Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = torsional yield strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5946 KiB  
Article
Flexural Strength of Cold-Formed Steel Unstiffened and Edge-Stiffened Hexagonal Perforated Channel Sections
by G. Beulah Gnana Ananthi, Dinesh Lakshmanan Chandramohan, Dhananjoy Mandal and Asraf Uzzaman
Buildings 2025, 15(15), 2679; https://doi.org/10.3390/buildings15152679 - 29 Jul 2025
Viewed by 317
Abstract
Cold-formed steel (CFS) channel beams are increasingly used as primary structural elements in modern construction due to their lightweight and high-strength characteristics. To accommodate building services, these members often feature perforations—typically circular and unstiffened—produced by punching. Recent studies indicate that adding edge stiffeners, [...] Read more.
Cold-formed steel (CFS) channel beams are increasingly used as primary structural elements in modern construction due to their lightweight and high-strength characteristics. To accommodate building services, these members often feature perforations—typically circular and unstiffened—produced by punching. Recent studies indicate that adding edge stiffeners, particularly around circular web openings, can improve flexural strength. Extending this idea, attention has shifted to hexagonal web perforations; however, limited research exists on the bending performance of hexagonal cold-formed steel channel beams (HCFSBs). This study presents a detailed nonlinear finite element (FE) analysis to evaluate and compare the flexural behaviour of HCFSBs with unstiffened (HUH) and edge-stiffened (HEH) hexagonal openings. The FE models were validated against experimental results and expanded to include a comprehensive parametric study with 810 simulations. Results show that HEH beams achieve, on average, a 10% increase in moment capacity compared to HUH beams. However, when evaluated using current Direct Strength Method (DSM) provisions, moment capacities were underestimated by up to 47%, particularly in cases governed by lateral–torsional or distortional buckling. A reliability analysis confirmed that the proposed design equations yield accurate and dependable strength predictions. Full article
(This article belongs to the Special Issue Cold-Formed Steel Structures)
Show Figures

Figure 1

20 pages, 5009 KiB  
Article
Combined Behavior of Reinforced Concrete Out-of-Plane Parts Beams Encased with Steel Section
by Hasan M. A. Albegmprli, Doaa T. Hashim and Muthanna A. N. Abbu
Buildings 2025, 15(14), 2473; https://doi.org/10.3390/buildings15142473 - 15 Jul 2025
Viewed by 388
Abstract
This research investigated and compared the structural behavior of reinforced concrete straight beams and beams made with out-of-plane parts. This study focused on the influence of the location and number of out-of-plane parts, as well as encasing the beams with a steel section, [...] Read more.
This research investigated and compared the structural behavior of reinforced concrete straight beams and beams made with out-of-plane parts. This study focused on the influence of the location and number of out-of-plane parts, as well as encasing the beams with a steel section, on the ultimate strength, deflection, and rotation in addition to the ductility, energy absorption, and failure mode. A total of nine beams were modelized numerically, divided into three series. The first one included one straight beam, while the remaining two series included four beams each made with out-of-plane parts with and without steel sections. The beams with out-of-plane parts connected the two, three, four, and five concrete segments. The outcomes revealed that the beams made with out-of-plane parts showed less strength than straight beams, which increased the connected segments and reduced the ultimate strength capacity. The regular beam’s linearity was dissimilar to the zigzag beams, which showed a linearity of 32% and was reduced to 22%, 20%, 19.67%, and 16% for beam out-of-plane parts made with two, three, four, and five segments, respectively. Forming a zigzag in the plane of the beams reduced the cracking load, but the decrement depended on the number of parts, which led to more reduction in the yielding load. Concerning the deflection and deformations, the concrete straight beams failed in flexure, with maximum deflection occurring at the midspan of the beam, which was different for beams without plane parts, which showed a combined shear-torsional failure for which the maximum deformation occurred at the midspan with inclination of connected parts on the interior perpendicular axis. Encasing the beams’ out-of-plane parts with steel sections enhanced the structural behavior. The ductility and energy absorption of the out-of-plane parts beams were less than the straight ones, but encasing the beams with a steel section improved the ductility and energy absorption twice. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 4414 KiB  
Article
Mechanical Characteristics of 26H2MF and St12T Steels Under Torsion at Elevated Temperatures
by Waldemar Dudda
Materials 2025, 18(13), 3204; https://doi.org/10.3390/ma18133204 - 7 Jul 2025
Viewed by 310
Abstract
The concept of “material effort” appears in continuum mechanics wherever the response of a material to the currently existing state of loads and boundary conditions loses its previous, predictable character. However, within the material, which still descriptively remains a continuous medium, new physical [...] Read more.
The concept of “material effort” appears in continuum mechanics wherever the response of a material to the currently existing state of loads and boundary conditions loses its previous, predictable character. However, within the material, which still descriptively remains a continuous medium, new physical structures appear and new previously unused physical features of the continuum are activated. The literature is dominated by a simplified way of thinking, which assumes that all these states can be characterized and described by one and the same measure of effort—for metals it is the Huber–Mises–Hencky equivalent stress. Quantitatively, perhaps 90% of the literature is dedicated to this equivalent stress. The remaining authors, as well as the author of this paper, assume that there is no single universal measure of effort that would “fit” all operating conditions of materials. Each state of the structure’s operation may have its own autonomous measure of effort, which expresses the degree of threat from a specific destruction mechanism. In the current energy sector, we are increasingly dealing with “low-cycle thermal fatigue states”. This is related to the fact that large, difficult-to-predict renewable energy sources have been added. Professional energy based on coal and gas units must perform many (even about 100 per year) starts and stops, and this applies not only to the hot state, but often also to the cold state. The question arises as to the allowable shortening of start and stop times that would not to lead to dangerous material effort, and whether there are necessary data and strength characteristics for heat-resistant steels that allow their effort to be determined not only in simple states, but also in complex stress states. Do these data allow for the description of the material’s yield surface? In a previous publication, the author presented the results of tension and compression tests at elevated temperatures for two heat-resistant steels: St12T and 26H2MF. The aim of the current work is to determine the properties and strength characteristics of these steels in a pure torsion test at elevated temperatures. This allows for the analysis of the strength of power turbine components operating primarily on torsion and for determining which of the two tested steels is more resistant to high temperatures. In addition, the properties determined in all three tests (tension, compression, torsion) will allow the determination of the yield surface of these steels at elevated temperatures. They are necessary for the strength analysis of turbine elements in start-up and shutdown cycles, in states changing from cold to hot and vice versa. A modified testing machine was used for pure torsion tests. It allowed for the determination of the sample’s torsion moment as a function of its torsion angle. The experiments were carried out at temperatures of 20 °C, 200 °C, 400 °C, 600 °C, and 800 °C for St12T steel and at temperatures of 20 °C, 200 °C, 400 °C, 550 °C, and 800 °C for 26H2MF steel. Characteristics were drawn up for each sample and compared on a common graph corresponding to the given steel. Based on the methods and relationships from the theory of strength, the yield stress and torsional strength were determined. The yield stress of St12T steel at 600 °C was 319.3 MPa and the torsional strength was 394.4 MPa. For 26H2MH steel at 550 °C, the yield stress was 311.4 and the torsional strength was 382.8 MPa. St12T steel was therefore more resistant to high temperatures than 26H2MF. The combined data from the tension, compression, and torsion tests allowed us to determine the asymmetry and plasticity coefficients, which allowed us to model the yield surface according to the Burzyński criterion as a function of temperature. The obtained results also allowed us to determine the parameters of the Drucker-Prager model and two of the three parameters of the Willam-Warnke and Menetrey-Willam models. The research results are a valuable contribution to the design and diagnostics of power turbine components. Full article
Show Figures

Figure 1

20 pages, 8731 KiB  
Article
Energy Dissipation Device Design for Irregular Structures Based on Yield Mechanism
by Xisen Fan, Yihang Bai, Liang Chen, Hao Wu, Yifei Qiao and Abdul Ghani
Buildings 2025, 15(13), 2305; https://doi.org/10.3390/buildings15132305 - 30 Jun 2025
Viewed by 366
Abstract
The seismic performance of irregular structures can be enhanced by installing energy dissipation devices. The location and specification of those devices are crucial for the design of the structure with an energy dissipation device. In this paper, an idea based on the structural [...] Read more.
The seismic performance of irregular structures can be enhanced by installing energy dissipation devices. The location and specification of those devices are crucial for the design of the structure with an energy dissipation device. In this paper, an idea based on the structural yield mechanism is proposed. Specifically, the pushover method was employed to analyze the yield sequence of structural members, thereby determining weak components that dictate the location of these devices. Additionally, the story drift ratios were taken as the control target to determine the performance parameters of the devices. This concept has been applied to the design of an energy dissipation device for a medical building. The results demonstrated that by using a design method based on the yield mechanism, the location of the damper was rapidly determined to ensure that the yield mechanism of the irregular structure met expectations. To control the story drift ratios, the parameters of the damper were selected, and the center of damping strength and the center of stiffness were made symmetrical about the center of mass, which could enable the irregular structure to have a better damping effect. After setting the energy dissipation devices according to this method, the structural torsional displacement ratio was reduced from 1.32 to 1.04, and the displacement angle between layers was reduced from 0.01 to 0.0048. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 5694 KiB  
Article
Mechanical Characterization of Porous Bone-like Scaffolds with Complex Microstructures for Bone Regeneration
by Brandon Coburn and Roozbeh Ross Salary
Bioengineering 2025, 12(4), 416; https://doi.org/10.3390/bioengineering12040416 - 14 Apr 2025
Cited by 3 | Viewed by 971
Abstract
The patient-specific treatment of bone fractures using porous osteoconductive scaffolds has faced significant clinical challenges due to insufficient mechanical strength and bioactivity. These properties are essential for osteogenesis, bone bridging, and bone regeneration. Therefore, it is crucial to develop and characterize biocompatible, biodegradable, [...] Read more.
The patient-specific treatment of bone fractures using porous osteoconductive scaffolds has faced significant clinical challenges due to insufficient mechanical strength and bioactivity. These properties are essential for osteogenesis, bone bridging, and bone regeneration. Therefore, it is crucial to develop and characterize biocompatible, biodegradable, and mechanically robust scaffolds for effective bone regeneration. The objective of this study is to systematically investigate the mechanical performance of SimuBone, a medical-grade biocompatible and biodegradable material, using 10 distinct triply periodic minimal surface (TPMS) designs with various internal structures. To assess the material’s tensile properties, tensile structures based on ASTM D638-14 (Design IV) were fabricated, while standard torsion structures were designed and fabricated to evaluate torsional properties. Additionally, this work examined the compressive properties of the 10 TPMS scaffold designs, parametrically designed in the Rhinoceros 3D environment and subsequently fabricated using fused deposition modeling (FDM) additive manufacturing. The FDM fabrication process utilized a microcapillary nozzle (heated to 240 °C) with a diameter of 400 µm and a print speed of 10 mm/s, depositing material on a heated surface maintained at 60 °C. It was observed that SimuBone had a shear modulus of 714.79 ± 11.97 MPa as well as an average yield strength of 44 ± 1.31 MPa. Scaffolds fabricated with horizontal material deposition exhibited the highest tensile modulus (5404.20 ± 192.30 MPa), making them ideal for load-bearing applications. Also, scaffolds with large voids required thicker walls to prevent collapse. The P.W. Hybrid scaffold design demonstrated high vertical stiffness but moderate horizontal stiffness, indicating anisotropic mechanical behavior. The Neovius scaffold design balanced mechanical stiffness and porosity, making it a promising candidate for bone tissue engineering. Overall, the outcomes of this study pave the way for the design and fabrication of scaffolds with optimal properties for the treatment of bone fractures. Full article
Show Figures

Figure 1

13 pages, 6566 KiB  
Article
Optimization of Strength and Plasticity in Layered Aluminum Composites Through High-Pressure Torsion Treatment
by Alexey Evstifeev, Aydar Mavlyutov, Artem Voropaev and Darya Volosevich
Metals 2024, 14(12), 1445; https://doi.org/10.3390/met14121445 - 17 Dec 2024
Cited by 1 | Viewed by 947
Abstract
The development of high-strength aluminum alloys with improved ductility is a crucial challenge for modern materials science, as high strength and ductility tend to be mutually exclusive properties. In this work, the composite material was fabricated using wire arc additives manufactured from AA1050 [...] Read more.
The development of high-strength aluminum alloys with improved ductility is a crucial challenge for modern materials science, as high strength and ductility tend to be mutually exclusive properties. In this work, the composite material was fabricated using wire arc additives manufactured from AA1050 (commercially pure aluminum) and AA5056 (an Al–Mg system alloy) aluminum alloys. It was demonstrated that the addition of a lower-strength material into a high-strength matrix enhances the potential for deformation localization and results in an increased plasticity of the composite material. A further strengthening of the composite material was achieved through its deformation by a high-pressure torsion (HPT) technique. The mechanical properties of the material were thoroughly investigated before and after the HPT treatment. Static strength and plasticity were analyzed as a function of the deformation degree. Microstructural analysis was performed using scanning electron microscopy and X-ray diffraction. The optimal deformation route, providing the best combination of mechanical properties, was experimentally identified, along with key microstructural parameters of the formed composite with a bimodal grain structure. A deformation level corresponding to 36% of shear stress provides a yield stress of up to 570 MPa, an ultimate tensile strength of up to 664 MPa, and a relative elongation to failure of up to 7%. As a result of the deformation treatment, characteristic substructures with dimensions of ~250 nm and >1000 nm are formed, with a volume ratio of approximately 80/20. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

21 pages, 6275 KiB  
Article
Design Optimization of a Marine Propeller Shaft for Enhanced Fatigue Life: An Integrated Computational Approach
by Víctor Tuninetti, Diego Martínez, Sunny Narayan, Brahim Menacer and Angelo Oñate
J. Mar. Sci. Eng. 2024, 12(12), 2227; https://doi.org/10.3390/jmse12122227 - 5 Dec 2024
Cited by 1 | Viewed by 2967
Abstract
This study investigates the design and potential failure modes of a marine propeller shaft using computational and analytical methods. The aim is to assess the structural integrity of the existing design and propose modifications for improved reliability and service life. Analytical calculations based [...] Read more.
This study investigates the design and potential failure modes of a marine propeller shaft using computational and analytical methods. The aim is to assess the structural integrity of the existing design and propose modifications for improved reliability and service life. Analytical calculations based on classification society rules determined acceptable shaft diameter ranges, considering torsional shear stress limits for SAE 1030 steel. A Campbell diagram analysis identified potential resonance issues at propeller blade excitation frequencies, leading to a recommended operating speed reduction for a safety margin. Support spacing was determined using both the Ship Vibration Design Guide and an empirical method, with the former yielding more conservative results. Finite element analysis, focusing on the keyway area, revealed stress concentrations approaching the material’s ultimate strength. A mesh sensitivity analysis ensured accurate stress predictions. A round-ended rectangular key geometry modification showed a significant stress reduction. Fatigue life analysis using the Goodman equation, incorporating various factors, predicted infinite life under different loading conditions, but varying safety factors highlighted the impact of these conditions. The FEA revealed that the original keyway design led to stress concentrations exceeding allowable limits, correlating with potential shaft failure. The proposed round-ended rectangular key geometry significantly reduced stress, mitigating the risk of fatigue crack initiation. This research contributes to the development of more reliable marine propulsion systems by demonstrating the efficacy of integrating analytical methods, finite element simulations, and fatigue life predictions in the design process. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 7237 KiB  
Article
Relationship Between Fracture Fractal and Mechanical Properties of 5083 Aluminum Alloy Sheet Prepared by Alternate Ring-Groove Pressing and Torsion
by Chunhui Zhang, Yu Wang, Mingxin Wang, Wenhao Li, Chunxiang Zhang and Junting Luo
Metals 2024, 14(12), 1382; https://doi.org/10.3390/met14121382 - 2 Dec 2024
Cited by 2 | Viewed by 999
Abstract
In this study, the tensile fracture morphology of a 5083 aluminum alloy sheet prepared by alternate ring-groove pressing torsion and torsional flattening at room temperature (ARPT-TF-R) under different numbers of torsional flattening passes was analyzed. The box dimension method was used to calculate [...] Read more.
In this study, the tensile fracture morphology of a 5083 aluminum alloy sheet prepared by alternate ring-groove pressing torsion and torsional flattening at room temperature (ARPT-TF-R) under different numbers of torsional flattening passes was analyzed. The box dimension method was used to calculate the fractal dimension, and formulas for the quantitative relationships between the tensile properties and Vickers hardness of 5083 aluminum alloy sheet under different process conditions and the fractal dimension were established. The results indicated that the fracture mode of the sheet prepared by one pass was microporous aggregation fracture, and the number of large-sized dimples was small. The plate prepared by two passes had a greater number of micropores, and the dimple size was relatively small. The fractal dimension of the aluminum alloy sheet prepared by ARPT-TF-R at room temperature was 1.77–1.84. As the number of torsional flattening passes increased, the yield strength, tensile strength, Vickers hardness, and fractal dimension of the aluminum alloy sheet increased. Full article
(This article belongs to the Special Issue Metal Plastic Deformation and Forming)
Show Figures

Figure 1

22 pages, 2632 KiB  
Article
Design of Anti-Eccentric Load Sensor for Engineering Operation Early Warning Based on Particle Swarm Optimization
by Kaile Yu, Weizheng Ren, Yiran Zhang, Yutong Ge and Yuxiao Li
Sensors 2024, 24(16), 5293; https://doi.org/10.3390/s24165293 - 15 Aug 2024
Viewed by 1037
Abstract
The accuracy of aerial work platform weighing is essential for safety. However, in practice, the same weight placed at different locations on the platform can yield varying readings, which is a phenomenon known as eccentric load. Measurement errors caused by eccentric loads can [...] Read more.
The accuracy of aerial work platform weighing is essential for safety. However, in practice, the same weight placed at different locations on the platform can yield varying readings, which is a phenomenon known as eccentric load. Measurement errors caused by eccentric loads can lead to missed detections and false alarms in the vehicle safety system, seriously affecting the safety of aerial work. To overcome the influence of eccentric load, the current engineering practice relies on multiple measurements at multiple points and averaging the results to eliminate the eccentric load, which greatly increases the work intensity of workers. To address the aforementioned issues, this paper proposes a three-dimensional force/torque shear force compensation scheme based on bending torque and torsional torque for pressure. The goal is to ensure that the sensor on the aerial work vehicle platform can accurately measure the anti-eccentric load under single-point measurement conditions. A three-box structure anti-eccentric load-weighing sensor for the aerial work platform was designed. Its structure has the advantages of high mechanical strength and no radial effect, ensuring the safety of aerial work, improvement of measurement sensitivity, and enabling of real-time and accurate acquisition of force/torque in three directions. In order to further improve the measurement accuracy of 3D force/torque compensation, a particle swarm optimization algorithm was adopted to optimize the 3D force/torque shear force compensation, thereby improving the safety of engineering operations. Through the verification of a self-made testing platform, the anti-eccentric load sensor designed in this study can ensure that the measurement error of objects at any position on the platform is less than 1.5%, effectively improving the safety of high-altitude platform engineering operations. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

17 pages, 31245 KiB  
Article
Effect of Nanostructuring on Operational Properties of 316LVM Steel
by Olga Rybalchenko, Natalia Anisimova, Natalia Martynenko, Georgy Rybalchenko, Alexey Tokar, Elena Lukyanova, Dmitry Prosvirnin, Mikhail Gorshenkov, Mikhail Kiselevskiy and Sergey Dobatkin
Metals 2023, 13(12), 1951; https://doi.org/10.3390/met13121951 - 28 Nov 2023
Cited by 1 | Viewed by 1422
Abstract
In this study, high-pressure torsion (HPT) was used to process austenitic 316LVM stainless steel at 20 °C and 400 °C. The effects of HPT on the microstructure, mechanical, and functional properties of the steel were investigated. By applying both HPT modes on the [...] Read more.
In this study, high-pressure torsion (HPT) was used to process austenitic 316LVM stainless steel at 20 °C and 400 °C. The effects of HPT on the microstructure, mechanical, and functional properties of the steel were investigated. By applying both HPT modes on the 316LVM steel, a nanocrystalline state with an average size of the structural elements of ~46–50 nm was achieved. The density of the dislocations and twins present in the austenite phase varied depending on the specific HPT conditions. Despite achieving a similar structural state after HPT, the deformation temperatures used has different effects on the mechanical and functional properties of the steel. After HPT at 20 °C, the yield strength of the 316L steel increased by more than nine times up to 1890 MPa, and the fatigue limit by more than two times up to 550 MPa, when compared to its coarse-grained counter-parts. After HPT at 20 °C, the 316LVM steel exhibited better ductility, higher low-cycle fatigue resistance, greater resistance to corrosion, and improved in vitro biocompatibility compared to processing at 400 °C. The reasons for the deterioration of the properties after HPT at 400 °C are discussed in the article. Full article
Show Figures

Figure 1

19 pages, 10237 KiB  
Article
Finite Element Analysis and Optimization of Hydrogen Fuel Cell City Bus Body Frame Structure
by Rong Yang, Wei Zhang, Shiyu Li, Minmin Xu, Wei Huang and Zuhai Qin
Appl. Sci. 2023, 13(19), 10964; https://doi.org/10.3390/app131910964 - 4 Oct 2023
Cited by 12 | Viewed by 2608
Abstract
Hydrogen fuel cell city bus is a type of new energy public transportation. In this paper, in order to evaluate the safety performance of a newly developed hydrogen fuel cell city bus body frame designed by the collaborating enterprise, finite element analysis is [...] Read more.
Hydrogen fuel cell city bus is a type of new energy public transportation. In this paper, in order to evaluate the safety performance of a newly developed hydrogen fuel cell city bus body frame designed by the collaborating enterprise, finite element analysis is conducted to investigate its structural mechanics and dynamic characteristics under four typical operating conditions, including horizontal bending, ultimate torsion, emergency cornering, and emergency braking. Based on the simulation results, although the body frame of the bus meets the stiffness design requirements and avoids body resonance, it exhibits maximum stresses of 328.9 MPa and 348.6 MPa under emergency cornering and ultimate torsion conditions, respectively, exceeding the material yield strength and failing to satisfy the strength design requirements. Therefore, the size optimization method is employed to optimize the thickness of the body frame components. After optimization, the maximum stresses are reduced to 262.7 MPa and 300.6 MPa, respectively, representing a reduction of up to 20.13%. The optimization significantly improves performance and meets the strength design requirements. Furthermore, the body frame is lightened by 106 kg, achieving the goal of weight reduction. Full article
Show Figures

Figure 1

10 pages, 2199 KiB  
Proceeding Paper
Torsional Strength of Aluminum Shapes—Circular and Rectangular Solids
by Constance Ziemian, Marly McClintock and Ronald Ziemian
Eng. Proc. 2023, 43(1), 4; https://doi.org/10.3390/engproc2023043004 - 12 Sep 2023
Cited by 1 | Viewed by 3600
Abstract
This paper presents an experimental investigation of 6061-T6 and 5050-H32 aluminum alloy rods and bars subjected to pure torsional loading. The test plan included five sets of 6061-T6 specimens, with solid circular and rectangular cross-sections, and four sets of 5050-H32 specimens, with solid [...] Read more.
This paper presents an experimental investigation of 6061-T6 and 5050-H32 aluminum alloy rods and bars subjected to pure torsional loading. The test plan included five sets of 6061-T6 specimens, with solid circular and rectangular cross-sections, and four sets of 5050-H32 specimens, with solid rectangular cross-sections. Each series included six specimens, for a total of 54 tests. Resulting torque and angular twist data were used to estimate the torsional stiffness and strength, including the initial yield, full yield, and ultimate strengths. Experimental results were compared with values computed using the Aluminum Association’s Specification for Aluminum Structures (SAS) design rules. SAS provisions were found to be overly conservative, supporting the importance of investigating changes towards an ultimate strength approach that is consistent with a limit states design specification. Full article
(This article belongs to the Proceedings of The 15th International Aluminium Conference)
Show Figures

Figure 1

16 pages, 4423 KiB  
Article
Influence of Pre-Tension on Free-End Torsion Behavior and Mechanical Properties of an Extruded Magnesium Alloy
by Hongbing Chen, Zhikang Shen, Bo Song and Jia She
Materials 2023, 16(15), 5343; https://doi.org/10.3390/ma16155343 - 29 Jul 2023
Cited by 4 | Viewed by 1513
Abstract
In this study, the influence of pre-tension on free-end torsion behavior and compression mechanical properties and micro-hardness of an extruded AZ31 Mg alloy was investigated using electron backscatter diffraction (EBSD), compression testing and micro-hardness testing. The result indicates that pre-tension can cause significant [...] Read more.
In this study, the influence of pre-tension on free-end torsion behavior and compression mechanical properties and micro-hardness of an extruded AZ31 Mg alloy was investigated using electron backscatter diffraction (EBSD), compression testing and micro-hardness testing. The result indicates that pre-tension can cause significant dislocation strengthening, which can increase the torsion yield strength and make the shear stress–shear strain curve of the pre-tension sample almost parallel to that of the as-extruded sample during plastic deformation stage. Texture in edge position on the cross-section of both the pre-tension and as-extruded samples can be rotated towards the extrusion direction by about ~30° by free-end torsion. The Swift effect is mainly responsible for the occurrence of massive extension twins in the central region. In contrast, normal stress is the main cause of extension twins occurring in the edge region. However, the effect of extension twins on micro-hardness is less than that of dislocations. The micro-hardness of both free-end torsion specimens increases almost linearly with increasing distance from center to edge on the cross-section. Nevertheless, the increase in micro-hardness of the pre-tension and then torsion sample is inconspicuous because pre-tension leads to dislocation proliferation and dislocation accumulation saturation. The result also indicates that both pre-tension and free-end torsion can lead to dislocation strengthening, which can obviously increase the micro-hardness and compressive yield stress. The underlying mechanisms were explored and discussed in detail. Full article
(This article belongs to the Special Issue Research on Forming and Serving Performance of Advanced Alloys)
Show Figures

Figure 1

14 pages, 5758 KiB  
Article
Microstructures and Mechanical Properties of a Nanostructured Al-Zn-Mg-Cu-Zr-Sc Alloy under Natural Aging
by Gaoliang Shen, Zhilei Xiang, Xiaozhao Ma, Jingcun Huang, Jihao Li, Bing Wang, Zongyi Zhou, Yilan Chen and Ziyong Chen
Materials 2023, 16(12), 4346; https://doi.org/10.3390/ma16124346 - 13 Jun 2023
Cited by 4 | Viewed by 1702
Abstract
Nanocrystalline (NC) structure can lead to the considerable strengthening of metals and alloys. Obtaining appropriate comprehensive mechanical properties is always the goal of metallic materials. Here, a nanostructured Al-Zn-Mg-Cu-Zr-Sc alloy was successfully processed by high-pressure torsion (HPT) followed by natural aging. The microstructures [...] Read more.
Nanocrystalline (NC) structure can lead to the considerable strengthening of metals and alloys. Obtaining appropriate comprehensive mechanical properties is always the goal of metallic materials. Here, a nanostructured Al-Zn-Mg-Cu-Zr-Sc alloy was successfully processed by high-pressure torsion (HPT) followed by natural aging. The microstructures and mechanical properties of the naturally aged HPT alloy were analyzed. The results show that the naturally aged HPT alloy primarily consists of nanoscale grains (~98.8 nm), nano-sized precipitates (20–28 nm in size), and dislocations (1.16 × 1015 m−2), and exhibits a high tensile strength of 851 ± 6 MPa and appropriate elongation of 6.8 ± 0.2%. In addition, the multiple strengthening modes that were activated and contributed to the yield strength of the alloy were evaluated according to grain refinement strengthening, precipitation strengthening, and dislocation strengthening, and it is shown that grain refinement strengthening and precipitation strengthening are the main strengthening mechanisms. The results of this study provide an effective pathway for achieving the optimal strength–ductility match of materials and guiding the subsequent annealing treatment. Full article
Show Figures

Figure 1

30 pages, 4922 KiB  
Article
Torsional Capacity Prediction of Reinforced Concrete Beams Using Machine Learning Techniques Based on Ensembles of Trees
by Diana S. O. Bernardo, Luís F. A. Bernardo, Hamza Imran and Tiago P. Ribeiro
Appl. Sci. 2023, 13(3), 1385; https://doi.org/10.3390/app13031385 - 20 Jan 2023
Cited by 5 | Viewed by 2521
Abstract
For the design or assessment of framed concrete structures under high eccentric loadings, the accurate prediction of the torsional capacity of reinforced concrete (RC) beams can be critical. Unfortunately, traditional semi-empirical equations still fail to accurately estimate the torsional capacity of RC beams, [...] Read more.
For the design or assessment of framed concrete structures under high eccentric loadings, the accurate prediction of the torsional capacity of reinforced concrete (RC) beams can be critical. Unfortunately, traditional semi-empirical equations still fail to accurately estimate the torsional capacity of RC beams, namely for over-reinforced and high-strength RC beams. This drawback can be solved by developing accurate Machine Learning (ML) based models as an alternative to other more complex and computationally demanding models. This goal has been herein addressed by employing several ML techniques and by validating their predictions. The novelty of the present article lies in the successful implementation of ML methods based on Ensembles of Trees (ET) for the prediction of the torsional capacity of RC beams. A dataset incorporating 202 reference RC beams with varying design attributes was divided into testing and training sets. Only three input features were considered, namely the concrete area (area enclosed within the outer perimeter of the cross-section), the concrete compressive strength and the reinforcement factor (which accounts for the ratio between the yielding forces of both the longitudinal and transverse reinforcements). The predictions from the used models were statistically compared to the experimental data to evaluate their performances. The results showed that ET reach higher accuracies than a simple Decision Tree (DT). In particular, The Bagging Meta-Estimator (BME), the Forests of Randomized Trees (FRT), the AdaBoost (AB) and the Gradient Tree Boosting (GTB) reached good performances. For instance, they reached values of R2 (coefficient of determination) in the range between 0.982 and 0.990, and values of cvRMSE (coefficient of variation of the root mean squared error) in the range between 10.04% and 13.92%. From the obtained results, it is shown that these ML techniques provide a high capability for the prediction of the torsional capacity of RC beams, at the same level of other more complicated ML techniques and with much fewer input features. Full article
Show Figures

Figure 1

Back to TopTop