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Abstract: For the design or assessment of framed concrete structures under high eccentric loadings,
the accurate prediction of the torsional capacity of reinforced concrete (RC) beams can be critical.
Unfortunately, traditional semi-empirical equations still fail to accurately estimate the torsional
capacity of RC beams, namely for over-reinforced and high-strength RC beams. This drawback can
be solved by developing accurate Machine Learning (ML) based models as an alternative to other
more complex and computationally demanding models. This goal has been herein addressed by
employing several ML techniques and by validating their predictions. The novelty of the present
article lies in the successful implementation of ML methods based on Ensembles of Trees (ET) for
the prediction of the torsional capacity of RC beams. A dataset incorporating 202 reference RC
beams with varying design attributes was divided into testing and training sets. Only three input
features were considered, namely the concrete area (area enclosed within the outer perimeter of the
cross-section), the concrete compressive strength and the reinforcement factor (which accounts for
the ratio between the yielding forces of both the longitudinal and transverse reinforcements). The
predictions from the used models were statistically compared to the experimental data to evaluate
their performances. The results showed that ET reach higher accuracies than a simple Decision Tree
(DT). In particular, The Bagging Meta-Estimator (BME), the Forests of Randomized Trees (FRT), the
AdaBoost (AB) and the Gradient Tree Boosting (GTB) reached good performances. For instance, they
reached values of R2 (coefficient of determination) in the range between 0.982 and 0.990, and values
of cvRMSE (coefficient of variation of the root mean squared error) in the range between 10.04% and
13.92%. From the obtained results, it is shown that these ML techniques provide a high capability for
the prediction of the torsional capacity of RC beams, at the same level of other more complicated ML
techniques and with much fewer input features.

Keywords: machine learning; reinforced concrete beams; torsional capacity; Decision Tree; Bagging;
Random Forests; Adaptive Boosting; Gradient Boosting

1. Introduction

Reinforced concrete (RC) structures often incorporate linear members for which the
torsional effects can be critical for designing or for assessing the actual cross-sectional
resistance. This situation is very common in bridges and building structures which incor-
porate beams and columns under high eccentric loadings, or any structural system whose
equilibrium depends on reinforced concrete elements resisting torsion. For the assessment
of the capacity of such members, an accurate estimation of the torsional capacity in their
critical cross-sections is usually required. To do so, structural designers often apply the
provisions from codes of practice, which incorporate simplified models and semi-empirical
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equations, allowing to estimate the resistance to internal forces for a given RC cross-section.
As far as torsion is concerned, and unlike what is observed for the bending capacity, recent
studies have reported that current codes of practice can still fail to estimate the torsional
capacity of RC beams. This conclusion arises from comparing the estimates from codes
and the results from experiments [1–3]. For RC beams with somewhat high reinforcement
ratios, unsafe estimates for the torsional capacity were also reported. This can explain
why structural failures related to primary torsional effects still continue to be reported in
the literature [4].

The aforementioned problem has been well-known by the technical community for a
long time. For this reason, efforts have been made in the past decades to propose alternative
and more accurate models for RC members under torsion. One such model is the skew-
bending theory, proposed by Hsu in 1968 [5] from the observation of the experimental
torsional failure pattern in tested RC beams, and further developed by other authors [6].
For common and small RC rectangular cross-sections, simple equations were derived from
this model to compute the torsional capacity, which were incorporated in some reference
codes of practice, namely the American building code prior to 1995 [7] and the current
Eurasian code [8].

Nowadays, most of current reference codes of practice for RC structures (such as the
American, Canadian and European codes [9–12]) base their provision rules for torsion on
the space truss analogy. This more rational model was proposed by Raush in 1929 [13] and
further refined by other authors mainly in the second half of the last century [14–17] based
on the results of extensive experimental programs. When compared with the skew-bending
theory, the space truss analogy provides simpler equations for the design of RC beams
under torsion and for members with a much wider range of geometrical cross-sections.
With the aim of obtaining simple rules for design to be incorporated in the provisions
from codes of practice, the original equations from both the skew-bending theory and
space truss analogy have been simplified by using some empirical hypotheses. As a result,
codes of practice incorporate many semi-empirical equations, which can still fail to provide
always accurate and safe estimates for the torsional capacity of RC beams, as referred
before. Hence, more refined or alternative models for RC beams under torsion are still
needed and have been proposed in the past two decades.

Among the refined models proposed in the literature, some of them are still based
on the space truss analogy. Some of these refined models allow to predict very well
the torsional capacity of RC beams with a wide range of design attributes and torsional
loadings [18–23]. Alternative and more advanced analytical or numerical reliable models,
including models based on the finite element method, have also been proposed [24–26].
However, many of these models need advanced calculation procedures and demanding
computational efforts just to compute the actual torsional capacity of RC beams. Hence,
they cannot be easy to use by most of practitioners.

In recent years, reliable models based on several Machine Learning (ML) techniques
have been proposed in the literature to solve diverse engineering problems, as alternatives
to other and more complex analytical or numerical models. These models are able to
provide predictions through a self-learning process based on collected or existing databases.
In parallel, during the last decades, a huge amount of data has been accumulated in
the field of civil engineering due to the advance in experimental programs, monitoring,
data acquisition, and processing. For these reasons, ML-based models have been success-
fully used in complex civil engineering problems, including geotechnical, materials and
structural [27–39], and some of them already focus on the torsional capacity of RC beams,
including externally strengthened and combined RC beams [40–48]. The referred studies on
the torsional capacity of RC beams are still very limited and they generally apply different
ML techniques. This is due to the fact that several ML techniques have been proposed in
the literature, which are able to be used to solve problems in the field of civil engineering,
including for structural concrete [46].



Appl. Sci. 2023, 13, 1385 3 of 30

Despite the successes achieved with the application of ML approaches in several
previous studies, some key challenges still exist which prevent these models from being
widely used to solve engineering problems. Perhaps the main key challenge is related with
the selection process of the most appropriate and effective ML models to solve a particular
civil engineering problem. For instance, some studies indicated that the best performances
were reached with extreme gradient boosting (XGBoost) for problems involving the shear
strength of RC beams [49,50], whereas others have mentioned other ML models to be more
performant for the same types of problems [41–55], namely Artificial Neural Networks
(ANN). This includes the analysis of RC beams under torsion, where the shear effect
is predominant [40,41,43–46,48]. Ensembles of Trees (ET) have also been used in such
problems, although to a lesser extent and with limited success [44]. Explicit ML techniques,
such as the M5P model tree [47], were also successfully used. The problem related with the
selection process of the most appropriate effective ML model for RC beams under torsion
needs more studies to compare the performance of different ML models. Particularizing
for RC beams under torsion, another key challenge is related to the number of features to
be considered as input variables for developing the ML models. The more selected number
of input variables, the higher the prediction accuracy. However, the more complex the
algorithm and the larger the computational cost. Hence, a compromise must be reached
for practice.

Decision Trees (DT) are among the most commonly used ML models in very different
problems, and they show several distinct advantages. Many algorithms require data
normalization before model building. Such variable transformations are not required with
DT since the tree structure will remain the same despite the transformation. They also
implicitly perform feature selection and are not sensitive to outliers. In addition, DT usually
require less input variables when compared to other ML models, such as ANN, to achieve
similar performances. For these reasons, DT were used as ML-based models for this study.

This study aims to contribute to compare and find the best ML techniques to be ap-
plied to RC beams under pure torsion. Although ET can be considered some of the most
effective and popular ML algorithms, an extensive examination of the literature indicates
that studies have yet to successfully use this approach to predict the torsional capacity of
RC beams Therefore, an attempt has been made to investigate this potentiality, and five ET
models were developed to study the feasibility of applying these techniques for the quick
estimation of the torsional capacity of RC beams. To the best of the authors’ knowledge,
only one previous study used two such techniques, but applied to externally bonded FRP
(Fiber Reinforced Polymer) RC Beams under torsion [44]. A dataset including 202 RC
beams tested under pure torsion and found in the literature was used for both the training
and testing stages. Three input variables were used: the cross-section area (area enclosed
within the outer perimeter of the cross-section), the concrete compressive strength, and the
reinforcement factor (factor accounting for the ratio between the yielding forces of both the
longitudinal and transverse reinforcements). The predictions from the five ML models are
statistically compared to each other, to the experimental data, and to other ML models, to
evaluate their performance and reliability.

This article was structured in the following manner. Section 2 gives an overview of the
used methodology, the dataset, the input and output variables, the splitting of the dataset
in training and testing sets, the used ML models, the cross-validation, the hyperparameter
tunning procedures, the metrics used to evaluate the performance of the models, and the
used programming languages and software to implement the models. Section 3 presents
the results of the models and Section 4 discusses the comparison of these results with the
ones obtained in previous studies. In Section 5, a sensitivity analysis is performed to check
the importance of each input variable in the prediction of the torsional capacity of RC
beams. Finally, Section 6 summarizes the main conclusions.
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2. Materials and Methods
2.1. Research Methodology

The dataset was randomly divided into two sets: one for training and another for
testing. Each model was trained using the training set and was tested using the testing
set. The appropriate hyperparameters of each model were determined by using a five-fold
cross-validation procedure in the training set. After the hyperparameters were optimized,
the testing set was used to verify the performance of each model. If the performance of the
model is satisfactory, it is deemed as a final predictive model. The steps used in this study
are depicted in the flowchart illustrated in Figure 1 (adapted from [30]).
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2.2. Dataset

For this study, the dataset compiled by Bernardo et al. [3] and also used by Henedy et al. [47]
was considered. In the former study, a literature review was performed to compile the
main features and torsional capacity of RC rectangular beams tested under pure torsion
until failure [5,6,17,56–68]. In total, 202 RC beams were compiled to build the dataset.
Detailed information about the criteria used to discard some of the found tested beams for
the dataset can be found in [3].

Table A1 in Appendix A summarizes the main geometrical and mechanical properties
of the reference RC beams. The meaning of each parameter can be found in the nomen-
clature. Figure 2 presents the histograms with the distribution of the considered main
key parameters in this study for the 202 RC beams from the dataset. From the analysis of
the data presented in Table A1 and from a visual analysis from Figure 2, it can be stated
that 142 and 60 beams were built with normal-strength (up to 50 MPa) and high-strength
concrete (over 50 MPa, according to [11]), respectively. The average concrete compressive
strength ( fc) ranges between 14 MPa and 110 MPa. The total reinforcement ratio, which rep-
resents the sum of the longitudinal plus the transverse reinforcement ratio (ρtot = ρl + ρt),
ranges between a minimum of 0.37% and a maximum of 6.36%. For most beams, ρtot ranges
between 1% and 2%. The yielding stress of the longitudinal reinforcement ( fly) ranges
between 308.8 MPa and 723.9 MPa. The yielding stress of the transverse reinforcement
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( fty) ranges between 285 MPa and 714.8 MPa. For most beams, the yielding stress ranges
between 300 MPa and 500 MPa.
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Figure 2. Histograms of key parameters for the RC beams: (a) total reinforcement ratio, (b) con-
crete compressive strength, (c) yielding stress of longitudinal reinforcement, (d) yielding stress of
transverse reinforcement.

2.3. Input and Output Variables

Based on results from previous studies [3,47], the following three input variables
were used to characterize each RC beam and predict the torsional capacity TR_Exp: the
cross-section area Ac (area enclosed within the outer perimeter of the cross-section), the

average concrete compressive strength fc, and the reinforcement factor Al fly
At fty

s (factor
accounting for the ratio between the yielding forces of both the longitudinal and transverse
reinforcements). To compute the last input variable, the units of each parameter are the
same as the ones given in Table A1 in Appendix A. The reinforcement factor combines both
the ratio of the longitudinal to the transverse torsional reinforcement, as well as the ratio of
their yielding stresses. Hence, it can be used to characterize beams with balanced (which is a
usual design criterion for pure torsion) or unbalanced (for which the reinforcement factor is
different from unity) yielding forces of the longitudinal and transverse reinforcements. For
this reason, the authors considered that there is no need to consider separately the effects
of longitudinal and transverse reinforcement in developing the ML models in this study, as
it was carried out in previous studies using ANN ML models (for instance, [40,41,43,48])
which usually require more input variables. The reinforcement factor was firstly proposed
by Rahal [1] as an input variable and further used successfully in recent studies from the
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authors [3,47] using nonlinear regression and MP5 models to predict the torsional capacity
of RC beams under pure torsion.

Figure 3 presents the histograms of the input variables (the concrete compressive
strength was added again), as well as the output variable (torsional capacity), for the
202 reference RC beams from the database. Figure 3 shows that for most of the beams,
the reinforcement factor ranges between 1.1 × 106 and 2 × 108, and the torsional capacity
ranges between 9.0 kNm and 200 kNm.
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As it can be can noticed from Figures 2 and 3, some of the predictors and outcome
variables do not obey the normal distribution curve. However, DT and ET methods do
not require feature scaling to be performed as they are not sensitive to the variance in the
data [55], as previously mentioned in Section 1. For this reason, data normalization was
not performed in this study.

Following a previous study by Wakjira et al. [32], the correlation between each pair of
parameters is also important to be analyzed. Figure 4 and Table 1 show the scatter plot and
the Pearson correlation coefficient between pairs of the inputs and the output variables,
respectively. Both Figure 4 and Table 1 show that there is a strong correlation between
some of the input variables, namely the cross-section area and the reinforcement factor,
and the output, whereas there is a moderate correlation between the concrete compressive
strength and the output. In general, low degrees of correlation exist between pairs of input
variables, indicating that these will not cause multicollinearity problems on the models [69].
A high absolute value of the Pearson correlation coefficient between pairs of inputs could
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affect the accuracy of the model and the interpretation of the effects of the inputs on the
output [33].
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Table 1. Pearson correlation coefficient.

TR_Exp fc Ac Alfly
Atfty

s

TR_Exp - 0.4168 0.8801 0.7644
fc 0.4168 - 0.2461 0.3637
Ac 0.8801 0.2462 - 0.4647

Alfly
Atfty

s
0.7644 0.3637 0.4647 -
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2.4. Data-Splitting Procedure

To implement the ML models, the database was divided into a training set and a
testing set. Each model was developed using the training set and evaluated using the
testing set. As much as possible, a statistically significant association was ensured between
the variables of the training and testing sets when dividing the database into subsets. Of
the 202 samples of the database, 80% (161) was used for training and 20% (41) was used
for testing. This division was made based on the ratio of the data-splitting procedure
commonly used in several previous related studies. In particular, in [70] the authors
justified the use of 70/30 or 80/20 splitting procedures. The statistical measures of the
torsional capacity and input variables are given in Tables 2 and 3, for the training and
testing set, respectively.

Table 2. Statistical measures of the variables for the training set.

Statistics TR_Exp (kNm) fc (MPa) Ac (m2) Alfly
Atfty

s

Mean 88.7 46.7 0.153 3.5 × 107

Minimum 9.0 14.3 0.044 1.1 × 106

Maximum 521.3 109.8 0.366 5.3 × 108

Standard
deviation 96.9 23.0 0.094 6.2 × 107

Median 57.0 36.5 0.120 1.7 × 107

Kurtosis 6.0 −0.2 −0.029 32.3
Skewness 2.4 0.9 0.958 5.1

Table 3. Statistical measures of the variables for the testing set.

Statistics TR_Exp (kNm) fc (MPa) Ac (m2) Alfly
Atfty

s

Mean 105.8 46.6 0.156 4.0 × 107

Minimum 9.1 16.8 0.044 1.2 × 106

Maximum 437.9 93.9 0.361 2.4 × 108

Standard
deviation 109.9 22.7 0.098 5.3 × 107

Median 61.6 39.6 0.120 2.5 × 107

Kurtosis 2.5 −0.9 0.309 7.3
Skewness 1.8 0.6 1.159 2.7

2.5. Development of Models

In this article, five ML models were implemented using the same database and inputs.
The first model implemented was a simple Decision Tree (DT) regressor. A DT can be
unstable since small variations in the data might result in a completely different generated
tree. A single tree usually exhibits high variance and tends to overfit, not generalizing well
to new data [71]. This problem is attenuated by using several trees within an ensemble.
Ensemble methods seek to combine the predictions of several base estimators to improve
generalizability, accuracy and robustness over a single estimator. The other four models
implemented in this study involve Ensemble Tree (ET) methodologies. For the sake of
the readers, the following subsections briefly present an overview of each implemented
method. Training data exist in the form of a training set {(xi, yi)}n

i=1, in which xi ∈ Rp

represents the input features and yi ∈ R represents the torsional capacity for p inputs
and n samples.

2.5.1. Decision Trees

Decision Trees (DT) predict the value of a variable by learning decision rules inferred
from the features. The deeper the tree, the more complex the decision rules and the fitter the
model. DT require little data preparation when compared to other techniques that require
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data normalization and other transformations. It also uses a white box model, allowing an
easy explanation of the conditions by Boolean logic. However, DT can create over-complex
trees that overfit and do not generalize well to the data [71]. This problem was avoided
by setting a maximum depth for the trees, as referred in [71]. The input data is recursively
partitioned into two smaller regions called nodes, based on a series of decision rules until a
stopping criterion is reached (in this case, the maximum depth of the tree). Samples with
similar target values are grouped together, and then the response is modelled by the mean
of the y variable in each region. A tree can be seen as a piecewise constant approximation.
The variable and split point are chosen in order to achieve the best fit. Let the data at node
m be represented by Rm with nm samples. For each candidate split θ = (j, tm) consisting
of a feature j and a threshold tm, the data is partitioned into Rle f t

m (θ) and Rright
m (θ) subsets

such that:
Rle f t

m (θ) =
{
(x, y) | xj ≤ tm

}
(1)

Rright
m (θ) = Rm\Rle f t

m (θ) (2)

The quality of a candidate split of node m is then computed using a loss function H:

G(Rm, θ) =
nle f t

m
nm

H
(

Rle f t
m (θ)

)
+

nright
m
nm

H
(

Rright
m (θ)

)
(3)

The parameters are selected in order to minimize the loss function:

θ∗ = arg minθ G(Rm, θ) (4)

This is carried out recursively for the two subsets until the maximum depth is reached.

2.5.2. Bagging Meta-Estimator

A Bagging Meta-Estimator (BME) belongs to the set of Ensemble Methods, specifically
to the family of averaging methods, in which several estimators are built independently
and then their predictions are averaged to form a final prediction. Averaging methods are
used to improve stability and reduce the variance of the base estimator by introducing
randomization into its construction procedure. As they provide a way to reduce overfitting,
these methods work best with strong and complex models, in this case, fully developed
trees. BME uses a bootstrapping technique to build each individual estimator on random
subsets of samples that are repeatedly drawn from the original training dataset with
replacement [71]. A model is fitted for each bootstrap sample, giving a prediction f̂ b(x) for
b = 1, . . . , B. The final estimate is then given by:

f̂ (x) =
1
B

B

∑
b=1

f̂ b(x) (5)

2.5.3. Forests of Randomized Trees

Forests of Randomized Trees (FRT) are also an averaging methods. The prediction
of the ensemble is given as the averaged prediction of the individual regressors. Each
tree is built from a sample drawn with replacement from the training set. The sources of
randomness decrease the variance of the estimator by reducing the correlation between
trees. In this algorithm, only one subset of features is randomly selected out of the total,
and the best split feature from the subset is used to split each node in a tree, unlike in
Bagging, where all features are considered for splitting a node [71].

2.5.4. Adaptive Boosting

Adaptive Boosting or AdaBoost (AB) belongs to the set of Ensemble Methods, specifi-
cally to the family of boosting methods, in which the base estimators are built sequentially,
and the goal is to reduce the bias of the combined estimator. The motivation is to combine
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several weak models to generate a powerful ensemble. In contrast with averaging methods,
boosting methods usually work best with weak models, namely shallow trees in this case.
A sequence of weak learners is fitted on repeatedly modified versions of the data. The
predictions from all of them are then combined through a weighted sum to produce the
final prediction. The data modifications at each boosting step consist of applying weights
ω1, ω2, . . . , ωN to each of the training samples (xi, yi) [71]. Initially, all the weights are all
set to ωi = 1/N, so that the first step simply trains a weak learner in the usual manner. For
each successive iteration, the sample weights are individually modified, and the algorithm
is reapplied to the weighted data. The training examples that were incorrectly predicted by
the model induced at the previous step have their weights increased, whereas the weights
are decreased for the ones predicted correctly. As iterations proceed, examples that are
difficult to predict receive an increasing influence. Each subsequent weak learner is forced
to concentrate on the examples that were missed by the previous ones in the sequence.

2.5.5. Gradient Tree Boosting

Gradient Tree Boosting (GTB) is also a boosting method. It builds an additive model
in a forward stage-wise fashion allowing the optimization of a differentiable loss function.
The existing residuals are used to build new trees sequentially. In each stage, a regression
tree is added and fitted on the negative gradient of the loss function, reducing its value and
improving the prediction. The prediction ŷi for a given input xi is of the form:

ŷi = FM(xi) =
M

∑
m=1

hm(xi) (6)

where hm are the weak learners. The constant M corresponds to the number of estimators.
GTB is built as follows:

Fm(x) = Fm−1(x) + hm(x) (7)

where the added tree hm is fitted in order to minimize a sum of losses Lm, given the previous
ensemble Fm−1:

hm = arg minhLm = arg minh

n

∑
i=1

l(yi, Fm−1(xi) + h(xi)) (8)

where l[yi, Fm−1] is the loss function measuring how much the predicted value F(x) differs
from the true value y. Trees will be built, and each iteration must satisfy the above equation.
The initial model F0 is chosen as the constant that minimizes the loss. Using a first-order
Taylor approximation, the value of l can be approximated as:

l(yi, Fm−1(xi) + hm(xi)) ≈ l(yi, Fm−1(xi)) + hm(xi)

[
∂l(yi, F(xi))

∂F(xi)

]
F=Fm−1

(9)

Removing the constant terms,

hm ≈ arg minh

n

∑
i=1

h(xi) (10)

This is minimized if h(xi) is fitted to predict a value that is proportional to the negative
gradient. Therefore, at each iteration, the estimator hm is fitted to predict the negative gra-
dients of the samples. The gradients are updated at each iteration. This can be considered
as a form of gradient descent in a functional space.

Regularization techniques are usually applied during training to reduce overfitting
and improve the generalization of the model. A regularization strategy that scales the
contribution of each weak learner by a constant factor ν is the following [72]:

Fm(x) = Fm−1(x) + νhm(x) (11)
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The parameter ν is called the learning rate because it scales the step length of the
gradient descent procedure.

Stochastic Gradient Boosting combines gradient boosting with bootstrap averaging
(Bagging) [73]. At each iteration the base estimator is trained on a fraction subsample of
the available training data. The subsample is drawn without replacement.

2.6. Cross-Validation

A standard approach for evaluating the performance of ML models with hyperpa-
rameter tuning is to divide the dataset into three subsets: training, validation, and testing.
The training set is used for the learning process and the evaluation of the performance
of the model is done on the validation set. After the best parameters are found, the final
evaluation is performed on the test set, with samples that the model has never seen before.
Note that the validation score is biased and to obtain a proper estimate of the generalization
the score needs to be computed on the test set. However, dividing the data into three
subsets reduces the number of samples that can be used for learning, which might result
in an inadequately trained model. Cross-validation (CV) [71] is a widely used strategy
for avoiding over-reduction of the training set, particularly for small datasets. A test set
should still be held out for final evaluation, but the validation set is no longer needed. In
this research, k-fold CV was used. This consists of splitting the training set into k smaller
sets. Then, for each of the k folds, the model is trained using k − 1 of these folds and then
it is validated on the remaining fold. The final performance measure is the average of
the k performance values computed in this loop. Figure 5 (adapted from [74]) depicts the
five-fold CV used in this research for training and also for the hyperparameter selection.
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2.7. Hyperparameter Tuning

The tuning of hyperparameters is essential to select the optimal values that improve
the performance of the model. One method of automated hyperparameter selection is
the grid search technique, which investigates all possible hyperparameter values in a
pre-defined domain [75]. The hyperparameters are optimized by a cross-validated grid
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search over a parameter grid, considering all possible combinations. It selects the set of
hyperparameters with the maximum score on a validation set. At last, a final evaluation
of the model is performed in the test set, allowing the understanding of how the model is
performing on unseen data.

The proper manner of choosing multiple hyperparameters of an estimator is the grid
search. However, grid search techniques can come at the cost of great computing time when
having several parameters, with dozens or even hundreds of values each. It is sometimes
helpful to plot the influence of a single hyperparameter on the training and validation
scores to find if the estimator is overfitting or underfitting for some hyperparameter values.

2.8. Model Performance and Uncertainty Metrics

Various statistical measures were used to evaluate the performance of the ML models.
The mean absolute error (MAE) is the averaged absolute difference between the actual and
the predicted values. The equation for the MAE is the following:

MAE =
∑n

i=1|yi − ŷi|
n

(12)

where yi and ŷi are the actual and the predicted value of the i-th sample, respectively, for a
total of n samples.

The root-mean-squared error (RMSE) is calculated as the square root of the average
squared errors. The RMSE is computed as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (13)

The coefficient of variation of the root mean squared error (cvRMSE), or the scatter
index (SI), is the ratio of the RMSE to the mean of the actual values y = ∑n

i=1 yi. It represents
the percentage of RMSE with respect to the mean of observations and gives the expected
error. It can be calculated as follows:

cvRMSE =
RMSE

y
(14)

The coefficient of determination (R2) represents the proportion of variation in the
dependent variable that is predicted by the independent variables in the model. It is an
indicator of goodness of fit and a measure of how well the model predicts the outcome.
When the R2 value is 1, the predicted and the true values are perfectly aligned. R2 has the
following mathematical representation:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (15)

The mean absolute percentage error (MAPE) is an evaluation metric sensitive to
relative errors. The smaller its value, the better. It is given by:

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

(16)

The root-relative-squared error (RRSE) is the square root of the sum of squared errors
of a predictive model normalized by the sum of squared errors of a simple model. The
lower its value, the better the model. It can be calculated as:

RRSE =

√√√√∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (17)
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Another performance metric used in this study is the variance accounted for (VAF),
with the best possible score of 1. The following equation was used to compute this metric.

VAF = 1− VAR(yi − ŷi)

VAR(yi)
(18)

The model uncertainty is defined as the inability of the model to effectively express
the torsional capacity. In this research, the predictive model uncertainty related to beam i is
equal to the ratio between the experimental and the predicted torsional capacity:

Mi =
TR_Expi

TR_Predi

(19)

where Mi is the model uncertainty of the i-th beam sample. The mean and standard
deviation of the model uncertainty are represented by σM and µM, respectively. It is better
to obtain a model with a mean µM close to 1 and a standard deviation σM close to 0.

2.9. Programming Languages and Software

The Python programming language combined with the Scikit-learn library was used to
build the models for the torsional capacity prediction. Scikit-learn [76] is an open-source
ML library in Python, containing many algorithms and methods, such as classification, clus-
tering, and regression, in addition to being used in data processing and model evaluation.

3. Model Results and Discussion
3.1. Parameters Description of the Regression Functions

For the Decision Tree (DT), the module sklearn.tree provides the function DecisionTreeRe-
gressor. This function supports four different criteria to measure the quality of a split via
the parameter criterion: the MSE, the MSE with improvement score by Friedman, the MAE
and the Poisson deviance. The size of the regression tree can be controlled by specifying
the parameter max_depth, which limits the number of nodes in the tree. The maximum
number of features to consider when looking for the best split is given by the parameter
max_features.

For the Bagging Meta-Estimator (BME), the module sklearn.ensemble provides the
function BaggingRegressor, taking as input an estimator along with parameters specifying
the strategy to draw random subsets. The base estimator used was a DT regressor. The
parameter n_estimators is the number of base estimators in the ensemble. The parameters
max_samples and max_features control the size of the subsets in terms of samples and features
to train each base estimator, while bootstrap and bootstrap_features control whether samples
and features are drawn with or without replacement.

For the Forests of Randomized Trees (FRT), the module sklearn.ensemble provides
the function RandomForestRegressor. The parameter n_estimators is the number of trees in
the forest. This function also supports the same four criteria to measure the quality of
a split via the parameter criterion as the DecisionTreeRegressor. When building trees, the
best node split can be found either from all input features or a random subset of size
max_features. Bootstrap samples are used by default and the fraction of samples to train
each base estimator is given by the parameter max_samples.

For the AdaBoost (AB), the module sklearn.ensemble provides the function AdaBoostRe-
gressor, taking as input a user-specified estimator from which the ensemble is built along
with other parameters. The base estimator used was a DT regressor. The learning rate
can be set via the parameter learning_rate, which controls the contribution of each tree in
the final combination. This strongly interacts with the parameter n_estimators. Empirical
evidence suggests that small values of learning_rate favor better test error and lead to
better model generalization [71]. Smaller values of learning_rate require larger numbers of
weak learners to maintain a constant training error, and this comes at the cost of greater
computing time. It is recommended to set the learning rate to a small constant and choose
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n_estimators by early stopping [71]. This function also supports four different loss functions
when updating the weights after each boosting iteration via the parameter loss: the linear,
the square and the exponential.

Finally, for the Gradient Tree Boosting (GTB) the module sklearn.ensemble provides
the function GradientBoostingRegressor, which uses gradient boosted trees. It supports
four different loss functions to be optimized via the parameter loss: the squared error, the
absolute error, the huber and the quantile. The Huber loss function is a combination of
the first two loss functions. It applies the squared error loss for small deviations from the
actual value and the absolute error loss for large deviations. There is also a parameter
alpha that dictates the threshold between these losses. This function also supports two
different criteria to measure the quality of a split via the parameter criterion: the MSE and
the MSE with improvement score by Friedman. The size of the individual trees can be
controlled by the parameter max_depth. The subsample parameter represents the fraction
of samples to be used for fitting the individual base learners. The learning rate can be set
via learning_rate and the number of estimators can be set via n_estimators. The number of
features to consider when looking for the best split can be given by max_features.

3.2. Hyperparameter Optimization

The hyperparameters of each model were optimized using a grid search process
and a five-fold cross-validation was performed in the training set. For all methods, an
exhaustive search over specified parameter values was performed using the function
GridSearchCV from the module sklearn.model_selection. For the BME model, the parameters
that control whether samples and features are drawn with or without replacement were
set according to their default stage (samples drawn with replacement and features drawn
without replacement). Since averaging methods work best with strong and complex models,
the trees for these methods were not given a maximum depth. For the AB and the GTB
models, the learning was set to 0.01.

For each model, the tuned values for each hyperparameter are shown in Table 4. The
coefficient of determination (R2) was used as the statistical error to obtain hyperparameters
with maximum accuracy while minimizing overfitting. Since there are only three inputs,
the maximum number of features when splitting a node was considered to be the default
value for all the models, which means all of them. The maximum depth for the DT, AB
and GTB models was searched in the range between 3 and 15. The number of estimators
was searched in the range between 10 and 100 for the BME and the FRT models, and in the
range between 100 and 1500 for the AB and GTB models, since for these ones a low value
for the learning rate was chosen. The fractions of the maximum number of samples, the
alpha and the subsample were searched in the range 0.1–1.0.

Table 4. Hyperparameters for each model.

Model Criterion Max Depth n Estimators Max
Samples Loss α Subsample

DT Poisson 8 - - - - -
BME MAE - 66 0.97 - - -
FRT MAE - 56 - - - -
AB Friedman MSE 6 1250 - Square - -

GTB Friedman MSE 3 1500 - Huber 0.94 0.67

A total of 161 data samples was used to train all the models, and 41 samples were used
to test them. The five-fold cross-validation results and statistical breakdown are shown in
Table 5, where the coefficient of variation (COV) based on the average R2 and the standard
deviation (STD) are presented for each model. There is no noticeable fluctuation in the
results of the five-folds, and the overall accuracy remains very good for all the models.
In particular, the FRT model showed to be excellent with the smallest value for the COV
of 0.6857%.
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Table 5. Cross-validation measurement results.

Model Statistics
Folds

1 2 3 4 5 STD Average COV%

DT 0.9711 0.9255 0.9677 0.9706 0.9538 0.0173 0.9577 1.8064
BME 0.9626 0.9719 0.9761 0.9489 0.9554 0.0101 0.9630 1.0488
FRT R2 0.9577 0.9691 0.9719 0.9576 0.9563 0.0066 0.9625 0.6857
AB 0.9673 0.9562 0.9812 0.9707 0.9667 0.0081 0.9684 0.8364

GTB 0.9650 0.9662 0.9891 0.9722 0.9759 0.0087 0.9737 0.8935

The validation curve for the coefficient of determination as a function of the maximum
depth of the tree for the chosen hyperparameters is represented in Figure 6 for the DT, AB
and GTB models. For this, validation_curve from the module sklearn.model_selection was
used. As referred earlier, for the BME and FRT model the trees were not given a maximum
depth, since they are averaging methods. Figure 6 shows that, for all models, the R2 quickly
reaches a plateau, and the results stop significantly improving beyond a critical number
of maximum depths. It can also be observed that the models are not overfitting, since the
training and validation scores are both high. This way, the used values of max_depth were
deemed as satisfactory.
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A validation curve for the number of estimators was calculated to check the perfor-
mance of the models (except for the DT since it only has one estimator). The validation
curve for the R2 as a function of the number of estimators for the chosen hyperparameters
is represented in Figure 7. As it can be observed, the R2 quickly reaches a plateau, and
the results stop significantly improving beyond a critical number of trees. The larger the
better, but also the longer it will take to compute. This way, the used values of n_estimators
were deemed as satisfactory. It can also be observed from the plot that the models are not
overfitting, since the training validation scores are both high.
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A learning curve shows the validation and training score of an estimator for several
numbers of training samples. It is used to find how much the model benefits from adding
more training data and whether the estimator suffers more from a variance or a bias error.
The learning curves for all the models with the respective hyperparameters chosen are
represented in Figure 8. The function learning_curve from the module sklearn.model_selection
was used. Overall, for small amounts of data, the training score is much greater than the
validation score. Adding more training samples increases generalization.
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3.3. Performance on Testing Set

The prediction performance of the proposed methods can be tested after the best
hyperparameters have been identified. The performance metrics of the models are reported
in Table 6. The prediction findings for the testing set are shown in Figure 9, with the x and
y axes representing the experimental and predicted torsional capacity, respectively.
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Table 6. Performance metrics for the testing results.

Model MAE (kNm) RMSE cvRMSE (%) R2 MAPE (%) RRSE VAF

DT 10.713 17.749 16.78 0.973 12.18 0.163 0.975
BME 7.616 12.064 11.41 0.988 8.83 0.111 0.989
FRT 7.434 11.461 10.83 0.989 8.72 0.106 0.990
AB 9.901 14.725 13.92 0.982 10.83 0.136 0.983

GTB 6.856 10.618 10.04 0.990 7.21 0.098 0.991
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Overall, the difference between the predicted and actual torsional capacity (MAE)
is low, with an average between 6.9 and 10.7 kNm. The low values obtained for RMSE,
cvRMSE, MAPE and RRSE, and the high values obtained for R2 and VAF are very acceptable
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and show that the used models based on Ensembles of Trees can be considered effective
in estimating the torsional capacity of RC beams. From Table 6, the best models in terms
of the cvRMSE are the BME, FRT and GTB models, with values of 11.41%, 10.83% and
10.04%, respectively.

Figure 10 presents the histograms of the predicted torsional capacity TR_Exp from all
the models compared with the actual torsional capacity TR_Pred. It also presents its normal
distribution, for which the mean value and standard deviation are presented in Table 7.
The normal distribution shows that the error is dispersed randomly.
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Table 7. Mean and standard deviation for testing results.

Model µ σ

DT 1.040 0.164
BME 1.029 0.106
FRT 1.026 0.105
AB 1.048 0.150

GTB 1.034 0.097

4. Comparison with the Results from Previous Studies

When compared with the results from previous studies using ML models, referred in
Section 1 and related mainly with RC beams under pure torsion, the following can be stated.

The research article from Deifalla and Salem [44] was the only one in which the authors
applied two models based on ET, namely a Boosted and a Bagged model, to predict the
torsional gain capacity of externally bonded FRP-RC beams, and not the full torsional
capacity of common RC beams. They used additional inputs incorporating data about
the strengthening system and a dataset with 157 beams. Since the predicted variable was
different, only the R2 parameter is discussed here. With their models, the referred authors
achieved values of 0.71 and 0.47 for the Boosted and Bagged models, respectively. These
values are much lower than the ones achieved in this study. Reference [44] also used other
models, namely four models based on a Gaussian Process Regression and five models
based on Neural Networks. For all these models, the R2 ranged between 0.56 and 0.93,
which still remains lower than the ones from this study.

Henedy et al. [47] used the same database and the same inputs as in the present
research, and applied a M5P model tree and a non-linear regression model to predict the
torsional capacity of the RC beams. For the first one and for the testing set, they achieved
the following metric performances: MAE = 8.224, RMSE = 13.432 and R2 = 0.981. When
compared with the metric performances in Table 6 (also for the testing set), it can be stated
that the models used in this study achieved similar results, although three of the models
(BME, FRT and GTB) showed to be slightly better.

Cevik et al. [42] used a Genetic-programming-based model to predict the torsional
capacity of RC beams using a dataset with only 76 beams. The authors used 5 variables
among 12 available as inputs. For the testing set, the following metric performances were
achieved: RMSE = 12.9 and R2 = 0.95. Based on the results from Table 6 (also for the
testing set), the same three previously referred models (BME, FRT and GTB) were shown
to be slightly better in terms of RMSE. Furthermore, all models showed R2 values higher
than 0.95.

Finally, [40,41,43,48] used different artificial neural network (ANN) or convolutional
neural network (CNN) models to predict the torsional capacity of RC beams, with a
much higher number of inputs (11 or 12) and different datasets (with 76 beams for [41,43],
240 beams for [40] and 268 beams for [48]). Regarding the same metric performances
used in this study, for reference [40] and for four different ANN models (BP and GA-BP
neural networks, optimized BP and GA-BP neural networks), the metric performances
ranged between the following values: MAE = 6.742 to 11.548, RMSE = 10.154 to 17.758 and
R2 = 0.846 to 0.950. For reference [41], with only one ANN model (hybrid neural network:
GA-MLP), the metric performances were as follows: MAE = 6.94 and R2 = 0.980. For
reference [43] where eleven ANN algorithms were used, the author achieved the following
range of values: R2 = 0.9496 to 0.9876. Finally, in [48], the authors proposed an improved
bird swarm algorithm optimized 2D CNN, for which the following metric performance
was achieved: MAE = 2.9875. When compared with the results from Table 6, it can be stated
that the ET models in this study achieved very similar performance metrics as the ones
from the ANN models, but with much lesser inputs.

Based on the previous comparisons, it can be stated that ET models, such as the ones
used in this study, can be considered predictive models as good as the best models from
the previously referred studies to predict the torsional capacity of RC beams.
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5. Sensitivity Analysis

The importance of each input variable in the prediction of the torsional capacity of
RC beams is determined by performing a sensitivity analysis. This analysis is carried out
by removing each predictor from the database, one at a time, and training and testing
the proposed models using the resulting dataset. The MAE, RMSE, cvRMSE and R2

performance measures resulting from testing were used to analyze the importance of each
input variable. These results are presented in Table 8, in which it can be noticed that the
cross-section area Ac is the most important variable of the three inputs when predicting the
torsional capacity of the RC beams. The concrete compressive strength fc in its turn is the
variable with the least impact on the performance of the models. These results confirm the
ones from a previous study from the authors using different models to predict the torsional
capacity of RC beams for the same dataset [47].

Table 8. Effect of input variables on the performance of the ML models.

Models INPUT VARIABLE
Testing Set

MAE RMSE cvRMSE (%) R2 MAPE (%) RRSE VAF

DT

Ac, fc, Al fyl At fyt/s 10.713 17.749 16.78 0.973 12.18 0.163 0.975
fc, Al fyl At fyt/s 27.620 46.919 44.36 0.813 35.85 0.432 0.815
Ac, Al fyl At fyt/s 13.694 22.280 21.06 0.958 14.94 0.205 0.960

Ac, fc 19.959 31.359 29.65 0.917 23.09 0.289 0.926

BME

Ac, fc, Al fyl At fyt/s 7.616 12.064 11.41 0.988 8.83 0.111 0.989
fc, Al fyl At fyt/s 29.184 48.128 45.50 0.804 32.68 0.443 0.806
Ac, Al fyl At fyt/s 10.030 16.123 15.24 0.978 11.06 0.148 0.980

Ac, fc 20.905 34.497 32.61 0.899 20.00 0.318 0.910

FRT

Ac, fc, Al fyl At fyt/s 7.434 11.461 10.83 0.989 8.72 0.106 0.990
fc, Al fyl At fyt/s 28.391 44.576 42.14 0.832 35.61 0.410 0.833
Ac, Al fyl At fyt/s 9.974 16.468 15.57 0.977 11.01 0.152 0.979

Ac, fc 20.586 31.897 30.16 0.914 20.20 0.294 0.925

AB

Ac, fc, Al fyl At fyt/s 9.901 14.725 13.92 0.982 10.83 0.136 0.983
fc, Al fyl At fyt/s 32.522 54.019 51.07 0.753 36.96 0.497 0.755
Ac, Al fyl At fyt/s 12.225 21.030 19.88 0.963 12.22 0.194 0.964

Ac, fc 18.927 29.762 28.14 0.925 20.83 0.274 0.931

GTB

Ac, Al fyl At fyt/s 6.856 10.618 10.04 0.990 7.21 0.098 0.991
fc, Al fyl At fyt/s 29.846 46.988 44.42 0.813 45.15 0.433 0.815
Ac, Al fyl At fyt/s 13.664 23.794 22.49 0.952 14.52 0.219 0.952

Ac, fc 24.378 41.416 39.155 0.855 21.97 0.381 0.896

6. Conclusions

An investigation on the use of ML methods based on the Ensemble of Trees (ET) for the
prediction of the torsional capacity of RC beams was conducted in this study. A database
with 202 RC beam samples was created and randomly divided into testing and training sets.
Using a five-fold cross-validation procedure paired with a grid search strategy, optimal
hyperparameters for all the models were found based on the training dataset. The testing
dataset was used to validate the performance of the built models. From the obtained results,
the following main conclusions that can be drawn:

• A simple Decision Tree (DT) regressor predicts the torsional capacity of RC beams
with satisfactory accuracy. The model has a R2 value of 0.973 and a cvRMSE value of
16.78% for the testing set;

• It was shown that ET reach higher accuracies than a simple DT. The Bagging Meta-
Estimator (BME), the Forests of Randomized Trees (FRT), the AdaBoost (AB) and the
Gradient Tree Boosting (GTB) reached values of R2 in the range between 0.982 and
0.990, and values of cvRMSE in the range between 10.04% and 13.92%. These results
indicate that the prediction capability of these four models can be trusted with high
confidence, in particular for the GTB and FRT models;



Appl. Sci. 2023, 13, 1385 22 of 30

• The cross-section area Ac was shown to be the most important variable of the three
inputs when predicting the torsional capacity of the RC beams, while the concrete
compressive strength fc was shown to be the variable with the least impact;

• With low error measurements and mean values µM near unity, the results showed that
these four ET methods (BME, FRT, AB and GTB) can be considered predictive models
as good as the best models from the referred previous studies to predict the torsional
capacity of RC beams.

With only 202 samples, the dataset used to develop the prediction models can be
considered somewhat small, which represents a limitation of this investigation. The
accuracy of the models can be improved in the future by using a larger dataset.

Finally, upon request to the corresponding author, the Python scripts developed in
this article can be made available, namely for researchers and practitioners.
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Nomenclature

Ac area enclosed within the outer perimeter of the cross-section
Al total area of longitudinal reinforcement
At area for one bar of the hoop
fc average compressive strength of concrete
fly average yield strength of longitudinal reinforcement
fty average yield strength of transverse reinforcement
s longitudinal spacing between hoops
T torsional moment
TR torsional moment resistance
TR_Exp experimental torsional moment resistance
TR_Pred theoretical torsional moment resistance
t thickness of the wall for hollow cross-sections
s longitudinal spacing between stirrups
x smaller dimension of the cross-section
x1 smaller dimension of hoops
y larger dimension of the cross-section
y1 larger dimension of hoops
ρl ratio of longitudinal reinforcement: ρl = Al/xy
ρt ratio of transverse reinforcement: ρt = Atu/As
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Appendix A

Table A1. Geometric and mechanical properties of the reference RC beams.

Ref. Beam
Section
Type

x y t x1 y1 Al At/s fc fly fty TR_Exp

(m) (m) (m) (m) (m) (cm2) (cm2/m) (MPa) (MPa) (MPa) (kNm)

[5]

B1 Plain 0.254 0.381 - 0.216 0.343 5.07 4.68 27.6 314.0 341.0 22.30
B3 Plain 0.254 0.381 - 0.216 0.343 11.36 10.16 28.1 327.6 320.0 37.48
B4 Plain 0.254 0.381 - 0.216 0.343 15.48 14.01 29.2 320.0 323.4 47.30
B5 Plain 0.254 0.381 - 0.216 0.343 20.39 18.47 30.6 332.4 321.4 56.11
B6 Plain 0.254 0.381 - 0.216 0.343 25.81 22.58 28.8 331.7 322.8 61.64
B7 Plain 0.254 0.381 - 0.216 0.343 5.16 10.16 26.0 320.0 318.6 26.87
B8 Plain 0.254 0.381 - 0.216 0.343 5.16 22.58 26.8 322.1 320.0 32.51
B9 Plain 0.254 0.381 - 0.216 0.343 11.36 4.66 28.8 319.3 342.8 29.80

B10 Plain 0.254 0.381 - 0.216 0.343 25.8 4.66 26.5 334.0 342.0 34.40
C2 Plain 0.254 0.254 - 0.216 0.216 5.07 6.07 26.5 334.0 345.0 15.30
C4 Plain 0.254 0.254 - 0.216 0.216 11.36 13.11 27.2 336.6 327.6 25.29
C5 Plain 0.254 0.254 - 0.216 0.216 15.48 17.67 27.2 328.3 329.0 29.69
C6 Plain 0.254 0.254 - 0.216 0.216 20.39 23.91 27.6 315.9 327.6 34.21
G2 Plain 0.254 0.508 - 0.216 0.470 7.94 5.91 30.9 323.0 334.0 40.30
G3 Plain 0.254 0.508 - 0.216 0.470 11.36 8.29 26.8 338.6 327.6 49.56
G4 Plain 0.254 0.508 - 0.216 0.470 15.48 11.29 28.3 325.5 321.4 64.80
G5 Plain 0.254 0.508 - 0.216 0.470 20.39 15.05 26.9 331.0 327.6 71.91
G6 Plain 0.254 0.508 - 0.216 0.470 7.60 5.61 29.9 334.0 350.0 39.10
G7 Plain 0.254 0.508 - 0.216 0.470 12.00 8.84 31.0 319.3 322.8 52.61
G8 Plain 0.254 0.508 - 0.216 0.470 17.03 12.32 28.3 322.1 329.0 73.38
I2 Plain 0.254 0.381 - 0.216 0.343 7.94 7.25 45.2 325 349 36.00
I3 Plain 0.254 0.381 - 0.216 0.343 11.36 10.16 44.8 343.4 333.8 45.61
I4 Plain 0.254 0.381 - 0.216 0.343 15.48 14.01 45.0 315.2 326.2 58.02
I5 Plain 0.254 0.381 - 0.216 0.343 20.39 18.47 45.0 310.3 325.5 70.67
I6 Plain 0.254 0.381 - 0.216 0.343 25.81 22.58 45.8 325.5 329.0 76.65
J1 Plain 0.254 0.381 - 0.216 0.343 5.16 4.66 14.3 327.6 346.2 21.45
J2 Plain 0.254 0.381 - 0.216 0.343 8.00 7.21 14.6 320.0 340.7 29.13
J3 Plain 0.254 0.381 - 0.216 0.343 11.36 10.16 16.9 388.6 337.2 35.22
J4 Plain 0.254 0.381 - 0.216 0.343 15.48 14.01 16.8 324.1 331.7 40.64
K2 Plain 0.152 0.495 - 0.114 0.457 7.74 6.77 30.6 335.9 337.9 23.71
K3 Plain 0.152 0.495 - 0.114 0.457 12.00 10.42 29.0 315.9 320.7 28.45
K4 Plain 0.152 0.495 - 0.114 0.457 17.03 15.05 28.6 344.1 340.0 35.00
M1 Plain 0.254 0.381 - 0.216 0.343 8.00 4.76 29.9 326.2 353.1 30.37
M2 Plain 0.254 0.381 - 0.216 0.343 11.36 6.77 30.6 329.0 357.2 40.53
M3 Plain 0.254 0.381 - 0.216 0.343 15.48 9.24 26.8 322.1 326.2 43.80
M4 Plain 0.254 0.381 - 0.216 0.343 20.39 12.33 26.6 318.6 326.9 49.56
M5 Plain 0.254 0.381 - 0.216 0.343 25.81 15.63 28.0 335.2 331.0 55.65
M6 Plain 0.254 0.381 - 0.216 0.343 30.58 15.63 29.4 317.9 340.7 60.06
N1 Plain 0.152 0.305 - 0.130 0.283 2.84 3.50 29.5 352.4 341.4 9.09
N1a Plain 0.152 0.305 - 0.130 0.283 2.84 3.50 28.7 346.2 344.8 8.99
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Ref. Beam
Section
Type

x y t x1 y1 Al At /s fc fly fty TR_Exp

(m) (m) (m) (m) (m) (cm2) (cm2/m) (MPa) (MPa) (MPa) (kNm)

[5]

N2 Plain 0.152 0.305 - 0.130 0.283 5.16 6.35 30.4 331.0 337.9 14.45
N2a Plain 0.152 0.305 - 0.130 0.283 1.61 6.21 28.4 333.1 360.7 13.21
N3 Plain 0.152 0.305 - 0.130 0.283 4.26 5.08 27.3 351.7 351.7 12.19
N4 Plain 0.152 0.305 - 0.130 0.283 6.58 7.98 27.3 340.9 355.9 15.69

[15] T4 Plain 0.500 0.500 - 0.454 0.454 18.10 10.28 35.3 356.7 356.7 138.61

[17]

VB2 Plain 0.440 0.240 - 0.420 0.220 7.01 5.84 26.4 541.4 541.4 42.11
VB3 Plain 0.440 0.240 - 0.420 0.220 7.01 5.84 39.1 541.4 541.4 46.40
VB4 Plain 0.440 0.240 - 0.420 0.220 7.01 5.84 49.8 541.4 541.4 48.54
VM1 Plain 0.294 0.160 - 0.280 0.146 3.00 3.63 39.1 442.4 568.9 13.89
VM2 Plain 0.440 0.240 - 0.420 0.220 6.60 5.32 36.1 431.6 436.5 39.17
VM3 Plain 0.587 0.320 - 0.561 0.294 12.84 7.14 40.0 461.0 442.4 100.80
VQ1 Plain 0.324 0.324 - 0.304 0.304 3.46 2.88 19.0 557.1 557.1 21.11
VQ3 Plain 0.580 0.186 - 0.560 0.166 4.27 3.05 17.6 432.6 432.6 19.98
VQ9 Plain 0.806 0.140 - 0.786 0.120 5.08 2.82 19.5 441.4 441.4 21.90

VS2-VQ2 Plain 0.440 0.240 - 0.420 0.220 3.66 3.05 19.0 432.6 432.6 19.53
VS3 Plain 0.440 0.240 - 0.420 0.220 5.49 4.55 19.5 432.6 432.6 28.56

VS4-VQ5 Plain 0.440 0.240 - 0.420 0.220 7.32 6.10 19.0 432.6 432.6 34.32
VS9 Plain 0.440 0.240 - 0.420 0.220 3.48 2.90 17.6 570.9 570.9 21.56

VS10-VB1 Plain 0.440 0.240 - 0.420 0.220 6.96 5.80 19.0 570.9 570.9 33.30
VU1 Plain 0.440 0.240 - 0.420 0.220 3.36 5.60 19.5 441.4 441.4 23.93
VU2 Plain 0.440 0.240 - 0.420 0.220 5.04 5.60 19.5 441.4 441.4 30.37
VU3 Plain 0.440 0.240 - 0.420 0.220 6.72 4.18 18.5 441.4 441.4 31.04
VU4 Plain 0.440 0.240 - 0.420 0.220 6.72 2.80 18.5 441.4 441.4 25.96

[6]

A2 Plain 0.254 0.254 - 0.222 0.222 5.16 7.82 38.2 380.0 285.0 22.58
A3 Plain 0.254 0.254 - 0.219 0.219 8.00 8.94 39.4 352.4 360.0 27.77
A4 Plain 0.254 0.254 - 0.219 0.219 11.36 12.42 39.2 351.0 360.0 34.43
B1r Plain 0.178 0.356 - 0.146 0.324 2.85 3.87 36.3 360.0 285.0 12.30
B2 Plain 0.178 0.356 - 0.146 0.324 5.07 7.19 39.6 380.0 285.0 20.80
B3 Plain 0.178 0.356 - 0.143 0.321 8.00 8.60 38.6 352.4 360.0 25.29
B4 Plain 0.178 0.356 - 0.143 0.321 11.36 11.76 38.5 351.0 360.0 31.72

[58]

B30.1 Plain 0.160 0.275 - 0.120 0.235 15.44 8.73 41.7 620.0 665.0 16.62
B30.2 Plain 0.160 0.275 - 0.120 0.235 15.44 8.73 38.2 638.0 669.0 15.29
B30.3 Plain 0.160 0.275 - 0.120 0.235 15.44 8.73 36.3 605.0 672.0 15.25
B50.1 Plain 0.160 0.275 - 0.120 0.235 15.44 8.73 61.8 612.0 665.0 19.95
B50.2 Plain 0.160 0.275 - 0.120 0.235 15.44 8.73 57.1 614.0 665.0 18.46
B50.3 Plain 0.160 0.275 - 0.120 0.235 15.44 8.73 61.7 612.0 665.0 19.13
B70.1 Plain 0.160 0.275 - 0.120 0.235 15.44 8.73 77.3 617.0 658.0 20.06
B70.2 Plain 0.160 0.275 - 0.120 0.235 15.44 8.73 76.9 614.0 656.0 20.74
B70.3 Plain 0.160 0.275 - 0.120 0.235 15.44 8.73 76.2 617.0 663.0 20.96

B110.1 Plain 0.160 0.275 - 0.120 0.235 15.44 8.73 109.8 618.0 655.0 24.72
B110.2 Plain 0.160 0.275 - 0.120 0.235 15.44 8.73 105.0 634.0 660.0 23.62
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Ref. Beam
Section
Type

x y t x1 y1 Al At /s fc fly fty TR_Exp

(m) (m) (m) (m) (m) (cm2) (cm2/m) (MPa) (MPa) (MPa) (kNm)

[58] B110.3 Plain 0.160 0.275 - 0.120 0.235 15.44 8.73 105.1 629.0 655.0 24.77

[59]

B5UR1 Plain 0.203 0.305 - 0.165 0.267 5.16 6.56 39.6 386.0 373.0 19.40
B7UR1 Plain 0.203 0.305 - 0.165 0.267 5.16 6.56 64.6 386.0 399.0 18.90
B9UR1 Plain 0.203 0.305 - 0.165 0.267 5.16 6.56 75.0 386.0 373.0 21.10
B12UR1 Plain 0.203 0.305 - 0.165 0.267 5.16 6.56 80.6 386.0 399.0 19.40
B12UR2 Plain 0.203 0.305 - 0.165 0.267 5.16 6.95 76.2 386.0 386.0 18.40
B12UR3 Plain 0.203 0.305 - 0.165 0.267 6.58 7.46 72.9 379.5 386.0 22.50
B12UR4 Plain 0.203 0.305 - 0.165 0.267 7.74 7.88 75.9 373.0 386.0 23.70
B12UR5 Plain 0.203 0.305 - 0.165 0.267 8.00 10.13 76.7 380.0 386.0 24.00
B14UR1 Plain 0.203 0.305 - 0.165 0.267 5.16 6.56 93.9 386.0 386.0 21.00

[60]

H-06-06 Plain 0.350 0.500 - 0.300 0.450 11.92 7.13 78.5 440.0 440.0 92.00
H-06-12 Plain 0.350 0.500 - 0.300 0.450 20.65 7.10 78.5 410.0 440.0 115.10
H-07-10 Plain 0.350 0.500 - 0.300 0.450 17.03 7.89 68.4 500.0 420.0 126.70
H-07-16 Plain 0.350 0.500 - 0.300 0.450 28.39 7.89 68.4 500.0 420.0 144.50
H-12-12 Plain 0.350 0.500 - 0.300 0.450 20.65 14.19 78.5 410.0 440.0 155.30
H-12-16 Plain 0.350 0.500 - 0.300 0.450 28.39 14.19 78.5 520.0 440.0 196.00
H-14-10 Plain 0.350 0.500 - 0.300 0.450 17.03 16.13 68.4 500.0 360.0 135.20
H-20-20 Plain 0.350 0.500 - 0.300 0.450 34.06 23.46 78.5 560.0 440.0 239.00
N-06-06 Plain 0.350 0.500 - 0.300 0.450 12.00 7.10 35.5 440.0 440.0 79.70
N-06-12 Plain 0.350 0.500 - 0.300 0.450 20.65 7.10 35.5 410.0 440.0 95.20
N-07-10 Plain 0.350 0.500 - 0.300 0.450 17.03 7.89 33.5 500.0 420.0 111.70
N-07-16 Plain 0.350 0.500 - 0.300 0.450 28.39 7.89 33.5 500.0 420.0 117.30
N-12-12 Plain 0.350 0.500 - 0.300 0.450 20.65 14.19 35.5 410.0 440.0 116.80
N-12-16 Plain 0.350 0.500 - 0.300 0.450 28.39 14.19 35.5 520.0 440.0 138.00
N-14-10 Plain 0.350 0.500 - 0.300 0.450 17.03 16.13 33.5 500.0 360.0 125.00
N-20-20 Plain 0.350 0.500 - 0.300 0.450 34.06 23.46 35.5 560.0 440.0 158.00

[61]

HAS-51-50 Plain 0.420 0.420 - 0.370 0.370 9.03 5.94 76.0 396.0 385.0 84.90
NAS-61-35 Plain 0.420 0.420 - 0.370 0.370 10.80 4.19 48.0 394.0 385.0 74.70
HAS-90-50 Plain 0.420 0.420 - 0.370 0.370 15.89 5.94 78.0 400.0 385.0 104.23
NBS-43-44 Plain 0.350 0.500 - 0.300 0.450 7.60 5.09 35.0 400.0 385.0 60.60
HBS-74-17 Plain 0.350 0.500 - 0.300 0.450 12.89 2.02 67.0 505.0 600.0 62.20
HBS-82-13 Plain 0.350 0.500 - 0.300 0.450 14.31 1.49 67.0 493.0 600.0 56.30
NBS-82-13 Plain 0.350 0.500 - 0.300 0.450 14.31 1.49 35.0 493.0 600.0 52.90
HBS-60-61 Plain 0.350 0.500 - 0.300 0.450 10.48 7.13 67.0 402.0 385.0 93.70
HCS-52-50 Plain 0.250 0.700 - 0.200 0.650 9.03 5.09 76.0 396.0 385.0 73.54
HCS-91-50 Plain 0.250 0.700 - 0.200 0.650 15.89 5.09 78.0 400.0 385.0 95.86

[62]

T1-1 Plain 0.300 0.350 - 0.260 0.310 5.07 5.48 43.2 410.0 370.0 32.90
T1-2 Plain 0.300 0.350 - 0.260 0.310 7.60 8.39 44.0 410.0 370.0 45.90
T1-3 Plain 0.300 0.350 - 0.260 0.310 10.14 10.97 41.7 410.0 370.0 54.10
T1-4 Plain 0.300 0.350 - 0.260 0.310 11.92 16.89 42.6 510.0 355.0 62.40
T2-2 Plain 0.300 0.350 - 0.260 0.310 7.94 5.48 41.7 510.0 370.0 38.10
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Ref. Beam
Section
Type

x y t x1 y1 Al At /s fc fly fty TR_Exp

(m) (m) (m) (m) (m) (cm2) (cm2/m) (MPa) (MPa) (MPa) (kNm)

[62]
T2-3 Plain 0.300 0.350 - 0.260 0.310 11.92 8.10 42.7 510.0 370.0 50.20
T2-4 Plain 0.300 0.350 - 0.260 0.310 14.00 9.51 42.6 512.4 370.0 56.40

[56]

SW12-1 Plain 0.150 1.200 - 0.100 1.150 22.62 3.93 44.2 480.0 459.0 74.00
SW10-1 Plain 0.150 1.000 - 0.100 0.950 18.10 3.93 29.5 499.0 459.0 50.70
SW10-2 Plain 0.150 1.000 - 0.098 0.948 18.10 7.54 44.2 480.0 480.0 68.00
SW10-3 Plain 0.150 1.000 - 0.098 0.948 18.10 11.31 29.5 499.0 499.0 74.30
SW10-4 Plain 0.150 1.000 - 0.094 0.944 32.16 16.08 33.8 497.0 497.0 80.50
SW8-1 Plain 0.150 0.800 - 0.102 0.752 14.14 4.02 29.5 459.0 433.0 40.40
SW8-2 Plain 0.150 0.800 - 0.098 0.748 14.14 11.31 29.5 459.0 499.0 60.10

[63]

RA-SD4-3.2-
0.3-3.28

Plain 0.300 0.400 - 0.270 0.370 30.97 7.13 73.7 452.0 484.0 86.80

RA-SD5-3.2-
0.3-3.21

Plain 0.300 0.400 - 0.270 0.370 30.97 6.48 73.7 499.0 538.0 88.00

RA-SD6-3.2-
0.2-3.21

Plain 0.300 0.400 - 0.270 0.370 30.97 6.48 73.7 630.0 538.0 89.40

RA-SD4-3.2-
0.5-2.13

Plain 0.300 0.400 - 0.270 0.370 17.19 7.13 84.7 456.0 484.0 76.30

RA-SD5-3.2-
0.7-1.63

Plain 0.300 0.400 - 0.270 0.370 11.92 6.48 84.7 529.0 538.0 74.50

RA-SD6-3.2-
0.6-1.63

Plain 0.300 0.400 - 0.270 0.370 11.92 6.48 84.7 627.0 538.0 70.00

RA-SD4-3.2-
1.1-1.33

Plain 0.300 0.400 - 0.270 0.370 7.60 7.13 83.1 474.0 484.0 74.20

RA-SD5-3.2-
1.0-1.26

Plain 0.300 0.400 - 0.270 0.370 7.60 6.48 83.1 522.0 538.0 67.70

RA-SD6-3.2-
0.8-1.26

Plain 0.300 0.400 - 0.270 0.370 7.94 6.48 83.1 627.0 538.0 69.90

[64]

MR30-0.77 Plain 0.350 0.500 - 0.300 0.450 7.60 3.96 29.3 489.8 467.5 55.00
MT30-1.32 Plain 0.350 0.500 - 0.300 0.450 17.19 3.96 29.3 500.4 467.5 57.00
MT40-1.32 Plain 0.350 0.500 - 0.300 0.450 17.19 3.96 40.3 500.4 467.5 58.30
MT40-1.89 Plain 0.350 0.500 - 0.300 0.450 17.19 10.57 40.3 489.8 489.8 98.40

[65]

NSC-S1-C30 Plain 0.200 0.300 - 0.168 0.268 4.52 6.28 42.1 689.7 534.1 19.70
NSC-S1-C45 Plain 0.200 0.300 - 0.138 0.238 4.52 6.28 39.4 689.7 534.1 12.50

HSC-C30 Plain 0.200 0.300 - 0.168 0.268 4.52 6.28 60.8 689.7 534.1 19.90
HSC-C45 Plain 0.200 0.300 - 0.138 0.238 4.52 6.28 60.8 689.7 534.1 13.80

[66]

S08-3-65 Plain 0.400 0.600 - 0.310 0.510 18.08 10.97 35.4 313.3 334.9 123.00
S08-4-90 Plain 0.400 0.600 - 0.310 0.510 13.30 7.92 35.4 474.6 485.8 124.00

S08-5-122.5 Plain 0.400 0.600 - 0.310 0.510 10.45 5.82 35.4 569.6 595.9 89.00
S10-3-52.5 Plain 0.400 0.600 - 0.310 0.510 22.39 13.58 35.4 320.5 334.0 126.00
S10-4-72.5 Plain 0.400 0.600 - 0.310 0.510 16.63 9.83 35.4 467.6 485.1 109.00
S10-5-100 Plain 0.400 0.600 - 0.310 0.510 12.98 7.13 35.4 567.6 595.2 108.00
S06-3-90 Plain 0.400 0.600 - 0.310 0.510 13.30 7.92 35.4 319.4 334.3 101.00
S10-5-90 Plain 0.400 0.600 - 0.310 0.510 14.41 7.92 35.4 569.6 594.8 106.00

S08-3-72.5 Plain 0.400 0.600 - 0.310 0.510 16.63 9.83 35.4 308.8 334.8 106.00
S12-5-72.5 Plain 0.400 0.600 - 0.310 0.510 18.05 9.83 35.4 565.1 595.2 120.00

[5]
D3 Hollow 0.254 0.381 0.064 0.216 0.343 11.36 10.16 28.4 341.4 333.1 39.11
D4 Hollow 0.254 0.381 0.064 0.216 0.343 15.48 14.01 30.6 330.3 333.1 47.93

[15,57]
T0 Hollow 0.500 0.500 0.080 0.430 0.430 32.16 10.28 45.1 345.2 357.0 185.50
T1 Hollow 0.500 0.500 0.080 0.454 0.454 18.10 10.28 35.3 356.7 356.7 140.01
T2 Hollow 0.500 0.500 0.080 0.430 0.430 18.10 10.28 35.3 357.0 357.0 143.10
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Ref. Beam
Section
Type

x y t x1 y1 Al At /s fc fly fty TR_Exp

(m) (m) (m) (m) (m) (cm2) (cm2/m) (MPa) (MPa) (MPa) (kNm)

[15,57] T5 Hollow 0.800 0.400 0.080 0.730 0.330 10.00 10.28 47.1 528.6 512.9 156.88

[17]
VH1 Hollow 0.324 0.324 0.080 0.304 0.304 3.46 2.88 17.2 447.3 447.3 21.79
VH2 Hollow 0.324 0.324 0.080 0.304 0.304 6.91 5.76 17.2 447.3 447.3 34.50

[67]

A1 Hollow 0.600 0.600 0.098 0.537 0.547 6.53 3.14 48.4 695.9 636.7 150.79
A2 Hollow 0.600 0.600 0.107 0.538 0.531 13.95 6.28 47.3 672.4 695.9 254.08
A3 Hollow 0.600 0.600 0.109 0.535 0.535 18.10 8.27 46.2 672.4 714.8 299.92
A4 Hollow 0.600 0.600 0.104 0.520 0.525 23.75 11.22 54.8 723.9 714.8 368.22
A5 Hollow 0.600 0.600 0.104 0.528 0.528 30.66 14.14 53.1 723.9 672.4 412.24
B2 Hollow 0.600 0.600 0.108 0.533 0.534 14.58 6.70 69.8 672.4 695.9 273.28
B3 Hollow 0.600 0.600 0.109 0.535 0.537 23.75 11.22 77.8 723.9 714.8 355.85
B4 Hollow 0.600 0.600 0.112 0.523 0.536 32.17 15.08 79.8 723.9 672.4 437.85
B5 Hollow 0.600 0.600 0.117 0.518 0.518 40.21 18.85 76.4 723.9 672.4 456.19
C1 Hollow 0.600 0.600 0.097 0.540 0.549 6.53 3.14 91.7 695.9 636.7 151.76
C2 Hollow 0.600 0.600 0.100 0.532 0.533 13.95 6.28 94.8 672.4 695.9 266.14
C3 Hollow 0.600 0.600 0.103 0.545 0.540 23.75 10.47 91.6 723.9 714.8 351.17
C4 Hollow 0.600 0.600 0.103 0.546 0.545 30.66 14.14 91.4 723.9 672.4 450.31
C5 Hollow 0.600 0.600 0.104 0.540 0.543 36.69 17.40 96.7 723.9 672.4 467.26
C6 Hollow 0.600 0.600 0.104 0.533 0.529 48.25 22.62 87.5 723.9 672.4 521.33

[61]
HAH-81-35 Hollow 0.420 0.420 0.075 0.370 0.370 14.31 4.19 78.0 493.0 385.0 94.31
NCH-62-33 Hollow 0.250 0.700 0.075 0.200 0.650 10.80 3.40 48.0 394.0 385.0 64.14
HCH-91-42 Hollow 0.250 0.700 0.075 0.200 0.650 15.89 4.32 78.0 400.0 385.0 87.51

[68]

A095c Hollow 0.497 0.711 0.145 0.437 0.651 13.16 9.93 35.1 371.0 381.0 209.98
A120a Hollow 0.502 0.719 0.184 0.442 0.659 20.00 7.59 27.6 464.0 380.0 215.25
B065b Hollow 0.503 0.710 0.092 0.443 0.650 50.97 9.93 39.2 452.0 380.0 278.00
B080a Hollow 0.500 0.721 0.112 0.440 0.661 28.39 12.90 46.5 454.0 392.0 300.66
B110a Hollow 0.498 0.710 0.155 0.438 0.650 20.00 8.60 48.1 453.0 369.0 237.48
C100a Hollow 0.499 0.723 0.127 0.439 0.663 28.39 12.90 90.6 466.0 447.0 370.15
D075a Hollow 0.498 0.734 0.087 0.438 0.674 28.39 12.90 94.9 469.0 381.0 339.48
D090a Hollow 0.501 0.722 0.105 0.441 0.662 28.39 12.90 105.7 466.0 447.0 343.08

[66]

H08-3-65 Hollow 0.400 0.600 0.100 0.310 0.510 18.08 10.97 36.5 361.1 352.2 128.00
H08-4-90 Hollow 0.400 0.600 0.100 0.310 0.510 13.30 7.92 36.5 445.7 448.9 130.00
H08-5-100 Hollow 0.400 0.600 0.100 0.310 0.510 11.88 7.13 36.5 545.5 539.8 117.00
H10-3-52.5 Hollow 0.400 0.600 0.100 0.310 0.510 22.39 13.58 36.5 356.9 352.4 143.00
H10-4-72.5 Hollow 0.400 0.600 0.100 0.310 0.510 16.63 9.83 36.5 444.5 447.9 127.00
H10-5-80 Hollow 0.400 0.600 0.100 0.310 0.510 14.41 8.91 36.5 546.3 538.6 125.00
H06-3-90 Hollow 0.400 0.600 0.100 0.310 0.510 13.30 7.92 36.5 359.1 351.0 102.00
H10-5-135 Hollow 0.400 0.600 0.100 0.310 0.510 9.02 5.28 36.5 548.1 540.3 95.00
H08-3-72.5 Hollow 0.400 0.600 0.100 0.310 0.510 16.63 9.83 36.5 359.4 352.7 114.00
H12-5-72.5 Hollow 0.400 0.600 0.100 0.310 0.510 16.63 9.83 36.5 404.1 538.7 129.00
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