water purification, timely extraction of aquatic macrophytes from water bodies is recommended. If this collection is not properly carried out, the nutrients absorbed and stored in the plant tissues may be released back into the aquatic environment due to plant decomposition. Full article
(This article belongs to the Special Issue Monitoring and Remediation of Contaminants in Soil and Water)
Show Figures

Figure 1

12 pages, 2125 KB  
Article
Long-Term Outcomes of Cementless Versus Hybrid Cemented Total Knee Arthroplasty: A Minimum 10-Year Follow-Up
by Lukas Rabitsch, Klemens Vertesich, Alexander Giurea, Reinhard Windhager and Richard Lass
J. Clin. Med. 2025, 14(9), 3134; https://doi.org/10.3390/jcm14093134 - 30 Apr 2025
Viewed by 2234
Abstract
Background: Although cemented total knee arthroplasty (TKA) is considered the standard fixation technique, the emerging trend toward cementless fixation has created the need for a detailed comparison. In a previous study, we reported the 5-year results comparing cementless and hybrid cemented TKAs [...] Read more.
Background: Although cemented total knee arthroplasty (TKA) is considered the standard fixation technique, the emerging trend toward cementless fixation has created the need for a detailed comparison. In a previous study, we reported the 5-year results comparing cementless and hybrid cemented TKAs using the same implant design. The purpose of this study was to assess the long-term follow-up at a minimum of 10 years. Methods: A retrospective analysis was performed on 120 TKAs (60 cementless, 60 hybrid cemented) conducted between 2003 and 2007 using the e.motion posterior cruciate-retaining knee prosthesis with a floating-platform mobile polyethylene bearing (Aesculap, Tuttlingen, Germany). Demographic and clinical data were collected; radiographic follow-up was performed with attention to signs of loosening, while complications and revision surgery were assessed using competing risk analysis. Operative time was recorded as an indicator of surgical efficiency. Results: At 10 years, 59 TKAs (54 patients) were available for long-term follow-up. Both fixation groups demonstrated significant improvement in Knee Society Scores (KSSs) compared to preoperative values (p < 0.001). However, there was no significant difference in KSSs between the two groups at 10 years follow-up (p = 0.480). The 10-year cumulative incidence of revision was 8.4% in both groups (p = 0.721), and that of aseptic loosening was identical at 3.4% (p = 0.967). Although radiolucent lines were noted in three tibial components of the cementless group, the difference was not statistically significant (p = 0.075). Notably, the cementless group demonstrated a significantly shorter operative time with a mean difference of 10 min (p = 0.017). Conclusions: At a minimum follow-up of 10 years, there were no significant differences between the hybrid cemented and cementless groups in revision rates, cumulative incidences, clinical scores, or radiological signs of loosening, confirming the long-term effectiveness of both fixation methods in clinical practice. Full article
(This article belongs to the Special Issue New Insights into Joint Arthroplasty)
Show Figures

Figure 1

34 pages, 4261 KB  
Article
Two-Stage Optimization on Vessel Routing and Hybrid Energy Output for Marine Debris Collection
by Li Chen, Gang Duan, Jie Cao and Jinhua Wang
Sustainability 2025, 17(8), 3425; https://doi.org/10.3390/su17083425 - 11 Apr 2025
Viewed by 800
Abstract
The harm of marine debris (MD) to the environment and human beings has been paid more and more attention. At present, the most effective way to collect macro-MD floating on the sea is to send vessels. We employ vessels equipped with a hybrid [...] Read more.
The harm of marine debris (MD) to the environment and human beings has been paid more and more attention. At present, the most effective way to collect macro-MD floating on the sea is to send vessels. We employ vessels equipped with a hybrid energy system (HES) composed of photovoltaic (PV), battery and diesel to carry out MD cleanup. We propose a two-stage optimization approach for vessel routing and energy management strategy. In the first stage, the vessel routing problem with a drifting time window is modeled to minimize the vessel travel time considering continuous speed. The drifting time window means that multiple time windows are set on the MD trajectory, which is used to depict its dynamic nature. An adaptive large neighborhood search algorithm considering an elitist strategy coupled with speed optimization is designed to solve this problem. In the second stage, a mixed integer linear programming model for energy management strategy is established to minimize the total cost, including the power generation cost of diesel and PV, the battery charge, and discharge and carbon tax costs. The model takes the power load balance, the power limit of each part of the hybrid energy system and the battery charge and discharge state as constraints. The correctness of the proposed models and the effectiveness of the proposed algorithm are verified by a numerical example. The results not only show the advantages of hybrid energy vessels in energy saving and emission reduction but also show that the drifting time window can provide a rich and effective route selection solution. Some suggestions for rational utilization of hybrid energy vessels with long and short trips are put forward. Full article
Show Figures

Figure 1

14 pages, 4060 KB  
Article
Electric Field-Induced Settling and Flotation of Flocs in Mixed Aqueous Suspensions of Poly(methyl methacrylate) and Aluminosilicate Hollow Particles
by Hiroshi Kimura and Mirei Sakakibara
Materials 2025, 18(6), 1289; https://doi.org/10.3390/ma18061289 - 14 Mar 2025
Cited by 3 | Viewed by 926
Abstract
When a horizontal electric field is applied, the sedimentation velocity of particles increases, a phenomenon known as Electrically Induced Rapid Separation (ERS). Hollow particles with a lower density than water exhibit an increased flotation velocity under an electric field. This study investigates the [...] Read more.
When a horizontal electric field is applied, the sedimentation velocity of particles increases, a phenomenon known as Electrically Induced Rapid Separation (ERS). Hollow particles with a lower density than water exhibit an increased flotation velocity under an electric field. This study investigates the ERS effect in mixed suspensions containing particles denser than water and hollow particles with lower density. In the absence of an electric field, the denser particles settle while the hollow particles float, and their behavior is independent of the ratio of hollow particles to the total number of particles (α). However, when a DC electric field of 0.4 V/mm is applied, the behavior becomes dependent on α. For α < ~0.90, all particles sediment, whereas for α > ~0.93, all particles float. This suggests that the electric field induces a co-floc formation between the denser and hollow particles. Additionally, for the first time, a co-floc formation under an electric field was directly observed using a digital microscope. By adjusting α and applying an electric field, it is possible to control the sedimentation, flotation, or stabilization of the particle system. This study provides new insights into electric field-assisted particle separation and highlights its potential applications in colloidal science and materials science. Full article
Show Figures

Figure 1

27 pages, 10029 KB  
Article
Hydrodynamic and Morphological Effects of Non-Powered Floating Objects on Sediment Resuspension: A CFD and Regression Analysis
by Nuray Gedik, Onur Bora, Mehmet Sedat Kabdaşlı and Emel İrtem
Appl. Sci. 2025, 15(5), 2717; https://doi.org/10.3390/app15052717 - 4 Mar 2025
Cited by 1 | Viewed by 1155
Abstract
This study investigates the hydrodynamic and morphological effects caused by non-powered floating objects (e.g., barges, pontoons, and floating or moored platforms) that are towed by external forces (such as tugboats) across flat, shallow seabeds. This study employs an integrated approach combining advanced computational [...] Read more.
This study investigates the hydrodynamic and morphological effects caused by non-powered floating objects (e.g., barges, pontoons, and floating or moored platforms) that are towed by external forces (such as tugboats) across flat, shallow seabeds. This study employs an integrated approach combining advanced computational fluid dynamics (CFD) simulations with multivariate polynomial regression analysis to systematically investigate the hydrodynamic and morphological effects of non-powered floating objects on sediment resuspension. A total of 96 simulation scenarios were conducted, of which 84 significant cases (where the floating object did not touch the seabed) were analyzed. Variations included bow geometries (blunt and raked), towing speeds, and operational parameters. The results indicate that, under similar towing speeds and clearance heights, blunt bows increase the suspended sediment concentration by approximately 90–190% compared to raked bows. The regression model, attaining an R-squared value of 0.9647, identified the Froude number, squat ratio, squared towing time, and object type as critical predictors of suspended sediment concentration. Furthermore, the interaction terms between the Froude number and object type were significant, enhancing the model’s predictive accuracy. These results underscore the importance of optimized design and operational strategies in minimizing the environmental impact of floating structures, especially in shallow marine environments where sediment dynamics play a crucial role in ecological balance. Careful consideration of towing speed, object geometry, and operational parameters can significantly reduce sediment resuspension, mitigating ecological consequences. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop